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Abstract. Linear mixed-effects models are commonly used to model trajectories of
repeated measures of biomarkers of disease. Taylor, Cumberland, and Sy (1994,
Journal of the American Statistical Association 89: 727-736) proposed a linear
mixed-effects model with an added integrated Ornstein-Uhlenbeck (IOU) process
(linear mixed-effects IOU model). This allows for autocorrelation, changing within-
subject variance, and the incorporation of derivative tracking (that is, how much a
subject tends to maintain the same trajectory for extended periods of time). They
argued that the covariance structure induced by the stochastic process in this
model was interpretable and more biologically plausible than the standard linear
mixed-effects model. However, their model is rarely used, partly because of the lack
of available software. In this article, we present the new command xtmixediou,
which fits the linear mixed-effects IOU model and its special case, the linear mixed-
effects Brownian motion model. The model is fit to balanced and unbalanced data
using restricted maximum-likelihood estimation, where the optimization algorithm
is the Newton—Raphson, Fisher scoring, or average information algorithm, or any
combination of these. To aid convergence, xtmixediou allows the user to change
the method for deriving the starting values for optimization, the optimization
algorithm, and the parameterization of the IOU process. We also provide a predict
command to generate predictions under the model. We illustrate xtmixediou and
predict with a simulated example of repeated biomarker measurements from HIV-
positive patients.
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1 Introduction

Linear mixed-effects models, proposed by Laird and Ware (1982), are commonly used
to model trajectories of repeated measures of biomarkers of disease, for example, tra-
jectories of CD4 counts in HIV-positive patients (Boscardin, Taylor, and Law 1998) or
trajectories of progesterone during a menstrual cycle (Sowers et al. 1998). In such set-
tings, the data are typically unbalanced, meaning that the number of measurements
differs between subjects and the time interval between consecutive measurements dif-
fers within and between subjects. The variance of the biomarker may be nonstationary
(vary over time). When measurements on the same subject are recorded close together
in time, within-subject measurements may be serially correlated (also known as auto-
correlation).

Taylor, Cumberland, and Sy (1994) proposed a model where between-subject and
within-subject variability are described by subject-level random effects, an integrated
Ornstein-Uhlenbeck (I0U) stochastic process, and measurement errors. We will refer
to Taylor’s model as the linear mixed-effects 10U model, and we will refer to a model
without the 10U process (that is, including only fixed effects, subject-level random
effects, and measurement errors) as a standard linear mixed-effects model. The linear
mixed-effects IOU model estimates the degree of derivative tracking from the data; that
is, how much a subject’s measurements maintain the same trajectory over long periods.
It covers a range of models from strong derivative tracking to no derivative tracking.

Figure 1 shows predicted biomarker measurements for a subject generated under four
linear mixed-effects models with different degrees of derivative tracking. The model
without an IOU process corresponds to a standard linear mixed-effects model, which
assumes strong derivative tracking (that is, maintains the same trajectory through-
out). Therefore, a subject’s predicted measurements identically track the parametric
trajectory (a linear slope) given by the fixed and random effects. The remaining three
models include an 10U process, where weaker degrees of derivative tracking correspond
to greater departures in the path of the predicted measurements from the parametric
trajectory.

Taylor, Cumberland, and Sy (1994) argued that a complex biomarker, such as CD4
cell counts, would not be likely to maintain the same trajectory over long periods,
so the linear mixed-effects 10U model was more biologically plausible than a standard
linear mixed-effects model. Unlike a standard linear mixed-effects model, the linear
mixed-effects IOU model also allows for autocorrelation and nonconstant within-subject
variance. Based on a simulation study, Taylor and Law (1998) concluded that, when
predicting future measurements in subjects, the linear mixed-effects 10U model was
more robust than a standard linear mixed-effects model to incorrect specification of the
true covariance structure of the data. Previously, the authors evaluated the feasibility
and practicality of estimating the linear mixed-effects 10U model (Hughes et al. 2017).
The model is rarely used in practice because of the lack of available software.
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Predicted biomarker measurement
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Figure 1. Different degrees of derivative tracking

In this article, we describe xtmixediou, a new command that fits the linear mixed-
effects 10U model. We also describe the corresponding predict command, which gen-
erates predictions under this model. We illustrate the xtmixediou command using
simulated data of repeated measurements of an immunologic marker (CD4 cell count)
from HIV-positive subjects. We examine the variance structures of six different linear
mixed-effects models and compare the accuracy of predictions under these models.

2 The linear mixed-effects IOU model

Consider a dataset of m subjects, where subject ¢ has n; repeated measurements y; =
{yij} recorded at time points t; = {t;;} (i=1,...,m; j=1,...,n;). For subject ¢, let
X; = {X;;} denote the n; x p design matrix associated with fixed effects 3 (population
regression coefficients), let Z; denote the n; x ¢ design matrix associated with random
effects u; (subject-specific regression coefficients), let w; = {w;;} denote the n; vector
of realized values of the IOU stochastic process, and let e; denote the n; vector of
independent measurement errors. The random effects u;, 10U realizations w;, and
measurement errors e; are assumed to be mutually independent.

