
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

The Stata Journal (2017)
17, Number 3, pp. 600–618

Literate data analysis with Stata and Markdown

Germán Rodŕıguez
Princeton University

Princeton, NJ

grodri@princeton.edu

Abstract. In this article, I introduce markstat, a command for combining Stata
code and output with comments and annotations written in Markdown into a
beautiful webpage or PDF file, thus encouraging literate programming and repro-
ducible research. The command tangles the input separating Stata and Markdown
code, runs the Stata code, relies on Pandoc to process the Markdown code, and
then weaves the outputs into a single file. HTML documents may include inline
and display math using MathJax. Generating PDF output requires access to LATEX
and a style file from Stata but works with the same input file.

Editors’ note. Stata 15, released while this article was in production, has support
for Markdown and dynamic documents. However, markstat can produce HTML
and PDF documents with the same script and has other distinctive features. For
a detailed comparison, see http://data.princeton.edu/stata/markdown/stata15.

Keywords: pr0067, markstat, Markdown, Pandoc, LATEX literate programming,
dynamic documents, reproducible research

1 Introduction

Donald Knuth, author of The Art of Computer Programming and the creator of TEX, is
a strong believer in documenting computer programs. He argues that when we write a
program, we are not just providing instructions for the computer to complete a task but
also communicating to other human beings exactly what it is we are trying to do. He
believes that we can achieve much higher documentation standards if we view programs
as works of literature, hence, his advocacy of “literate programming” (Knuth 1992).

These ideas apply equally well, if not more forcefully, to the field of data analysis,
where careful documentation of all the steps followed, including data processing, data
analysis, and the production of tables and figures, is essential to help ensure repro-
ducibility of results. The most efficient way to accomplish this objective is to integrate
the data analysis code with the narrative that explains the steps taken and the results
obtained, preferably in a single document, in an approach I like to call “literate data
analysis”, a term coined by Leisch (2002); see also Rossini (2001) for an early survey.

The purpose of this article is to introduce a Stata command that will help applied
researchers do literate data analysis. The idea is quite simple. We prepare a file that
uses Markdown to communicate with the reader and Stata to talk to the computer.
Markdown is a simple markup language that is very easy to learn. And of course, you
know Stata. The input is a plain text file that can be edited using Stata’s code editor,

c© 2017 StataCorp LLC pr0067

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X1701700304&domain=pdf&date_stamp=2017-09-01

G. Rodŕıguez 601

which also means that we can select and run the Stata commands while we are authoring
our piece. When the file is ready, we run it through the markstat command, which
tangles or separates the Markdown and Stata code, runs each in turn, and then weaves
the outputs together into a nice webpage or PDF file.

I believe this command will help us climb what Barba (2016) has called “the hard
road to reproducible research”, encouraging and facilitating documentation of each stage
of our work:

• At the data processing stage, instead of a few cryptic comments in a do-file, we
can describe all the steps used to wrangle the raw data into analysis variables,
producing a nicely formatted and readable document.

• At the data analysis stage, we can include the code; explain the reasons for trying
particular models; include output, tables, and figures; and comment on the results,
all without tedious and error-prone cutting and pasting.

• At the presentation stage, we can produce a report that focuses on the results,
with an option to hide the actual commands used so that they are not shown in
the final document.

The command may also be used to produce teaching materials showing how to do
statistical analysis with Stata, in which case we will probably want to include all the
code in the resulting handout, webpage, or blog post.

In all cases, however, the original Stata Markdown script remains as a complete and
reproducible record of exactly how everything was done.

Documents that combine code and annotations are often called dynamic documents,
not because they are live or interactive as Xie (2016) has noted, but simply because if the
data change, or if we want to tweak the code, all we need to do is rerun the input script
and all the output will be updated automatically. There is a lot more to reproducible
research than producing dynamic documents (see, for example, Peng [2009] for a short
overview), but this is at least a step in the right direction. The R community has
excellent tools for reproducible research (see the book by Gandrud [2015], for example),
and part of my aim here is to help bring similar tools to the world of Stata.

