
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

The Stata Journal (2017)
17, Number 3, pp. 723–735

Evaluating the maximum MSE of mean
estimators with missing data

Charles F. Manski
Department of Economics
Northwestern University

Evanston, IL
cfmanski@northwestern.edu

Max Tabord-Meehan
Department of Economics
Northwestern University

Evanston, IL
mtabordmeehan@u.northwestern.edu

Abstract. In this article, we present the wald mse command, which computes the
maximum mean squared error of a user-specified point estimator of the mean for a
population of interest in the presence of missing data. As pointed out by Manski
(1989, Journal of Human Resources 24: 343–360; 2007, Journal of Econometrics
139: 105–115), the presence of missing data results in the loss of point identification
of the mean unless one is willing to make strong assumptions about the nature
of the missing data. Despite this, decision makers may be interested in reporting
a single number as their estimate of the mean as opposed to an estimate of the
identified set. It is not obvious which estimator of the mean is best suited to
this task, and there may not exist a universally best choice in all settings. To
evaluate the performance of a given point estimator of the mean, wald mse allows
the decision maker to compute the maximum mean squared error of an arbitrary
estimator under a flexible specification of the missing-data process.

Keywords: st0494, wald mse, maximum mean squared error

1 Introduction

In this article, we present the wald mse command, which computes the maximum mean
squared error (MSE) of a user-specified point estimator of the mean for a population of
interest in the presence of missing data. As pointed out by Manski (1989, 2007), the
presence of missing data results in the loss of point identification of the mean, unless
one is willing to make strong assumptions about the nature of the missing data. Despite
this, decision makers may be interested in reporting a single number as their estimate
of the mean as opposed to an estimate of the identified set. It is not obvious which
estimator of the mean is best suited to this task, and there may not exist a universally
best choice in all settings. To evaluate the performance of a given point estimator of
the mean, wald mse allows the decision maker to compute the maximum MSE of an
arbitrary estimator under a flexible specification of the missing-data process.

The choice of maximum MSE as the criteria with which to evaluate a point estima-
tor of the mean is well founded. With “maximum” MSE, we take an explicitly ex-ante
perspective in that we evaluate the performance of the estimator over all possible data-
generating processes that the decision maker thinks they may encounter and use the
largest of these to evaluate the estimator. The choice of MSE as our measure of perfor-

c© 2017 StataCorp LLC st0494

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X1701700311&domain=pdf&date_stamp=2017-09-01

724 Evaluating the maximum MSE of mean estimators with missing data

mance is not only historically grounded but also can be formalized in Wald’s statistical
decision theory as the minimax-regret solution when solving the problem of best point
prediction under square loss (see Dominitz and Manski [Forthcoming] for details).

This article proceeds as follows: section 2 formalizes our discussion and explains the
algorithm that we use to compute maximum MSE. Section 3 introduces the syntax of
wald mse, explains the options available to the user for specifying the missing-data pro-
cess, and documents several implementation details. Section 4 illustrates the command
through a series of examples.

2 Statistical background

2.1 The MSE of estimators of the mean without missing data

Let P (y) be the distribution of some random variable Y with known bounds. Because
the bounds for Y are known, we normalize it to lie in [0, 1] (for example, in the empirical
setting of section 4.2, we use the normalization of dividing the data by 100). Recall
that the purpose of wald mse is to compute the maximum MSE of a user-specified point
estimator of μ := E(Y), given a sample from P (y) with potentially missing data. To
clarify the exposition, we first introduce the problem without missing data.