The linear mixed-effects IOU model can be written as

yi = XiB + Zju; + w; + €; (1)
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where u;, wi, and e; are independent and normally distributed with 0 means and co-
variances G, Hj, and o°I,,, respectively. G is unstructured (that is, variances and

covariances are distinctly estimated), and Hj is defined as follows (for j1,j52 = 1,...,n;):
J1i 7’ :
Hil 2 = ﬁ X {20{ mln(tijl,tm)

+exp(—atij, ) +exp(—atij,) — 1 —exp(—altiyj, —tij,|)}

The 10U stochastic process is parameterized by a and 7. Taylor, Cumberland, and
Sy (1994) state that « can be interpreted as a measure of the degree of derivative
tracking, where a small value of « indicates strong derivative tracking. Parameter
T serves as a scaling parameter. As « tends toward oo (derivative tracking becomes
progressively weaker) and with ratio 72/a? held constant, w; becomes a realization of
a scaled Brownian motion (BM) process (also known as the Wiener stochastic process)
with covariance matrix

Hgljz = ¢t;,

for j1,j2 =1,...,n; and j1 < ja (Taylor, Cumberland, and Sy 1994). The BM stochastic
process is parameterized by a single parameter ¢ and can be interpreted as no derivative
tracking (Sy, Taylor, and Cumberland 1997). When wj is the realization of a scaled BM
process, we will refer to model (1) as a linear mixed-effects BM model. The covariance
matrix of y; is V; = ZiGZ;F + H; + O'2Ini (Patterson and Thompson 1971), and we
denote the vector of unknown variance parameters by 8, which consists of the unique
components of G, the IOU or BM parameters, and 2.

2.1 Fitting of the model

The model is fit using restricted maximum-likelihood (REML) estimation (Patterson and
Thompson 1971). REML estimates of 8 are calculated using an optimization algorithm:
the Newton—Raphson (NR) algorithm, the Fisher scoring (FS) algorithm, the average
information (AI) algorithm, or a combination of these (Gumedze and Dunne 2011). The
FS and AI algorithms are variants of the NR algorithm. The FS algorithm replaces the
observed information matrix with the expected information matrix in the NR algorithm,
and the AI algorithm replaces the observed information matrix with the average of the
observed and expected information matrices (called the AI matrix). The convergence
time for the NR algorithm is quicker than for the FS algorithm because the NR algorithm
converges in fewer iterations and its cost per iteration is only slightly slower than that
of the Fs algorithm (Gumedze and Dunne 2011). However, the FS algorithm is more
robust to poor starting values than is the NR algorithm, so Jennrich and Sampson (1976)
recommended starting with a few iterations of the FS algorithm and then switching to
the NR algorithm.

We provide two methods for calculating starting values. The default method fits a
standard linear mixed-effects model with the mixed command. The resulting estimates
become the starting values for the random effects and measurement-error variance, while
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the IOU or BM parameters are set to fixed values representing strong derivative tracking
(¢ =1and 7=0.1 or ¢ =0.01).

The alternative method derives all starting values from the data. First, the alter-
native method predicts the residuals of the response after accounting for the model’s
mean structure by using the regress and predict commands. Second, the data are
discretized according to a given time-window interval, derived from the observed fre-
quency of measurement. Third, the method calculates the variance of the residuals
within a time-window interval and calculates the covariance of the residuals between
time-window intervals. Starting values are then calculated based on these variances
and covariances and their changes over time. For example, for a model with a random
intercept and 10U process, the linear change in residual variances over time gives an
approximate estimate for the ratio w = (7/a)?.

Taylor, Cumberland, and Sy (1994) parameterized the 10U process as « and w =
(7/a)?, and the process experienced convergence problems as a became increasingly
large or small. They then suggested reparameterizing o as Ina or as a2 if a was
suspected to be large. We allow six different parameterizations of the 10U process:
[a; 7], [ w], [Ina; 7], Ine;w], [a=2;7], and [a~2;w)].

The restricted log likelihood is profiled with respect to o2 to reduce the number of
parameters to be optimized. The optimized parameters #* are the unique elements of
the log-Cholesky parameterization of G* = 072G, the selected I0U parameterization
(with 7/0 or w/0?), or the BM parameter ¢/o2. The optimization algorithm finds the
value of #* that minimizes the negative of twice the profiled restricted log likelihood.
Once minimization with respect to 6* is completed, the REML estimates of (0*,0?)
are transformed to parameters with ranges (—oo, 00), and the information matrix with
respect to these transformed parameters is calculated. Normal-based 95% confidence
intervals are calculated, and the endpoints are back-transformed to the required scale
(for example, G, a, 7, and 02). The variance—covariance matrix of the estimates on the
untransformed scale is calculated using the delta method (Oechlert 1992; Rice 2007).

We implemented xtmixediou using Stata’s matrix programming language, Mata,
and used the built-in Mata function optimize () to perform the optimization.

3 The xtmixediou command

3.1 Syntax

The xtmixediou command fits the linear mixed-effects 10U model (or the linear mixed-
effects BM model), as described in section 2. The data must be in long form (see
[D] reshape). The command is compatible with Stata 11 and above. The syntax of
xtmixediou is as follows:
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xtmixediou depvar [indepvars} [zf] [m], id(levelvar) time (timevar)
[nofeconstant reffects(varlist) noreconstant iou(ioutype) brownian
svdataderived algorithm(algorithm_spec) iterate(#) difficult nolog

trace gradient showstep hessia.n]

depvar is the dependent variable Y;, which contains the repeated measurements.

indepvars are the covariates X; for the fixed portion of the model (that is, the fixed
effects). xtmixediou automatically includes a constant term (that is, an intercept)
in the fixed effects. Factor variables are allowed (see [U] 11.4.3 Factor variables).