My approach is different from lower-level commands that generate HTML or PDF

output, such as the ht suite by Quintó et al. (2012) or Stata’s own PDF Mata classes. It
is also different from solutions that produce publication-quality tables, often with an op-
tion to export to LATEX, Word, or Excel, such as outreg (Gallup 1999), outreg2 (Wada
2005), esttab (Jann 2005), or tabout (Watson 2016), although it can work with some
of these. It is similar to approaches that embed HTML, LATEX, or Markdown annotations
in special comment blocks in Stata do-files, such as webdoc (Jann 2016a), texdoc (Jann
2016b), markdoc (Haghish 2016), or my earlier weave. But with markstat, I embed
Stata code in Markdown, do not require knowledge of HTML or LATEX, and put a high
premium on making the input script clean and readable “as is”, just like Markdown
itself. My solution is thus closer in spirit to (if less ambitious than) R’s rmarkdown

602 Stata Markdown

(Allaire et al. 2016), which builds on knitr (Xie 2016), itself a descendant of sweave
(Leisch 2002), all of these R functions. It is possible to weave Stata code with knitr in
R—as noted, for example, by Hemken (2015)—but I do not require running R to run
Stata. The next section has an example.

2 Sample input

The markstat command is available from the Statistical Software Components archive
and can be installed by typing ssc install markstat. You also need to install Pandoc
as explained in section 4.

The basic idea here is to prepare a file that contains annotations written in Markdown
and Stata code, which appears in blocks indented one tab or four spaces, as in the
following example:

Stata Markdown

Let us read the fuel efficiency data that ships with Stata

sysuse auto, clear

To study how fuel efficiency depends on weight it is useful to
transform the dependent variable from "miles per gallon" to
"gallons per 100 miles"

gen gphm = 100/mpg

We then obtain a fairly linear relationship

twoway scatter gphm weight || lfit gphm weight, ///
ytitle(Gallons per 100 Miles) legend(off)

graph export auto.png, width(500) replace

![Fuel Efficiency by Weight](auto.png)

The regression equation estimated by OLS is

regress gphm weight

Thus, a car that weighs 1,000 pounds more than another requires
on average an extra 1.4 gallons to travel 100 miles.

That´s all for now!

Saving the file as auto.stmd and running markstat using auto generates the web-
page shown at http://data.princeton.edu/stata/markdown/auto. A screenshot of the
webpage is shown below, in figure 1.

G. Rodŕıguez 603

Figure 1. Screenshot of auto.html

The markstat command extracts the Markdown and Stata code into separate .md

and .do files, taking care to mark where the code blocks came from. It then runs the
Markdown code through an external program called Pandoc, runs the do-file through
Stata, and then weaves all the output together into a beautiful webpage.

There are options to generate a PDF file instead of HTML and to use the MathJax
library to render equations on a webpage. But before I explain these options, let me
tell you a bit about Markdown and Pandoc.

3 Markdown

Markdown is a lightweight markup language invented by John Gruber. It is easy to
write, and more importantly, it was designed to be readable “as is”, without intrusive
markings. Yet it can easily be converted into valid HTML or PDF.

This section is a quick introduction to Markdown, and you can refer to Gruber’s
(2004) Markdown: Basics for more information. There is an ongoing effort to stan-
dardize Common Markdown, with reference implementations in C and JavaScript; visit
http://commonmark.org for details.

604 Stata Markdown

In Markdown, you create a heading by “underlining” your text using === for a level 1
heading and --- for a level 2 heading (as we did in our example). You can also define
headings at levels one to six by starting a line with one to six hashmarks, as in ### A

level 3 heading.

You define a paragraph break by leaving a blank line. If you need a line break, end
the line with two or more spaces (which are hard to see) or end the line with \.

To indicate emphasis using an italic style, type an asterisk or underscore on both
sides of the text, as in *italic* or italic . For strong emphasis using a bold font,
type two asterisks or underscores on both sides of the text, as in **bold** or bold .
For a monospace font suitable for code, type a backtick on both sides of the text, as in
`regress` to refer to the regress command.

Create a list by starting a line with *, +, or - for a bulleted/unordered list or with
1. for a numbered/ordered list. You add items to a list by starting a line with the same
symbol or with a number. Items in ordered lists are numbered consecutively regardless
of which numbers you use. To end the list, you enter a blank line.

You can link to another document by putting the anchor in square brackets and the
link in parentheses, as in [GR’s website](http://data.princeton.edu).

To link to an image, start with a bang (exclamation mark), type a title in square
brackets, and end with the source of the image in parenthesis. An illustration from our
example above is ![Fuel Efficiency by Weight](auto.png).

An important feature of Markdown is that you can include HTML if you wish. For
example, we could have coded the image as or a line break
as
. However, this is not recommended if the aim is to generate a PDF document.

4 Pandoc

To convert Markdown to HTML (or other formats), you need a document converter. I
find that Pandoc works very well and is easy to install, with binaries for Linux, Mac,
and Windows, so that is what we will use. Please visit http:/pandoc.org/installing to
download and install the program, unless of course it is already installed in your system.