In this context, an estimator is a function δ(·) that maps the sample data into a real
number, where the sample data are simply a random sample ψ := {yi}Ni=1 from P (y).
Let S index the set of all possible distributions Ps(y) for Y ; then for each s ∈ S, we can
compute the MSE of δ(·) in state s, which is given by

MSE(s) := Es

{
(δ(ψ)− μs)

2
}

Decomposing MSE(s) into its bias and variance components, we get

MSE(s) = Vs {δ(ψ)}+ [μs − Es {δ(ψ)}]2

Our goal is to compute the maximum MSE, given by

max
s∈S

MSE(s)

In this setting, Hodges and Lehmann (HL; 1950) show that the estimator that
achieves minimal maximum MSE is given by

δHL(ψ) :=
μ̂
√
N + 0.5√
N + 1

where μ̂ denotes the sample average of the N observations of Y . Hence, we see that
in this simple setting, there is an analytic expression for the estimator with minimal
maximum MSE. Our interest is in the problem with potentially missing data, for which
such an analytic solution seems intractable. wald mse is designed to provide numeri-
cal approximations to the maximum MSE for estimators of the mean under a flexible
specification of the missing-data process.

C. F. Manski and M. Tabord-Meehan 725

2.2 Simulation of maximum MSE with missing data

Now, we consider the problem with missing data. As before, because we assume Y has
known bounds, we have normalized it to lie in [0, 1]. By the law of total probability, we
can decompose P (y) as follows:

P (y) = P (y|z = 1)P (z = 1) + P (y|z = 0)P (z = 0)

where z = 1 if a person’s outcome is observable and z = 0 if not. Thus, we see that
a state s is characterized by the three distributions: [Ps(y|z = 1), Ps(y|z = 0), Ps(z)].
As pointed out in Manski (1989, 2007), random sampling with nonresponse point iden-
tifies the distributions Ps(y|z = 1) and Ps(z) but is uninformative about Ps(y|z = 0).
wald mse allows the user to specify what assumptions they would like to maintain
about Ps(y|z = 0) and its relationship to Ps(z) and Ps(y|z = 1). Then, it computes
the resulting maximum MSE of a user-specified point estimator of the mean under these
assumptions. To compute maximum MSE with missing data, we take advantage of the
decomposition of maximum MSE into variance and squared bias, and proceed as follows:

Outline of the algorithm

• Fix a state {Ps(y|z = 1), Ps(y|z = 0), Ps(z)}, s ∈ S.

• Given s, compute μs = Es(y|z = 1)Ps(z = 1)+Es(y|z = 0)Ps(z = 0) analytically.

• Given s, drawN observations {zi}Ni=1 from the distribution Ps(z). Let k =
∑N

i=1 zi
and draw k observations {yi}ki=1 from Ps(y|z = 1) (note that it is possible that
k = 0, and hence the estimator δ(·) must be defined for this case as well). Compute
δ(·) using ({yi}ki=1, {zi}Ni=1

)
. Call the result δ1.

• Repeat the above step T times, and use the values {δt}Tt=1 to approximate Es(δ)

and Vs(δ) by Ês(δ) and V̂s(δ), their sample averages.

• Repeat this process over all states s ∈ S.

• Return maxs[V̂s(δ) + {μs − Ês(δ)}2], the computed maximum MSE.

Despite the conceptual simplicity of the above procedure, the state space is still
too large to be tractable. To make the computation feasible, we parameterize the
distributions Ps(y|z = 1), Ps(y|z = 0), and Ps(z) and specify the state space as a
finite grid over the parameter space. We focus on two cases of interest: when y is
binary on {0, 1} and when y is continuous on [0, 1]. When y is binary, Ps(y|z = 1),
Ps(y|z = 0), and Ps(z) are all Bernoulli distributions, and the state space is a finite grid
over the possible Bernoulli parameters for each distribution. When y is continuous, we
specify Ps(y|z = 1) and Ps(y|z = 0) as beta distributions, while Ps(z) is a Bernoulli
distribution. This parameterization is obviously not without loss, but we treat it as a
flexible approximation. The state space in the continuous case is then a finite grid over
the possible shape parameters of the beta distributions and the Bernoulli distribution.

726 Evaluating the maximum MSE of mean estimators with missing data

The main feature of wald mse is the ability to specify the state space S flexibly in the
computation of the maximum MSE. For example, the user may specify that they believe
that nonresponse will be no higher than 80% or that the mean value of the outcome for
nonresponders will be no lower than 0.5. In section 3, we describe in detail the syntax
of the command and the options available to the user for specifying the state space.