3.2 Options

id(levelvar) defines the variable for identifying individuals (that is, the level-2 units).
levelvar may be a numeric variable or a string variable. id () is required.

time (timevar) defines the numeric variable for the time points t; at which the mea-
surements of depvar were observed. time () is required.

nofeconstant suppresses the constant term for the fixed portion of the model. By
default, a constant term is included in the fixed portion of the model.

reffects(varlist) defines the random effects of the model. xtmixediou automatically
includes a constant term in the random effects. For two or more random effects,
an unstructured covariance matrix is assumed (that is, all variances and covariances
are distinctly estimated). Factor variables are not allowed. The default is a random
intercept.

noreconstant suppresses the constant term for the random effects of the model. By
default, a constant term is included in the random portion of the model.

iou(voutype) specifies the parameterization of the 10U process used during estimation,
where joutype is one of six parameterizations given in table 1. The default parame-
terization is a and 7. Changing the 10U parameterization may improve convergence.
For example, parameterizations Ina or a~2 may be useful if « is suspected to be
large. There is no guarantee that the other parameterizations will work better than
the default.
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Table 1. 10U parameterizations

toutype Description

at «a and 7, the default
ao aand w = (1 + a)?
lnat Ina and 7

1nao Ina and w = (7 + a)?
isat a2 and 7

isao a ?and w = (7 + a)?

brownian specifies a scaled BM process, a special case of the IOU process (see section 2)
that is parameterized by a single parameter, ¢. The BM process represents no
derivative tracking, and the fitted model then becomes the linear mixed-effects BM
model.

svdataderived specifies that the starting values of all of the model’s variance param-
eters (that is, the random-effects variances and covariances, IOU or BM parame-
ters, and measurement-error variance) are derived from the data (see section 2.1).
The option svdataderived assumes the user specified (using the reffects() or
noreconstant option) that the random effects include only a random intercept,
a random linear slope, or both. The default fits a linear mixed-effects model—
without an added 10U or BM process—using Stata’s mixed command. The resulting
expectation-maximization estimates are used as the starting values for the random-
effects variances and covariances as well as the measurement-error variance, while
the starting values for the IOU or BM parameters are set to small positive values (that
is, representing strong derivative tracking). xtmixediou saves the starting values to
matrix e(sv).

algorithm(algorithm_spec) specifies the algorithm to use. algorithm_spec is
algorithm [# [ algorithm [#} ] ... ]
and algorithm is {nr|fs|ai}.
algorithm(nr), the default, specifies the NR algorithm.
algorithm(fs) specifies the FS algorithm.
algorithm(ai) specifies the AT algorithm.

You can switch between algorithms by specifying more than one in the algorithm()
option. By default, an algorithm is used for five iterations before switching to the
next algorithm. To specify a different number of iterations, include the number after
the algorithm’s abbreviation in the option. For example, specifying algorithm(fs
10 nr 100) requests 10 iterations using the FS algorithm, followed by 100 iterations
using the NR algorithm, then another 10 iterations using the FS algorithm, and so on.
The process continues until convergence or until the maximum number of iterations
is reached.
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Convergence of the NR algorithm may be improved by starting with a few—say,
three—iterations of the FS or AI algorithm, especially when the starting values of
the parameters are suspected to be far from the REML estimates.

The following options are also described in [R] maximize.

iterate(#) specifies the maximum number of iterations. When the number of iter-
ations equals iterate(), the optimizer stops and presents the current results. If
convergence is declared before this threshold is reached, it will stop when conver-
gence is declared. The default is iterate (16000).

difficult specifies that the likelihood function will probably be difficult to maximize
because of nonconcave regions (that is, when the message “not concave” appears
repeatedly) and that the standard stepping algorithm is not working well. difficult
specifies that a different stepping algorithm be used in the nonconcave regions. There
is no guarantee that difficult will work better than the default. You should use
the difficult option only when the default stepper declares convergence and the
last iteration is “not concave” or when the default stepper is repeatedly issuing “not
concave” messages and producing only tiny improvements in the log likelihood.

nolog suppresses the display of the iteration log showing the progress of the log likeli-
hood. The log is displayed by default.

trace adds a display of the current parameter vector to the iteration log.
gradient adds a display of the current gradient vector to the iteration log.
showstep adds a report on the steps within an iteration to the iteration log.

hessian adds a display of the current negative Hessian matrix to the iteration log.

3.3 Stored results

xtmixediou stores the following in e():

Scalars
e(N) number of observations
e(k) number of parameters
e(k_f) number of fixed-effects parameters
e(k.r) number of random-effects parameters
e(k_res) number of residual-error parameters
e(11) restricted log likelihood

e(converged) 1 if converged, 0 otherwise
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Macros
e(cmd) xtmixediou
e(cmdline) command as typed
e(depvar) dependent variable
e(title) title in estimation output
e(id) variable identifying level-2 units
e(time) timevar, the time-point variable for depvar
e(revars) random-effects variables
e(redim) random-effects dimension
e(iou) iou() specification
e (method) REML
e(ml_method) type of m1 method
e(opt) type of optimization
e(predict) program used to implement predict
e(properties) b V
Matrices
e(b) coefficient vector
e(\) variance—covariance matrix of the estimators
e(sv) starting values of the variance parameters
e(N_g) group counts
e(gmin) group-size minimum
e(g_avg) group-size average
e(g-max) group-size maximum
Functions
e(sample) marks estimation sample

3.4 Syntax for predict

The xtmixediou command supports the postestimation command predict (see [R] pre-
dict) to compute linear predictions, standard errors, fitted values, and residuals. The
syntax for predict following xtmixediou is

predict newvar [zf] [m] [, xb stdp fitted @iduals]

Options
xb, the default, calculates the linear prediction for the fixed portion of the model only.

stdp calculates the standard error of the fixed portion linear prediction.

fitted calculates the fitted values, that is, the fixed portion linear prediction plus
contributions based on predicted random effects and the realizations of the 10U (or
BM) process.

residuals calculates the residuals, that is, the response minus fitted values.