To tell Stata where Pandoc was installed, we use the whereis command (Rodŕıguez
2017b), available from the Statistical Software Components archive. Just type ssc

install whereis. This command maintains a registry of ancillary programs. To reg-
ister the location of Pandoc, you type in Stata

whereis pandoc full-path-to-pandoc-executable

where the path should be quoted if it contains spaces.

G. Rodŕıguez 605

For example, on a Mac the full path may be /usr/local/bin/pandoc, and on a
Windows system it may be "c:\program files (x86)\pandoc\pandoc.exe". If you
need assistance finding the location of Pandoc, try help whereis and read the section
Tips for Users, which notes how you can use the Unix commands which and whereis

or the Windows command where to help locate the file.

Subsequent calls to whereis pandoc return the registered location, which is how
markstat can find it.

Pandoc implements several extensions to Markdown; refer to John MacFarlane’s
(2017) Pandoc User’s Guide for details. For example, the use of \ to force a line break
is a Pandoc extension.

Another extension of note is that Pandoc will use the image title or alt-text, as
specified in square brackets, to generate a caption for the figure. This means that your
Stata code for generating the graph should probably not contain a title. Alternatively,
you may leave the alt-text blank or turn off captioning by ensuring that the image is
not a separate paragraph, which you do by adding a backslash at the end of the line, as
in ![alt-text](source)\.

5 Syntax

The syntax of the markstat command is quite simple:

markstat using filename
[
, pdf mathjax strict

]
The input file should have the extension .stmd, which is short for Stata Markdown,

and as usual with Stata commands, it can be omitted. For example, the sample file is
called auto.stmd in my system, and I ran it by typing markstat using auto.

If you just want to generate HTML and your document does not include mathematical
equations, you do not need any of the options. Thus, I will provide only a brief summary
here, leaving details to later sections. This also means that if you downloaded Pandoc
and registered it with whereis, you are now ready to run markstat.

The pdf option is used to generate a PDF document, which is done by first generating
LATEX, so it requires additional tooling as explained in section 10.

The mathjax option is used to include inline and display math in a webpage using
the MathJax JavaScript library; see section 7. The option is ignored for PDF output.

The strict option has to do with how we separate Markdown and Stata code. The
“one tab or four spaces” rule is simple and supports clean documents, but it precludes
some advanced Markdown options. The strict syntax uses code fences for maximum
flexibility and is described in section 11.

606 Stata Markdown

The first thing the command does is tangle the file, extracting the Markdown and
Stata blocks into separate files, which have the same name as the input file but with
the extensions .md and .do, respectively.

The Markdown file has all Stata code removed, leaving placeholders of the form
{{n}} for the nth code chunk, which is why you should not use double braces as part
of your annotations. But then, who does?

The command will try to convert this file to HTML or LATEX using Pandoc, producing
a file with the same name as the input but with the extension .pdx. This is a regular
HTML or LATEX file, but it has a custom extension to distinguish it from the file that
will incorporate Stata output later in the pipeline.

The Stata do-file has all annotations removed. Instead, it has comments of the form
//_n to mark the start of the nth code chunk and //_^ to mark the end of the last
chunk, so please avoid this pattern in your own comments.

The next thing the command does is run this file through Stata. If something goes
wrong, you will see the reason in the Results window. The output of this step is a log
file in SMCL format, with the extension .smcl.

The command then weaves the Markdown and Stata output files, inserting the out-
put in the appropriate places in the narrative as indicated by the placeholders. This
produces a file with the same name as the input file but with the extension .html for
HTML or .tex for LATEX.

If you are generating HTML, you are done. Generating a PDF document requires an
extra step: running pdflatex to convert the LATEX file to PDF, which markstat does
by running an external program and using a Stata LATEX package as described below.

Finally, markstat issues the Stata command view browse to show the final docu-
ment in your default web browser or in Acrobat Reader.

6 Images

If your Stata program produced graphs and you generated HTML, the resulting file will
not be self-contained because it will only have links to the images, which will reside in
your computer’s hard drive. If you were to email the file to a colleague, it would be
missing the images.

The bundle command (Rodŕıguez 2017a), also available from the Statistical Software
Components archive, provides a solution. This command takes as input the name of
an HTML file and goes through the code. Each time it finds a link to an image in PNG

format, it grabs the image file, encodes it as text using the same base-64 encoding as
email attachments, and rewrites the image link to include the encoded image as uniform
resource identifier data. By default, the output file has the same name as the input but
with -b appended to indicate that it is a bundle; however, there is an option to specify
a different name.