3 The wald mse command

3.1 Syntax

The syntax for wald mse is as follows:

wald mse command name, samp size(#) dist(string)
[
miss l(#) miss r(#)

rdgp l(#) rdgp r(#) mdgp l(#) mdgp r(#) h distance(#) r shape(#)

m shape(#) mon select(#) mc iter(#) grid(#) user def true beta
]

command name specifies the name of the estimator to be used. It must be either a
built-in estimator (for a list of currently supported estimators, see section 3.3) or any
user-specified estimator of the mean that is written as an e-class command that returns
to e(b) (for more information about user-defined commands, see section 3.4).

3.2 Options

samp size(#) specifies the size of the sample. samp size() is required.

dist(string) specifies the type of data being considered. The two options supported
are bernoulli for binary {0, 1} outcomes and continuous for continuous outcomes
bounded in the unit interval. The continuous distributions used in the computations
are beta distributions (see section 3.4 for more information). dist() is required.

In what follows, z = 1 if an outcome y is observable, and z = 0 if it is missing.
P (y|z = 1) and P (y|z = 0) are the population distributions of observable and missing
outcomes, while E(y|z = 1) and E(y|z = 0) are their respective means. P (z = 1) and
P (z = 0) are the probabilities of response and nonresponse.

miss l(#) specifies a lower bound on the nonresponse probability P (z = 0). For exam-
ple, setting miss l(0.5) specifies that P (z = 0) ≥ 0.5. The default is miss l(0).

miss r(#) specifies an upper bound on the nonresponse probability P (z = 0). The
default is miss r(1).

rdgp l(#) specifies a lower bound on the mean E(y|z = 1) of the observable outcomes.
For example, setting rdgp l(0.5) specifies that E(y|z = 1) ≥ 0.5. The default is
rdgp l(0).

rdgp r(#) specifies an upper bound on the mean E(y|z = 1). The default is rdgp r(1).

C. F. Manski and M. Tabord-Meehan 727

mdgp l(#) specifies a lower bound on the mean E(y|z = 0) of the missing outcomes.
The default is mdgp l(0).

mdgp r(#) specifies an upper bound on the mean E(y|z = 0). The default is mdgp r(1).

h distance(#) specifies an upper bound on the Hellinger distance between the distri-
butions P (y|z = 1) and P (y|z = 0). For example, setting h distance(0) forces the
distribution of missing data and observable data to be identical, which is equivalent
to assuming missingness at random. The default is h distance(1), equivalent to
making no assumptions linking missing and observable data.

r shape(#), when dist(continuous) is also specified, specifies the shape of the ob-
servable data’s density. If r shape(1) is specified, then only distributions with
modes in the interior of the unit interval are considered. If r shape(2) is specified,
then only distributions with U-shaped densities are considered. If r shape(0) (the
default) is specified, then both types are considered.

m shape(#), when dist(continuous) is also specified, specifies the shape of the miss-
ing data’s density. See r shape() for details that equally apply to m shape().

mon select(#) specifies whether to make a “monotone selection” type assumption.
If mon select(1) is specified, only data-generating processes where E(y|z = 0) ≥
E(y|z = 1) are considered. If mon select(2) is specified, only data-generating
processes where E(y|z = 1) ≥ E(y|z = 0) are considered. If mon select(0) (the
default) is specified, then both options are considered.

mc iter(#) specifies the number of Monte Carlo iterations used to compute the MSE

of the estimator in repeated samples. The default for built-in estimators is 3,000,
and the default for user-defined commands is 500 (see section 3.4 for details).

grid(#) specifies the number of evenly spaced grid points used to generate the distribu-
tions. For example, if the outcome is binary and grid(6) is specified, the resulting
grid of Bernoulli parameters for the distributions would be {0, 0.2, 0.4, 0.6, 0.8, 1}.
The default for binary outcomes is 25, and the default for continuous outcomes is 5
(see section 3.4 for details).

user def specifies that the estimator being used is user defined (not built in). See
section 3.4 for details.

true beta specifies to approximate certain U-shaped continuous distributions by beta
distributions instead of by the default Bernoulli distributions (see section 3.4 for
more information). In general, specifying true beta will slow down the program
but may increase accuracy.