4 Example

The data for this example are simulated based on characteristics of data from an
HIV/AIDS cohort study (UK Collaborative HIV Cohort Steering Committee 2004). This
study routinely collects clinical information on HIV-positive individuals aged over 16
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years who have attended one of the collaborating centers for care at any time since
1996. One of the purposes of the study is to analyze the data to monitor response to
antiretroviral therapy. A patient’s repeated measurements of CD4 cell counts reflect both
HIV disease progression and recovery after a patient starts therapy (Sabin and Lundgren
2013). For example, an analysis using a standard linear mixed-effects model (that is,
Stata’s mixed command) showed that CD4 cell counts continue to increase up to eight
years after initiation of therapy among patients who maintained virological suppression
(Hughes et al. 2011). A strong derivative tracking model was used that assumed a pa-
tient’s CD4 counts maintained (or closely tracked) the same parametric trajectory (a
two-degree fractional polynomial [Royston and Altman 1994]) throughout the patient’s
follow-up, and that within-patient residuals were uncorrelated with constant variance
over time. Taylor, Cumberland, and Sy (1994) state that it is unlikely that something as
complex as a measurement of a patient’s immune system would maintain the same para-
metric trajectory over long periods of time. In our original analysis, we were interested
in the population trajectories (that is, fixed effects), which are robust to the assumption
of strong derivative tracking and incorrect specification of the variance structure. How-
ever, such robustness may not apply when one is interested in patient-level predictions
(Taylor and Law 1998).

In the following analysis, we fit a linear mixed-effects 10U model, a linear mixed-
effects BM model, and a standard linear mixed-effects model, and compare their model
fit and accuracy of patient-level predictions.

4.1 The data

The original dataset consisted of data on 18,045 patients, who were expected to attend
an HIV clinic about every three months. These patients had not received previous treat-
ment for HIV, started therapy after 1997, had at least one CD4 cell count measurement
before start of therapy, and had at least two CD4 cell count measurements during follow-
up. Also, these patients had recorded values for the following pretherapy (or baseline)
patient characteristics: sex, age at start of therapy, ethnicity (white, black African,
other), risk group for HIV infection (homosexual, heterosexual, other), and pretherapy
CD4 cell count group (0-99, 100-199, 200-349, and > 350 cells/mm?).

We simulated an unbalanced dataset of 1,000 patients in three separate stages. In
the first stage, patient characteristics were simulated under a general location model
(Olkin and Tate 1961). In the second stage, the number of measurements per patient,
the length of follow-up, and the time intervals between consecutive measurements within
a patient were simulated based on these features of the original dataset. In the third
stage, we simulated longitudinal CD4 counts (on the natural logarithm scale) under a lin-
ear mixed-effects BM model. In this simulation, the population trajectory was described
by a fractional polynomial with powers 0 (interpreted as a natural log transformation)
and 0.5, the aforementioned pretherapy patient characteristics were also included as
fixed effects, and the fractional polynomial power 0.5 and the intercept were included as
random effects with an unstructured random-effects covariance matrix. The parameters
of the models were set to the (restricted) maximum likelihood estimates from fitting the
same models to the original dataset.
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The following code (with corresponding output) describes the simulated dataset, lists
the possible values of the categorical variables, and displays the first three measurements
for two patients. The patid variable uniquely identifies a patient, and the sex, age,
ethnicity, risk, and baselinecd4 variables are the pretherapy characteristics. cd4
is the CD4 cell count measurement (cells/mm?) on its original scale, and 1ncd4 is its
corresponding value on the natural logarithm scale. time is time in years of the CD4
cell count measurement since initiation of therapy.

. use lncd4
(example for xtmixediou)

. describe

Contains data from lncd4.dta

obs: 15,526 example for xtmixediou
vars: 10 14 Sep 2016 15:28
size: 853,930
storage display value
variable name type format label variable label
patid int %8.0g Patient identifier
measurement byte %8.0g Measurement occasion
time float  7%9.0g Time of CD4 measurement since
start of therapy (in years)
cd4 float  %9.0g CD4 cell count measurement
1ncd4 float %9.0g Natural logarithm CD4 count
sex double %9.0g sexLabel Sex
ethnicity double %15.0g ethnicLabel
Ethnicity group
risk double %12.0g riskLabel
Risk group for infection
baselinecd4 double %10.0g preCD4Label
baselineCD4_cat
age double %9.0g Age at start of therapy

Sorted by: patid time

. label list sexLabel
sexLabel:

0 male

1 female

. label list ethnicLabel
ethnicLabel:

0 white

1 black African

2 other ethnicity

label list riskLabel
riskLabel:
0 homosexual
1 heterosexual
2 other risk
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. label list preCD4Label
preCD4Label:
0 0 to 99
1 100 to 199
2 200 to 349
3 350 plus

. format time 1lncd4 age %4.2g

. list if (patid == 12 | patid==13) & time <=1, noobs separator(0) abbreviate(3)
> string(3) compress

patid mea-~t time cd4 1ncd4 sex eth~y risk bas~-4 age
12 1 .2 13 2.6 male white hom. . 0Ot.. 25
12 2 .49 23 3.1 male white hom. . 0t.. 25
12 3 .87 16 2.8 male white hom. . 0t.. 25
13 1 .25 22 3.1 male white hom. . 0Ot.. 29
13 2 .45 34 3.5 male white hom. . 0t.. 29
13 3 .67 36 3.6 male white hom. . 0t.. 29

4.2 Using command xtmixediou to fit a linear mixed-effects 10U
model

We will fit a series of linear mixed-effects models with different variance structures
(listed in table 2) but the same mean structure. For the fixed portion of all models,
we include the pretherapy variables as time-independent covariates, and the population
trajectory is modeled by a fractional polynomial with powers 0 and 0.5.

Table 2. Variance structures of the fitted models”

Model  Random effects Stochastic process
riiou constant 10U

ribm constant BM

rfpiou constant and time’- 10U

rfpbmﬁ constant and time’-? BM

ri constant -

rfp constant, time’5, and In(time) —

b All models include measurement-error variance.
# Model used to simulate the data.