G. Rodŕıguez 607

For example, to turn our fuel efficiency example into a self-contained webpage, we
could use

bundle using auto

This will read auto.html and write auto-b.html with the image bundled in.

Another way to include images is to save the HTML file as PDF, which browsers such
as Chrome will do for you. Yet another way is to read the HTML file into Word, which
does a reasonably good job of parsing the code, and then save it as PDF. Still another
way is to generate PDF instead of HTML, as explained in section 10 below—this method
will embed the images automatically.

7 Inline and display math

Pandoc will take any text between dollar signs as a LATEX formula, so you may write
a regression model as $y = \alpha + \beta x + e$. Exactly how the equation is
rendered depends on the type of output you are generating and the options in effect.

If you are generating HTML, Pandoc will render the equation as well as possible using
Unicode characters. This is often all you need for simple equations. A more general
solution is to use MathJax, which is enabled by markstat’s mathjax option.

MathJax is a JavaScript library that can render LATEX formulas in an HTML page
with excellent results. Pandoc will let you use single dollar signs for inline math and
double dollar signs for display math, just as you would in a LATEX document, and will
translate them to \(and \) for inline equations and \[and \] for display equations,
which is what MathJax prefers.

Pandoc will also make sure that the HTML file includes a link to the MathJax script
using their content distribution network. Visit MathJax.org for more information.

If you are generating PDF via LATEX, you can use single and double dollar signs too,
and the inline and display math will be rendered natively by LATEX.

When typing inline math, ensure there is no space between the equation and the
opening or closing dollar signs. For example, $ y = \alpha + \beta x + e $ will not
work. For display math, you can include the entire expression in one line by using
double dollar signs, but you can also display it as

$$
y = \alpha + \beta x + e

$$

which I think improves readability. I tend to indent the math in display equations, and
of course I would not want it to be mistaken for Stata code under the “one tab or four
spaces” rule, so markstat suspends that rule inside display math, provided that the
double dollar signs are the only text in the opening and closing lines.

608 Stata Markdown

By the way, the code above renders in PDF as

y = α+ βx+ e

Try generating HTML with and without the mathjax option to see what works for you.

8 Metadata

Pandoc has an option to include a document’s title, author, and date as metadata.
Simply begin the document with three lines that each start with a % symbol and contain
the relevant information:

% Stata Markdown
% Your Name Here
% 26 October 2016

In LATEX, this information will populate the title, author, and date macros before
generating the title page. In HTML, it will appear both as metadata and as headings at
levels 1, 2, and 3 at the start of the document.

To omit the title, author, or date, leave the line blank except for the %. If the title
is too long, you may continue on extra lines, provided you start them with a space.
Multiple authors may be listed separated by semicolons or on continuation lines. The
date may be generated using inline code, as noted in section 12.

Alternatively, you may use the YAML format to enter the metadata. See the User’s
Guide (MacFarlane 2017) for more information.

9 Custom styles

The markstat command comes with a cascading style sheet (CSS) file that contains
styles to be used in HTML output. The file has rules for headings, text, and of course
Stata input and output blocks. It also provides styles for Pandoc-generated items such as
metadata, figure environments, and figure captions. The CSS file is called markstat.css,
will be saved in the ado-path when the command is installed, and will be injected in
the output when you generate HTML, so no external links are needed.

It is possible to customize the styles by using your own set of rules. All you have
to do is define a CSS file and save it as markstat.css in the current directory, which
is searched before the system directories. This setup also allows you to have a different
style file for each project; you just use different folders, each with its own CSS file. The
best way to get started is by editing the standard style.

All Stata input and output is rendered in HTML as preformatted text using a <pre>

tag with class stata, with a light gray background and a border, both easily changed.
The horizontal and vertical rules, corners, crossings, and T-junctions typical of Stata
output are rendered using Unicode versions of the original IBM drawing characters. I get

G. Rodŕıguez 609

best results specifying a Lucida Console font on Windows and just trusting the browser
to pick a monospace font otherwise, with the line-height equal to the font-size. I
recommend you keep these settings.

10 Generating PDF

The simplest way to generate PDF output is to first generate HTML and then have your
browser save the file as PDF, or read the file into Word and save it as PDF, as noted at
the end of section 6 in the context of bundling figures. This may be all you need.

For superior results, however, there is no substitute for first generating LATEX and
then converting that to PDF, which is what the pdf option does. The good news is that
you do not need to learn LATEX; you can author your annotations in Markdown, which
is much easier.