3.3 Built-in estimators

Note that when all the data are missing, all the estimators below return a result of 0.5.

mean is simply the sample mean.

728 Evaluating the maximum MSE of mean estimators with missing data

midmean is an estimator that first estimates the identified interval under no assumptions
on the missing data, as in Manski (1989), and then selects the midpoint of the
interval. See Dominitz and Manski (Forthcoming) for details.

MMRzero is the minimal-maximum-MSE estimator of the mean with no missing data, as
described in section 2.1 and as derived in Hodges and Lehmann (1950).

3.4 Implementation details

Details on built-in versus user-defined estimators

wald mse allows use of the built-in estimators available (see section 3.3) or of any user-
defined estimator of the mean if it is an e-class Stata command that returns to e(b). In
general, user-defined estimators will be much slower than built-in estimators because a
user-defined estimator requires a call to Stata in each Monte Carlo iteration, whereas the
built-in estimators are implemented directly in Mata. For example, the commands we
run in the empirical application of section 4.2 take five seconds for a built-in estimator
and five minutes for a user-defined estimator on a personal computer. This difference
is reflected in the default options used for the accuracy of the computation: for user-
defined estimators, we use six times fewer Monte Carlo iterations by default. When
using a user-defined estimator with sample sizes larger than 1,000, we recommend first
running the computation with binary outcomes, because this will be much faster and is
frequently a very close approximation of the maximum MSE for continuous outcomes.
The user def option must be specified when using user-defined estimators.

For advanced users, it is possible to implement the estimators directly in Mata by
adding them to the wald mse command. See the comments in the code for more details.

Details on the approximation of continuous-valued random variables

Because the state space S is prohibitively large when dealing with continuous variables,
we implement a parametric approximation. For a continuous distribution in the unit
interval, we iterate over the (α, β) parameters of a beta distribution. For each parameter,
we consider an equally spaced grid from 0.01 to

√
grid()+2, so that both the density

of the grid and its upper bound increase with grid(). Because the state space is two-
dimensional compared with the one-dimensional state space when the distribution is
binary, the default is to set grid(5) when dist(continuous) is set.

Next, we explain the use of true beta and the default behavior of wald mse to use
Bernoulli distributions to approximate some continuous distributions. Note that the
beta random-number generator in Mata is restricted to α > 0.05 and β > 0.15, but in
our experience, maximum MSE is frequently achieved by distributions for which α and β
are very small, which result in very U-shaped densities. To deal with this issue, we have
provided the user with two options: the default is to approximate beta distributions
for which the random generator in Mata is unavailable by a mean-preserving Bernoulli
distribution. This approximation seems to be adequate in practice. If the user would

C. F. Manski and M. Tabord-Meehan 729

instead like to avoid this approximation, specifying true beta in the command will
force wald mse to use a custom-built beta random-number generator for those cases in
which the random-number generator in Mata is unavailable. This option is much slower
than the default option. If the user does not want to consider the possibility of these
heavily U-shaped densities and instead would prefer to consider only distributions with
a mode in the interior of the unit interval, this can be done by setting r shape() and
m shape() to 1.

3.5 Stored results

wald mse stores the following in r():

Scalars
r(N) specified sample size
r(MSE) computed maximum MSE
r(rmeanval) value of E(y|z = 1) where maximum MSE is achieved
r(mmeanval) value of E(y|z = 0) where maximum MSE is achieved
r(missval) value of P (z = 0) where maximum MSE is achieved
r(missr) specified upper bound on P (z = 0)
r(missl) specified lower bound on P (z = 0)
r(mdgpr) specified upper bound on E(y|z = 0)
r(mdgpl) specified lower bound on E(y|z = 0)
r(rdgpr) specified upper bound on E(y|z = 1)
r(rdgpl) specified lower bound on E(y|z = 1)
r(hd) specified bound on Hellinger distance between P (y|z = 0) and P (y|z = 1)
r(mshape) specified shape option for P (y|z = 0) , if applicable
r(rshape) specified shape option for P (y|z = 1) , if applicable

Macros
r(cmd) wald mse
r(est) estimator used
r(d) specified distribution type

4 Examples and empirical illustration

In this section, we illustrate the use of wald mse through a series of examples. In
section 4.1, we present a series of fictional examples to explain the functionality of the
command. In section 4.2, we walk through the use of the command with an application.