First, we generate the fractional polynomial powers of time (see [R] fp). We do not
need to change the origin of time, nor rescale the variable, because all its values are
greater than 0 and its standard deviation is close to 1.
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. summarize time
Variable ‘ Obs Mean Std. Dev. Min Max

time 15,526 2.374024 1.407925 .1149897 4.999316
. generate time_ln = 1ln(time)

. generate time_05 = time~0.5

We begin by fitting a linear mixed-effects IOU model, where the only random ef-
fect is a random intercept, by using the following code. We refer to this model as
a random-intercept 10U (riiou) model. The xtmixediou command supports Stata’s
factor notation (see [U] 11.4.3 Factor variables). The code below specifies that the
reference categories for ethnicity, risk, and baseline_cd4 are, respectively, white,
homosexual, and 200-349 cells/mm?®. Following Stata’s convention, by default an inter-
cept is automatically added to the fixed effects and to the random effects. Therefore,
because the model contains only a random intercept, we do not need to specify the
reffects() option. The required id() and time() options declare, respectively, that
variable patid is the unique identifier for patients and that time contains the measure-
ment times. We specify that all starting values are derived from the data by using the
svdataderived option.

Below is the output of the xtmixediou command. The layout of the output follows
that of Stata’s mixed command. The total number of observations and the minimum,
maximum, and average number of observations per patient are displayed at the top
right. Below these values is a table displaying the results for the fixed effects, random
effects, IOU or BM parameters, and variance of the measurement error. Lastly, we store
the estimation results to riiou_model and predict the fitted values and residuals.
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. xtmixediou lncd4 time_ln time_O05 age sex i.risk i.ethnicity
> ib2.baselinecd4, id(patid) time(time) svdataderived

(output omitted )

Linear mixed IOU REML regression Number of obs = 15526
Number of groups = 1000
Obs per group : min = 2
avg = 15.5
Restricted log likelihood = -6169.4427 max = 26
1lncd4 Coef . Std. Err. z P >|z]| [95% Conf. Interval]
time_ln .1232436 .0223509 5.51 0.000 .0794366 .1670506
time_05 .077378 .0500194 1.55 0.122  -.0206582 .1754142
age | -.0000926 .0014625 -0.06 0.950 -.002959 .0027738
sex .0923211 .0441723 2.09 0.037 .0057449 .1788972
risk
heterosexual | -.1314315 .0452229 -2.91 0.004 -.2200668  -.0427961
other risk | -.1403481 .0555603 -2.53 0.012  -.2492443 -.0314519
ethnicity
black African | -.1117199 .0455415 -2.45 0.014  -.2009796  -.0224601
other ethnic-~y| -.1119597 .0382533 -2.93 0.003 -.1869347 -.0369847
baselinecd4
0 to 99 | -1.216405 .0362109 -33.59 0.000 -1.287377 -1.145433
100 to 199 | -.3562389 .0354835 -10.04 0.000 -.4257853 -.2866925
350 plus .4131572 .0405326 10.19 0.000 .3337148 .4925996
_cons 4.151499 .0803116 51.69 0.000 3.994091 4.308907

Variance parameters Estimate  Std. Err. [95% Conf. Intervall
Random-effects:
Var(_cons) .1320698 .0080314 .1172301 .148788
I0U-effects:
alpha .9403315 .1105896 . 7467442 1.184105
tau .4873562 .0409801 .4133049 .5746751
Var (Measure. Err.) .0747382 .0011132 .0725879 .0769522

. estimates store riiou_model
. predict riiou_fit, fitted

. predict riiou_res, residuals

The top two fixed effects are the fractional polynomial powers, which describe the
population average trajectory of 1lncd4. Fixed effect _cons describes the population
average of 1ncd4 at the start of therapy among white, homosexual males with prether-
apy CD4 cell count between 200 and 349 cells/mm?® and aged 0 years. The remaining
fixed effects describe population average differences in 1ncd4 between different patient
groups at the start of therapy. In the second table, Var (_cons) describes the between-
subject variance (at start of therapy) after controlling for the fixed effects. The es-
timated value of « is quite small, indicating fairly strong derivative tracking. Lastly,
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Var (Measure. Err.) describes the variance of the measurement-level errors (that is,
the residuals).

Below, we fit a random-intercept BM model (ribm) by adding the brownian option to
the previous code (results not shown), store the estimation results to ribm model, and
make predictions under this model. The results of the linear mixed-effects BM model
have the same layout as above except within the table of variance parameters; there, a
single parameter phi replaces the IOU parameters alpha and tau.

. xtmixediou lncd4 time_ln time_05 age sex i.risk i.ethnicity
> ib2.baselinecd4, id(patid) time(time) svdataderived brownian

(output omitted )
. estimates store ribm_model
. predict ribm_fit, fitted

. predict ribm_res, residuals

We can specify the fractional polynomial powers as random by using the reffects ()
option (demonstrated in the following code). We will refer to a model with a random
intercept, one or more random fractional polynomial powers, and an IOU or BM process
as a random fractional polynomial 10U or BM model (rfpiou or rfpbm), respectively.
The data model used to simulate the data was the random fractional polynomial BM
model. Because the random effects include variables that are neither a random intercept
nor a random linear slope, we cannot use the svdataderived option. When we fit a
model with both fractional polynomial powers as random effects (with an 10U or BM
process), the corresponding variances and covariances associated with power 0 were close
to 0 (results not shown). Therefore, we have excluded the random effect for power 0.
For the random fractional polynomial IOU model, we use the difficult option because
of nonconcave regions.