Unfortunately, this option requires additional tooling. You need to have access to
a LATEX-to-PDF converter, which will usually be part of a TEX installation such as
MiKTeX on Windows, MacTeX on Mac OS X, or TEX Live on Unix. If you are not a
LATEX user, you will need to download one of these distributions.

You then use the whereis command introduced earlier to let markstat know where
to find pdflatex, typing in Stata

whereis pdflatex full-path-to-pdflatex-executable

For example, on a Windows system, the path might be
c:\Program Files (x86)\MikTeX 2.9\mixtex\bin\pdflatex.exe; on a Mac, it may
be /usr/local/texlive/2015/bin/x86_64-darwin/pdflatex. Type help whereis

for tips on locating the file.

You also need a Stata package used to render Stata logs in LATEX. The file is
called stata.sty and is available from the Stata Journal. The sjlatex command will
install all journal files, but we only need stata.sty, which can be downloaded from
http://www.stata-journal/production/sjlatex/stata.sty. The file may be in the current
directory, but it is more convenient to copy it to your local TEX installation and then
update the TEX filename database so that the package is always available. Having access
to a local TEX guru may be invaluable at this stage.

Once these two tooling requirements have been satisfied, using the pdf option will
cause markstat to tangle the input, run Pandoc to generate LATEX from the Markdown
code, run the Stata do-file, ask Stata to convert the SMCL log to TEX via the log texman

command, weave the outputs into a single LATEX file, run pdflatex, and finally display
the PDF file in Acrobat Reader via Stata’s view browse command.

On some systems, pdflatex may not be able to write to the PDF file if it is open
in Adobe Reader. The workaround is to close the reader, and then press Enter in the
Converter window so that it can resume its work. Even better is to make a habit of

610 Stata Markdown

closing the PDF file before rerunning the markstat command. Other PDF viewers do
not lock the file, but I prefer to follow Stata defaults.

If you are generating a PDF file, the images will have been embedded automatically.
For best results, however, your graph export command should probably generate im-
ages in PDF rather than PNG format. PDF uses a vector format (essentially, instructions
for drawing the image) and scales better than PNG, which is a raster format consisting
basically of a matrix of pixels of different colors.

11 Strict code blocks

The decision to define a Stata block by indenting each line of code one tab or four spaces
produces clean-looking input files that happen to be legal Markdown code.

There is, however, a small problem. The Common Markdown specification allows a
list item to have more than one paragraph or to include nested lists, with the subsequent
paragraphs or lists indented one tab or four spaces. As a result, our simple rule will
mistake those lines for Stata commands. The workaround is simple: stick to simple
lists, or read on for an alternative.

There is also an issue if you want to include verbatim blocks that are not intended
to be run through Stata, but this problem can be solved by using code fences, lines
with three or more backticks or tildes inserted before and after a block of code. The
markstat parser will not treat fenced code as Stata commands, even if indented.

A more general solution is to use code fences for Stata blocks themselves, coding

```{s}
// Stata commands here

```

This makes the block clear and unambiguous, with the {s} indicating that the code
is to be run through Stata. It also allows multiparagraph list items and nested lists.
But it does make the input file look a bit more cluttered (which is why, in the interest
of readability, this is not the default setting).

The strict option of the markstat command turns on Stata code fences, with the
option to omit the braces, so a Stata block can start with the line ```{s} or just ```s
and end with the line ```. For example, the last part of our fuel efficiency example
could be coded in strict mode as follows:

The regression equation estimated by ordinary least squares is

```s
regress gphm weight

```

Thus, a car that weighs 1,000 pounds more than another requires
on average an extra 1.4 gallons to travel 100 miles.

G. Rodŕıguez 611

When this option is in effect, indented blocks without Stata code fences will be
treated as Markdown rather than Stata code, and therefore will be passed on to Pandoc
for processing.

Code inside Stata fences may be indented to improve readability, as I did in the above
example, and markstat will remove one level of indentation (if present) when generating
the do-file. Pandoc requires that fenced code blocks be separated from surrounding text
by blank lines, but markstat makes those optional for Stata code blocks.

Using strict code blocks also allows you to turn off echoing the Stata commands in
a code chunk, which you do by coding the opening fence as ```{s/} or just ```s/.
Examples are provided in sections 13 and 14.

This option may seem to run against the aim of full reproducibility of results, but
it may be desirable when generating dynamic reports, where the commands themselves
are of secondary interest and may safely be relegated to the .stmd file (which as noted
in the introduction remains as a complete reproducible record of how everything was
done).

There is no chunk option for suppressing Stata output because this can always be
achieved using the quietly prefix. I imagine one might combine suppressing both input
and output and running a script only for its side effects, which brings us to the next
topic.