4.1 Some fictional examples

First, we will compare the maximum MSE of the simple sample analog estimator of
the mean, call it δM (·), with that of the minimax-MSE estimator δHL(·) defined above,
without missing data. It is straightforward to compute, for a sample of size N , that the
maximum MSE of δM (·) is given by 1/4N . For δHL(·), it can be shown that the maximum
MSE for a sample of size N is given by 1/{4(√N + 1)2}. We will verify our command
by comparing it against these analytic expressions. The following command returns the
computed maximum MSE for δM (·) for N = 10, where we consider binary distributions
of the outcome and we set the upper bound on the probability of nonresponse to be 0%:

730 Evaluating the maximum MSE of mean estimators with missing data

. wald_mse mean, samp_size(10) dist(bernoulli) miss_r(0)
Working.............
Maximum MSE: .025148378

The following command returns the computed maximum MSE for δHL(·) under the
same specification:

. wald_mse MMRzero, samp_size(10) dist(bernoulli) miss_r(0)
Working.............
Maximum MSE: .014904072

Next, we consider what happens when we allow for the possibility of missing data.
The following command returns the computed maximum MSE for δHL(·) with N = 10,
for binary distributions of the outcome, where we allow the probability of nonresponse to
be between 0% and 50%, and we make no assumptions about the relationship between
the distribution of realized and missing data. Again, we do this by specifying the
miss r() option:

. wald_mse MMRzero, samp_size(10) dist(bernoulli) miss_r(0.5)
Working..........
Maximum MSE: .113844727

Notice the significant increase in computed maximum MSE to the case with no missing
data.

Let’s compare this with the maximum MSE of the midpoint mean estimator described
in Dominitz and Manski (Forthcoming):

. wald_mse midmean, samp_size(10) dist(bernoulli) miss_r(0.5)
Working..........
Maximum MSE: .073496388

We see that δHL(·) no longer necessarily achieves minimax MSE in the presence of missing
data.

Let’s perform the same exercise, where now we make the assumption that the data
are missing at random. We can do this by forcing that the Hellinger distance between the
distributions of realized and missing data is 0 by specifying the h distance() option:

. wald_mse MMRzero, samp_size(10) dist(bernoulli) miss_r(0.5) h_distance(0)
Working..........
Maximum MSE: .026664216
. wald_mse midmean, samp_size(10) dist(bernoulli) miss_r(0.5) h_distance(0)
Working..........
Maximum MSE: .067955161

We see that, as might be expected, maximum MSE is reduced when we assume that the
data are missing at random, and the computed maximum MSE of δHL(·) is smaller than
the computed maximum MSE of the midpoint estimator. Once we add the assumption
that the data are missing at random, the missing data simply have the effect of reducing
sample size so that δHL(·) is again the minimax MSE estimator.

C. F. Manski and M. Tabord-Meehan 731

4.2 The wald mse command in practice

In this section, we illustrate the use of wald mse in an empirical application. Suppose we
wish to compute an estimate of the mean of individuals’ expectations of stock market
health for the upcoming year, using survey data elicited similarly to the Survey of
Economic Expectations (SEE; a previous empirical analysis of this dataset in this context
can be found in Dominitz and Manski [2011]). For example, the SEE asks respondents
to state their subjective probabilities, expressed as a number between 0 and 100, that
a $1,000 investment in a diversified stock fund will grow above a specified threshold in
the following year. Nonresponse to this type of question is as high as 30% in the SEE,
so consideration of alternative estimators of the mean could be important.