. * random fractional polynomial IOU model

. xtmixediou 1lncd4 time_ln time_05 age sex i.risk i.ethnicity
> ib2.baselinecd4, id(patid) time(time)
> reffects(time_05) difficult

(output omitted )
. estimates store rfpiou_model
. predict rfpiou_fit, fitted
. predict rfpiou_res, residuals
. * random fractional polynomial BM model

. xtmixediou lncd4 time_ln time_05 age sex i.risk i.ethnicity
> ib2.baselinecd4, id(patid) time(time)
> reffects(time_05) brownian

(output omitted )
. estimates store rfpbm_model
. predict rfpbm_fit, fitted

. predict rfpbm_res, residuals

For comparison, we also fit two standard linear mixed-effects models (that is, without
an 10U or BM process) by using the mixed command (code shown below), where 1) only




588 Linear mixed-effects IOU model

the intercept is random (ri) and 2) the intercept and fractional polynomial powers 0
and 0.5 are included as random effects (rfp). For the latter model, none of the estimates
for the random-effects variances and covariances are close to 0, and a model that includes
both powers as random effects has lower deviance, Akaike information criterion (AIC),
and Bayesian information criterion (BIC) values than a model that excludes power 0 as
a random effect (results not shown). We save the data and the predictions to filename
Incd4 _predictions.

. * random intercept model

. mixed 1lncd4 time_ln time_05 age sex i.risk i.ethnicity
> ib2.baselinecd4 || patid:, var reml

(output omitted )
. estimates store ri_model
. predict ri_fit, fitted
. predict ri_res, residuals
. * random fractional polynomial model

. mixed 1lncd4 time_ln time_05 age sex i.risk i.ethnicity
> ib2.baselinecd4 || patid: time_ln time_05, var reml cov(unstructured)

(output omitted )
. estimates store rfp_model
. predict rfp_fit, fitted
. predict rfp_res, residuals

. save lncd4_predictions, replace
file 1lncd4_predictions.dta saved

We use Stata’s estimates stats command to compare the models with respect to
the AIC and BIC values. The AIC and BIC values for the random-intercept model (ri)
are almost double the corresponding values for the other models, indicating that this
model is by far the poorest fit to the data (see code and output below). The model
with the lowest AIC and BIC values is the random fractional polynomial BM model (the
model used to simulate the data), although the AIC and BIC values for the random
fractional polynomial IOU model are very similar. Based on these criteria, a user would
select a model with an 10U or BM process over the random fractional polynomial model
(without an 10U or BM process).

The estimates stats command calculates the AIC value as —21In L + 2k and the
BIC value as —2In L+ k X In N, where In L is the maximized log likelihood of the model,
k = p + ¢ is the number of fixed-effects coefficients (p) plus the number of variance
parameters (¢), and N is the sample size (see [R] estat). For REML estimation, the AIC
and BIC values can also be calculated as —2In L 4+ 2¢ and —2In L + In(N — p) X ¢, re-
spectively (Smith 2011). The AIC and BIC values calculated using the latter formula are
very similar to those calculated by estimates stats and lead to the same conclusions
(results not shown). Note that the AIC and BIC values (of both sets of formulas) are
based on the (restricted) log likelihood of the marginal model y ~ N(X 8, V). Criteria
based on the marginal model may not be reliable for selection of the variance struc-
ture of a linear mixed model (Vaida and Blanchard 2005; Liang, Wu, and Zou 2008;
Greven and Kneib 2010; Miiller, Scealy, and Welsh 2013).
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. estimates stats riiou_model ribm_model rfpiou_model rfpbm_model
> ri_model rfp_model

Akaike’s information criterion and Bayesian information criterion

Model Obs 11(null) 11(model) df AIC BIC
riiou_model 15,526 . -6169.443 16 12370.89 12493.29
ribm_model 15,526 . —6249.674 15 12529.35 12644.1
rfpiou_model 15,526 . -—6046.815 18 12129.63 12267.34
rfpbm_model 15,526 . —6046.857 17 12127.71 12267.77
ri_model 15,526 . -11226.74 14 22481.47  22588.58
rfp_model 15,526 . -6377.38 19 12792.76 12938.11

Note: N=0Obs used in calculating BIC; see [R] BIC note.

Lastly, among the linear mixed-effects IOU and BM models (riiou, ribm, rfpiou,
and rfpbm), the estimates of fixed effect In(time) (fractional power 0) were slightly larger
than those from the standard linear mixed-effects models (ri and rfp), while estimates
of fixed effect time®® were slightly smaller among the linear mixed-effects 10U and BM
models. However, for both fractional-power fixed effects, the 95% confidence intervals
from all models overlapped. The estimates of the remaining fixed effects (baseline
characteristics) were similar among all models. (Results for the fixed-effects estimates
not shown.)

4.3 Comparison of the variance structures

The previous six models make different assumptions about how the variance of 1ncd4
changes over time and how the correlation between measurements changes over time.
For each model in turn, using its variance function and estimates of the variance pa-
rameters, we can plot a model’s assumed pattern of variances and correlations over
time. To further assess model fit, we will compare the models’ patterns in variances
and correlations with the observed changes in variance and correlation of 1ncd4. The
appendix shows how we derive the variables for the observed variances of 1ncd4 and
the observed correlations with the first measurement, and the corresponding variances
and correlations under the six models. In the last example of the appendix, we save
these derived variables to filename patterns.