12 Inline code

Sometimes your annotations need to quote results. For example, after running a regres-
sion, you may want to quote the value of R2. You could, of course, type something like,
“The proportion of variance explained or R2 can be read from the output as 0.0077 or
less than one percent.”

But that risks transcription errors. We know that Stata stores R2 as e(r2), and
it would be nice to access the stored result. One can always add display e(r2) to a
code block, but the result would not be spliced with the text.

Enter inline code, which lets you quote results using an optional format and an
expression with the following syntax

`s [fmt] expression`

The code will extract the optional format and expression, run it through Stata using a
display command, and then splice the output inline with the text.

For example, we could say R-squared is `s e(r2)`, but you may not want to
display R2 to eight decimal places, so try R-squared is `s %5.3f e(r2)` instead.

This feature is intended for short text. Inline code should not span multiple lines,
but a line of Markdown text may include multiple inline expressions. The markstat

command will retrieve just one line of output per expression.

612 Stata Markdown

Here is an example quoting an estimated coefficient dynamically:

Let us regress gallons per 100 miles on weight

regress gphm weight

A car that weighs 1,000 pounds more than another will use
on average an extra `s %5.2f 1000*_b[weight]` gallons
to travel 100 miles.

The output from markstat with the pdf option will render as follows:

Let us regress gallons per 100 miles on weight

. regress gphm weight

Source SS df MS Number of obs = 74
F(1, 72) = 194.71

Model 87.2964969 1 87.2964969 Prob > F = 0.0000
Residual 32.2797639 72 .448330054 R-squared = 0.7300

Adj R-squared = 0.7263
Total 119.576261 73 1.63803097 Root MSE = .66957

gphm Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight .001407 .0001008 13.95 0.000 .001206 .0016081
_cons .7707669 .3142571 2.45 0.017 .1443069 1.397227

A car that weighs 1,000 pounds more than another will use on average an extra
1.41 gallons to travel 100 miles.

It is possible to style the output of inline expressions as code by using double back-
ticks. For example, in the fuel efficiency data we could state that the variance was
estimated using the ``s e(vce)`` method, which in this case would render as “the ols
method”, with ols in a monospace font.

Inline code may be inserted anywhere in Markdown, including the metadata. For
example, the date line may read % `s c(current date)` to insert the current date as
provided by Stata’s c-class.

Finally, inline code may include macro evaluations or compound quotes. Just keep
in mind that Stata macros use an opening backtick and a closing single quote, whereas
inline code uses opening and closing backticks, which is how the parser can distinguish
them. We will see an example in the next section.

13 Markdown tables

On occasion, your narrative may need to include a table of results. Markdown does
not have a syntax for tables, relying on HTML markup instead, but Pandoc provides a
simple syntax extension, best described through an example.

G. Rodŕıguez 613

Here is code for a table showing average fuel efficiency in gallons per 100 miles for
foreign and domestic cars, before and after adjusting for weight.

Car type Unadjusted Adjusted
---------- ------------ ----------
Foreign 4.31 5.46
Domestic 5.32 4.83

Basically, you line up the columns yourself. Text alignment is determined by the
position of the header relative to the “underlining” below it. Our first column is left-
aligned, and the other two are right-aligned.

While pleasantly simple, this syntax will not work if we have inline code, because
the expressions, their placeholders, and the final output may all have different widths.
Fortunately, Pandoc has an alternative syntax, pipe tables, where columns are separated
by the pipe character (|) and alignment is indicated by the placing of a colon in the
header underlining. The previous example would look as follows:

Car type	Unadjusted	Adjusted
Foreign	4.31	5.46
Domestic	5.32	4.83

Now, we can make the table truly dynamic. We regress gallons per 100 miles on the
indicator of foreign cars and store the coefficients in a matrix. We then compute the
mean weight and store it for later use. Finally, we add weight to the regression model.
To keep the code short, I stored the baseline prediction (domestic cars of average weight)
in a scalar. Because we want to display all results to just two decimal places, we store
a common format in a macro. This is also a good candidate for hiding all commands.

```s/
quietly reg gphm foreign
mat b = e(b)
quietly sum weight
scalar mw = r(mean)
quietly reg gphm weight foreign
scalar dom = _b[_cons] + _b[weight] * mw
local f %6.2f

```

We are then ready to layout the table using inline code, as shown below. I lined up
the pipe characters to improve readability, but that is not required, and in any case it
would no longer hold after markstat splices the actual results.