Before illustrating the use of wald mse for this application, we present different pos-
sible estimates of the mean of the variable expect in SEE example.dta, which is a
cleaned up version of the variable described above.1 First, let’s consider two differ-
ent estimators: the standard sample mean (computed using the mean command) and
midmean. First, because midmean assumes that we have outcomes that lie in the unit
interval, we normalize our data:

. use see_example

. generate expect_norm = expect/100
(420 missing values generated)

Next, we compute the estimated mean by using the mean command (while suppress-
ing the rest of the output):

. quietly mean expect_norm

. matrix list e(b)

symmetric e(b)[1,1]
expect_norm

y1 .71090171

Let’s compare this with the estimated mean by using midmean:

. quietly midmean expect_norm

. matrix list e(b)

symmetric e(b)[1,1]
c1

y1 .65725015

Given these results, we might worry that the standard sample mean overstates the
optimism in stock market returns, but practitioners have no formal guidance on which
estimator is appropriate for this setting. The purpose of wald mse is to help practitioners
evaluate various point estimators through their maximum MSE, under a specification of
the missing data that they deem appropriate.

1. The original dataset is available at http://faculty.wcas.northwestern.edu/˜cfm754/. Here, we con-
sider waves 12 through 14, which were the waves in which this question was asked. For this example,
we use the data column rvdm05. For the purposes of our example, we code the response “do not
know” as missing (which affects 19 observations).

732 Evaluating the maximum MSE of mean estimators with missing data

For this example, we evaluate the maximum MSE of mean and midmean, as well as
a user-defined estimator that we call monotone mean. Let’s suppose that the average
optimism of those who did not respond is lower than the average optimism of those who
did respond; that is,

E(y|z = 1) ≥ E(y|z = 0)

Then, in analogy to the midmean estimator, we could consider the estimator formed using
the midpoint of the identified interval under this assumption. The resulting estimator
is given by the monotone mean command (included with the supplementary materials).
Running monotone mean on our dataset yields

. quietly monotone_mean expect_norm

. matrix list e(b)

symmetric e(b)[1,1]
expect_norm

y1 .62047811

which is an even lower estimate than that given by midmean.

When applying wald mse, we assume that the practitioner plans to survey 650 peo-
ple, which is a representative size for a survey wave in the SEE. As a first exercise,
we evaluate the maximum MSE of our estimators under the following two assumptions:
that the proportion of nonresponse will not exceed 50%, which we deem to be a reason-
able assumption in our setting, and that the monotonicity assumption that we imposed
when deriving monotone mean does in fact hold. To make the computations between
our built-in estimators and the user-defined estimator monotone mean comparable, we
additionally specify that the number of Monte Carlo iterations used in all of the com-
putations be set to 1,000.

Let’s first compute the maximum MSE for the mean command:

. drop expect expect_norm

. wald_mse mean, samp_size(650) dist(continuous) miss_r(0.5)
> mon_select(2) mc_iter(1000)
Working.......
Maximum MSE: .247711421

We stress again that the evaluation of maximum MSE is an ex-ante concept: wald mse

computes the MSE of the specified estimator for all data-generating processes that satisfy
the specifications outlined in the command options.

Next, we compute the maximum MSE of the midmean command:

. wald_mse midmean, samp_size(650) dist(continuous) miss_r(0.5) mon_select(2)
> mc_iter(1000)
Working.......
Maximum MSE: .062231883

We see that, as was the case in the fictional examples of section 4.1, midmean has a
much lower maximum MSE in the presence of missing data than the standard sample
mean estimator.

C. F. Manski and M. Tabord-Meehan 733

Finally, we compute the maximum MSE of the monotone mean command; note the
addition of user def to specify that this is a user-written command. As we alluded to
in section 3.4, evaluating user-defined estimators will be much slower than evaluating
the estimators built in to wald mse. For this particular example, running our command
on monotone mean takes around five minutes on a personal computer:

. wald_mse monotone_mean, samp_size(650) dist(continuous) miss_r(0.5)
> mon_select(2) mc_iter(1000) user_def
Working.......
Maximum MSE: .062223066

Perhaps surprisingly, we see that the gain over midmean is so small as to be within
the Monte Carlo error of the simulation. This exercise shows that, at least under the
assumptions on missing data that we have specified, the performance gain of monotone
mean from the perspective of maximum MSE is negligible.