Figure 2 shows the changes in variance over time, where the observed variances
are displayed as scatter points and the model variance patterns as lines. The variance
patterns of all models except the random-intercept model (ri) and the random-intercept
BM model (ribm) closely follow the observed changes in variance over time.
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. use patterns, clear

scatter obsvar obstime, legend(label(l "observed")) mcolor(gs0) ||

line ri_var obstime, legend(label(2 "ri"))
lcolor(gs0) lpattern(shortdash) ||

line rfp_var obstime, legend(label(3 "rfp"))
lcolor(gs10) lpattern(solid) ||

line riiou_var obstime, legend(label(4 "riiou"))
lcolor(gs0) lpattern(longdash) |

line ribm_var obstime, legend(label(5 "ribm"))
lcolor(gs10) lpattern(longdash) ||

line rfpiou_var obstime, legend(label(6 "rfpiou"))
lcolor(gs0) lpattern(solid) ||

line rfpbm_var obstime, legend(label(7 "rfpbm") cols(4))
lcolor(gs10) lpattern(shortdash)

xtitle("Time in years") ytitle("Variance of lncd4")

ylabel(0(0.2)1.5,angle(0)) plotregion(style(none))
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Figure 2. Changes in variance over time

Figure 3 shows the changes in the correlations (with the first measurement) over time,

where the observed correlations are displayed as scatter points and the model correlation
patterns as lines. The correlation patterns for the random fractional polynomial BM
model (rfpbm) and the random fractional polynomial 10U model are virtually identical,
with the two patterns overlaying each other. The correlation patterns that most closely
follow the observed changes are for the three models that include at least one of the
fractional polynomial powers as a random effect (rfp, rfpiou, and rfpbm). Given that
model rfp does not include an added stochastic process, the similarity of the correlation
pattern of model rfp with those of models rfpiou and rfpbm may be explained by the
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additional random effect (for power 0) present in model rfp that is not present in models
rfpiou and rfpbm (see table 2). We considered correlations with the first measurement
as a reference because we could calculate at least one correlation for all subjects (that is,
the minimum number of measurements was two), and similarly, we could have considered
correlations with the second measurement as a reference. However, using the third or
later measurements as a reference would have resulted in some subjects being excluded
from the correlation calculations.

scatter obscorr obstime, legend(label(l "observed")) mcolor(gs0) ||
line riiou_corr obstime, legend(label(2 "riiou"))
lcolor(gs0) lpattern(longdash) ||
line ribm_corr obstime, legend(label(3 "ribm"))
lcolor(gs10) lpattern(longdash) ||
line rfpiou_corr obstime, legend(label(4 "rfpiou"))
lcolor(gs0) lpattern(solid) ||
line rfpbm_corr obstime, legend(label(5 "rfpbm") cols(4))
lcolor(gs10) lpattern(shortdash) ||
line ri_corr obstime, legend(label(6 "ri"))
lcolor(gs0) lpattern(shortdash) ||
line rfp_corr obstime, legend(label(7 "rfp"))
lcolor(gs10) lpattern(solid)
xtitle("Time in years",margin(small)) ylabel(0(0.2)1,angle(0))
ytitle("Correlation with first measure") plotregion(style(none))
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Figure 3. Changes in correlation over time




592 Linear mixed-effects IOU model

4.4 Comparison of the fitted values

In this section, we compare the fitted values of the six models with respect to two
measures: 1) the mean squared error, which is the average squared difference between
the fitted values and the observed values, and 2) the percentage of fitted values within
5% of the observed values.

We previously saved the fitted values of the six models to 1ncd4_predictions.dta.
First, separately for each model, we generate a variable for the squared difference be-
tween the fitted and observed values, and then we generate a variable to indicate whether
a fitted value is within 5% of the observed value. We then use the collapse command
to calculate the average squared difference across all measurements and to sum the
number of fitted values within the 5% interval.

. use lncd4_predictions, clear
(example for xtmixediou)

. * lower and upper limits for 5}, interval

. generate 115 = 1ncd4 - 0.05%1lncd4

. generate ulb5 = 1lncd4 + 0.05%lncd4

. local listing "riiou ribm rfpiou rfpbm ri rfp"

. foreach model of local listing {

2. * squared difference
generate mse_"model” = (‘model”_fit - 1ncd4) "2
3. * indicator of within 5} interval

. generate in5_"model” = 1 if “model _fit>=115 & “model _fit<=ulb
4. }

(output omitted )
. collapse (mean)mse* (sum)inb*
. list mse*, clean noobs abbreviate(14)

mse_riiou mse_ribm mse_rfpiou mse_rfpbm mse_ri mse_rfp
.0597014 .0381547 .0491328 .0464631 .1867051 .0727348

. list inb*, clean noobs abbreviate(14)

inb_riiou  inb5_ribm  inb_rfpiou inb_rfpbm  inb_ri inb_rfp
8844 10441 9522 9738 5970 8227

The lower the mean squared error and the larger the number of values within the
5% interval, the greater the accuracy of the fitted values. The models without an added
IOU or BM process (ri and rfp) generated the least accurate fitted values. The model
that generated the fitted values closest to the observed values is the random-intercept
BM model, even though the data were simulated under the random fractional polyno-
mial BM model and the model fit statistics, and figures 2 and 3 suggested that other
models provided a better fit to the data. This is consistent with previous findings
that when fitting a linear mixed-effects 10U model, it is sufficient to include a random
intercept plus the IOU or BM process, and predictions under the linear mixed-effects
10U or BM model are robust to incorrect specification of the true covariance structure
(Taylor, Cumberland, and Sy 1994; Taylor and Law 1998). If we are evaluating a model
for its predictive ability, then selection based on accuracy of prediction may be prefer-
able. Also, as noted earlier, selecting the variance structure of a linear mixed-effects
model based on marginal model criteria may be unreliable.
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5 Discussion

We have presented the new command xtmixediou, which implements the linear mixed-
effects TOU model and its special case, the linear mixed-effects BM model. The model
allows for autocorrelation, changing within-subject variance, and incorporating deriva-
tive tracking (that is, how much a subject tends to maintain the same trajectory for
extended periods of time). The data may be unbalanced with a differing number of
measures per subject, and the time interval between consecutive measurements may
differ within and between subjects. To make our command user-friendly, we designed
xtmixediou to have many of the same features as Stata’s own regression commands;
for example, the displayed results of xtmixediou follow the same format as Stata’s
mixed command, and factor notation is supported. When convergence problems occur,
the command allows the user to change the method for deriving the starting values
for optimization, the optimization algorithm, and the parameterization of the 10U pro-
cess. Also, we have incorporated Stata’s maximize option difficult, which specifies
to use a different stepping algorithm in nonconcave regions. We also provide a predict
command to generate predictions under the linear mixed-effects 10U model.