Car type	Unadjusted	Adjusted
Foreign	`s `f´ b[1,1]+b[1,2]`	`s `f´ dom + _b[foreign]`
Domestic	`s `f´ b[1,2]`	`s `f´ dom`

614 Stata Markdown

This code with the pdf and strict options renders the following table:

Car type Unadjusted Adjusted

Foreign 4.31 5.46

Domestic 5.32 4.83

Foreign cars use less fuel than domestic cars but are also lighter. When we compare
cars with the same weight, the imports use about six-tenths of a gallon more per 100
miles than comparable domestic cars.

14 Tables of estimates

I mentioned in the introduction commands aimed at producing publication-quality ta-
bles, some of which have options to export results to LATEX, Word, or Excel. As long
as they also produce standard Stata output, however, they can be used with markstat.

I will illustrate this possibility using Jann’s (2007) esttab, a nice wrapper for estout
that works with eststo to store equation results. The following Stata Markdown script
fits two models to the fuel efficiency data and compares them side by side. We use the
strict syntax and suppress command echoing to show what a dynamic summary report
might look like:

The table below shows estimated differences in fuel efficiency between
foreign and domestic cars with and without adjustment for weight, using
gallons per 100 miles as the outcome.

```s/
eststo clear
quietly eststo: regress gphm foreign
quietly eststo: regress gphm foreign weight
esttab

```

We see that on average foreign cars are more economical, but
if we adjust for weight they are less fuel efficient, using
`s %3.1f _b[foreign]` gallons *more* instead of one gallon
less per 100 miles.

G. Rodŕıguez 615

Running this code with the pdf and strict options produces the following output:

The table below shows estimated differences in fuel efficiency between foreign
and domestic cars with and without adjustment for weight, using gallons per 100
miles as the outcome.

(1) (2)
gphm gphm

foreign -1.005** 0.622**
(-3.29) (3.11)

weight 0.00163***
(13.74)

_cons 5.318*** -0.0735
(31.92) (-0.18)

N 74 74

t statistics in parentheses
* p<0.05, ** p<0.01, *** p<0.001

We see that on average foreign cars are more economical, but if we adjust for
weight they are less fuel efficient, using 0.6 gallons more instead of one gallon less
per 100 miles.

The estout command can also produce HTML and LATEX tables, as can tabout

(Watson 2016). It is possible to include these tables in the output as long as they are
in the target language, and I provide examples online.

15 Conclusion

Rising (2016) has a nice review of current tools for producing dynamic documents
in Stata. I believe markstat fills all the requirements he mentions for teaching and
research—such as including or hiding commands or results, inserting graphs, and quot-
ing results in the narrative—and has an important advantage over other tools in the
simplicity of the single-file input script.

In fact, the overriding concern in the design of the markstat command has been
simplicity. I wanted the input file to be easy to write and, just as importantly, easy to
read, much in the spirit of Markdown itself, with minimal intrusion from the need to
distinguish Stata and Markdown code.

I rely on a simple “one tab or four spaces” indentation rule to produce clean input,
but allow fenced blocks for maximum flexibility, as well as inline code for quoting results.
All the inline or block code is plain Stata, without the need for special commands, and
everything outside those elements is plain Markdown.

616 Stata Markdown

I modeled the output on Stata’s own documentation and this journal. The task
was made easier, at least when generating PDF output, by using the same LATEX style.
The HTML output tries to live up to that standard by taking advantage of Unicode to
render horizontal and vertical rules using the original IBM drawing characters, which
are available in modern monospace fonts.

To facilitate troubleshooting, I make minimal use of temporary files, keeping all
important pieces around. As noted earlier, the tangle step generates a standard Stata
do-file, and if something goes wrong there, you will soon see the cause in the Results
window.

The command also generates a standard Markdown file, but if something goes wrong
with Pandoc, it may be harder to detect the problem because the shell will have closed.
My advice here is to run Pandoc from a terminal or Command window. Producing a
PDF is harder because it requires LATEX, and my troubleshooting advice again is to run
pdflatex directly on a console to see what went wrong.

I have assumed that the user will be writing Stata code and Markdown annotations
at the same time, but as a reviewer noted, it is also possible to convert existing do-
files into Stata Markdown scripts, indenting the code and rewriting or expanding the
comments using Markdown syntax.

The Stata Markdown section of my website has installation tips and a growing
collection of examples. It also includes answers to frequently asked questions. See
http://data.princeton.edu/stata/markdown.

16 Acknowledgment

I am very grateful to an anonymous reviewer for thoughtful comments that improved
the presentation and its relevance to applied researchers pursuing reproducible research.