We could also consider adding more assumptions on the missing-data process. For
example, we could study the performance of our estimators under the monotonicity as-
sumption while also adding a restriction on the Hellinger distance between the observed-
and missing-data distributions. As we saw in section 4.1, setting h distance(0) en-
forces the assumption that the data are missing at random. In general, for Hellinger
distances between 0 and 1, it is difficult to get a sense of how the state space changes
for small changes in the Hellinger distance. Here, we will set h distance(0.3), which
corresponds to a setting where we allow only small deviations between the observed-
and missing-data distributions. We repeat our computations:

. wald_mse mean, samp_size(650) dist(continuous) miss_r(0.5) mon_select(2)
> mc_iter(1000) h_distance(0.3)
Working.......
Maximum MSE: .007234028
. wald_mse midmean, samp_size(650) dist(continuous) miss_r(0.5) mon_select(2)
> mc_iter(1000) h_distance(0.3)
Working.......
Maximum MSE: .062231883
. wald_mse monotone_mean, samp_size(650) dist(continuous) miss_r(0.5)
> mon_select(2) mc_iter(1000) h_distance(0.3) user_def
Working.......
Maximum MSE: .062223066

We see that if we restrict ourselves to data-generating processes where we only allow
small deviations between the observed- and missing-data distributions, the standard
sample mean vastly outperforms both the midmean and monotone mean estimators.

Finally, in an attempt to gauge the robustness of our estimators to a misspecification
of our assumptions, we consider what would happen if we drop both the monotonicity
and the Hellinger distance restrictions:

734 Evaluating the maximum MSE of mean estimators with missing data

. wald_mse mean, samp_size(650) dist(continuous) miss_r(0.5) mc_iter(1000)
Working.......
Maximum MSE: .247711421
. wald_mse midmean, samp_size(650) dist(continuous) miss_r(0.5) mc_iter(1000)
Working.......
Maximum MSE: .062425221
. wald_mse monotone_mean, samp_size(650) dist(continuous) miss_r(0.5)
> mc_iter(1000) user_def
Working.......
Maximum MSE: .248327823

Once we drop the monotonicity assumption and the Hellinger distance assumption, the
midmean estimator has a very similar maximum MSE, whereas both the sample mean
and the monotone mean estimator suffer from a large increase in maximum MSE.

Performing these exercises gives us a clearer picture of which estimator would be
appropriate for our application depending on the assumptions the researcher is willing
to maintain. Under the assumption that the missing data are close to missing at random,
the standard sample mean estimator outperforms both the midmean estimator and the
monotone mean estimator. When we drop the assumption that the data are close to
missing at random but maintain our monotonicity assumption, we see that the maximum
MSE of the sample mean estimator increases drastically, while the maximum MSEs of the
monotone mean and midmean estimators stay mostly the same, with the monotone mean
estimator performing only slightly better than the midmean estimator. Finally, we see
that when we drop both assumptions, the midmean estimator maintains its maximum
MSE, whereas the maximum MSE of the other two estimators increases drastically. From
this, we can conclude that if the researcher is willing to assume that the data are close to
missing at random in this application, the standard mean estimator is most appropriate.
Otherwise, the midmean estimator would be most appropriate.

5 References
Dominitz, J., and C. F. Manski. 2011. Measuring and interpreting expectations of equity
returns. Journal of Applied Econometrics 26: 352–370.

. Forthcoming. More data or better data: A statistical decision problem. Review
of Economic Studies .

Hodges, J. L., Jr., and E. L. Lehmann. 1950. Some problems in minimax point estima-
tion. Annals of Mathematical Statistics 21: 182–197.

Manski, C. F. 1989. Anatomy of the selection problem. Journal of Human Resources
24: 343–360.

. 2007. Minimax-regret treatment choice with missing outcome data. Journal of
Econometrics 139: 105–115.

C. F. Manski and M. Tabord-Meehan 735

About the authors

Charles F. Manski is the Board of Trustees Professor in Economics at Northwestern University.

Max Tabord-Meehan is a graduate student in economics at Northwestern University.