17 References
Allaire, J. J., J. Cheng, Y. Xie, J. McPherson, W. Chang, J. Allen, H. Wickham,
A. Atkins, and R. Hyndman. 2016. rmarkdown: Dynamic Documents for R. R package
version 0.5. https://cran.r-project.org/web/packages/rmarkdown/index.html.

Barba, L. A. 2016. The hard road to reproducibility. Science 354: 142.

Gallup, J. L. 1999. outreg: Stata module to write estimation tables to a Word or TEX
file. Statistical Software Components S375201, Department of Economics, Boston
College. https:// ideas.repec.org/c/boc/bocode/s375201.html.

Gandrud, C. 2015. Reproducible Research with R and RStudio. 2nd ed. Boca Raton,
FL: Chapman & Hall/CRC.

Gruber, J. 2004. Markdown: Basics. https://daringfireball.net/projects/markdown/
basics/ .

http://data.princeton.edu/stata/markdown
https://cran.r-project.org/web/packages/rmarkdown/index.html
https://ideas.repec.org/c/boc/bocode/s375201.html
https://daringfireball.net/projects/markdown/basics/
https://daringfireball.net/projects/markdown/basics/

G. Rodŕıguez 617

Haghish, E. F. 2016. markdoc: Literate Programming in Stata. Stata Journal 16:
964–988.

Hemken, D. 2015. Stata and R Markdown (Windows). http://goo.gl/QdrVn5.

Jann, B. 2005. Making regression tables from stored estimates. Stata Journal 5: 288–
308.

. 2007. Making regression tables simplified. Stata Journal 7: 227–244.

. 2016a. webdoc: Stata module to create a HTML or Markdown document in-
cluding Stata output. Statistical Software Components S375201, Department of Eco-
nomics, Boston College. http://ideas.repec.org/c/boc/bocode/s458209.html.

. 2016b. Creating LATEX documents from within Stata using texdoc. Stata Journal
16: 245–263.

Knuth, D. E. 1992. Literate Programming. Stanford, CA: CSLI Lecture Notes.

Leisch, F. 2002. Sweave: Dynamic generation of statistical reports using literate data
analysis. In COMPSTAT 2002, ed. W. Härdle and B. Rönz, 575–580. Physica Verlag:
Heidelberg.

MacFarlane, J. 2017. Pandoc user’s guide. http://pandoc.org/MANUAL.pdf.

Peng, R. D. 2009. Reproducible research and Biostatistics. Biostatistics 10: 405–408.

Quintó, L., S. Sanz, E. De Lazzari, and J. J. Aponte. 2012. HTML output in Stata.
Stata Journal 12: 702–717.

Rising, W. 2016. Dynamic documents in Stata: Many routes to the same goal. 2016
Oceania Stata Users Group meeting proceedings. University of Sydney. http://www.
sugm.net.au/docs/papers2016/Rising.pdf.

Rodŕıguez, G. 2017a. bundle: Stata module to bundle image files in a web page using
base64 encoding. Statistical Software Components S458317, Department of Eco-
nomics, Boston College. https://ideas.repec.org/c/boc/bocode/s458317.html.

. 2017b. whereis: Stata module to keep track of ancillary programs and files.
Statistical Software Components S458303, Department of Economics, Boston College.
https://ideas.repec.org/c/boc/bocode/s458303.html.

Rossini, A. J. 2001. Literate statistical practice. In Proceedings of the 2nd International
Workshop on Distributed Statistical Computing. Vienna, Austria: DSC.

Wada, R. 2005. outreg2: Stata module to arrange regression outputs into an illustrative
table. Statistical Software Components S456416, Department of Economics, Boston
College. https:// ideas.repec.org/c/boc/bocode/s456416.html.

Watson, I. 2016. Publication quality tables in Stata. User Guide for tabout. Version 3.
http://tabout.net.au/downloads/tabout user guide.pdf.

http://goo.gl/QdrVn5
http://ideas.repec.org/c/boc/bocode/s458209.html
http://pandoc.org/MANUAL.pdf
http://www.sugm.net.au/docs/papers2016/Rising.pdf
http://www.sugm.net.au/docs/papers2016/Rising.pdf
https://ideas.repec.org/c/boc/bocode/s456416.html
http://tabout.net.au/downloads/tabout_user_guide.pdf

618 Stata Markdown

Xie, Y. 2016. Dynamic Documents with R and knitr. 2nd ed. Boca Raton, FL: Chapman
& Hall/CRC.

About the author

Germán Rodŕıguez is a senior research demographer at Princeton University. His teaching and
research focuses on statistical models for demographic data, with a strong interest in computing
tools.