A limitation of our predict command is that we do not provide the best linear
unbiased predictions of the random effects nor realizations of the 10U (or BM) process.
Solving Henderson’s mixed-model equations (Gumedze and Dunne 2011) for three un-
knowns (the fixed-effects coefficients, random effects, and realizations of the stochastic
process) entails complex matrix algebra. Instead, we have solved these equations for
two unknowns: the fixed-effects coefficients and the random effects plus the realizations
of the stochastic process. Therefore, we are able to predict fitted values. In future work,
we will provide separate predictions for the random effects and the realizations of the
stochastic process.

We are not aware of other publicly available software that fits the linear mixed-effects
10U model. We hope our command xtmixediou will encourage and help statisticians
to apply the linear mixed-effects IOU model.
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A Appendix

We wish to examine the changes in the variance of 1ncd4 over time after accounting for
the mean structure of the model (which is the same for all six models). Therefore, we fit
a linear regression model with the same mean structure and predict residuals under this
model. We will use these residuals to examine the variance structure of the observed
data.

. use lncd4_predictions, clear
(example for xtmixediou)

. regress 1lncd4 time_ln time_05 age sex i.risk i.ethnicity
> ib2.baselinecd4

(output omitted )

. predict reg_res, residuals

Next, we group the data according to the nearest three-month interval and drop any
duplicates where a patient has more than one measurement within the same three-month
interval. We then reshape the data into wide format and, for each interval, calculate
the variance of the residuals and its correlation with the first measurement. During the
calculation process, the variances and correlations are stored in matrix obs. Afterward,
the columns of the resulting matrix are converted into variables.

* round to nearest 3-month interval
. generate record = round(time/0.25)

* drop duplicate patient records within same interval
. duplicates drop patid record, force
Duplicates in terms of patid record
(3,871 observations deleted)

* maximum number of records per patient

summarize record

(output omitted )

local max = r(max)

* reshape the data into wide format
. keep patid record reg_res time

. reshape wide reg_res time, i(patid) j(record)
(note: j=0123456789 10 11 12 13 14 15 16 17 18 19 20)

(output omitted )
* calculate variances and correlations across patients
. matrix obs = J("max~,3,0)

. forvalues t=1(1) max~ {

2. quietly summarize reg_res t”, detail
3. matrix obs["t~,1] = r(Var)

4. quietly summarize timet~, detail

5. matrix obs[ t~,2] = r(mean)

6. quietly correlate reg_resl reg res't~
7. matrix obs[t~,3] = r(rho)

8. }

. matrix obs[1,3] = .
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* create variables from matrix
clear

svmat obs
number of observations will be reset to 20
Press any key to continue, or Break to abort
number of observations (_N) was O, now 20

rename obsl obsvar
rename obs2 obstime

rename obs3 obscorr

Using the models’ variance functions and parameters’ estimates, we generate the
corresponding variances and correlations under the six models. We save these data to
filename patterns.

* generate fractional polynomial powers
generate obstime_ln = 1ln(obstime)
generate obstime_05 = obstime~0.5
* extract first timepoint

local t1 = obstime in 1

local ti_1n = 1n("t17)

local t1_05 = sqrt( t1-)

* random intercept IOU model
scalar varRI = .1320698

scalar alpha = .9403315

scalar tau = .4873562

scalar varME = .0747382

* variance over time

. generate riiou_var = varRI + ((tau"2)/(alpha”3))=*(alpha*obstime +
> exp(-alpha*obstime) - 1) + varME

* correlation with first measurement over time
local t1 = obstime in 1
local varl = riiou_var in 1

. generate riiou_cov = varRI + ((tau"2)/(2*alpha”3))*(2%alpha* t1~ +
> exp(-alpha* t1°) + exp(-alphak*obstime) - 1
> - exp(-alphax(obstime-"t17)))

generate riiou_corr = riiou_cov/(sqrt( varl”)*sqrt(riiou_var))
* random intercept BM model

scalar varRI = .1110791

scalar phi = .1377509

scalar varME = .0597721

* variance over time

generate ribm_var = varRI + phi*obstime + varME

* correlation with first measurement over time

local varl = ribm_var in 1

generate ribm_cov = varRI + phix~“t1~

generate ribm_corr = ribm_cov/(sqrt( varl )*sqrt(ribm_var))
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* random fractional polynomial I0U model
scalar varR0O5 = .2872198

scalar varRI = .2699737

scalar covRIO5 = -.2028851

scalar alpha = 18.36982

scalar tau = 5.134438

.0672206

* variance over time

scalar varME

. generate rfpiou_var = varRI + varRO5*obstime_0572 + 2*covRIO5*obstime_05 +
> ((tau"2)/(alpha~3))*(alpha*obstime + exp(-alpha*obstime) -1) + varME
* correlation with first measurement over time
. local varl = rfpiou_var in 1
. generate rfpiou_cov = varRI + varRO5* t1_05"*obstime_05 +
> ("t1_05" + obstime_05)*covRIO5 +
((tau~2)/(2*alpha~3))*(2*alpha* t1~ + exp(-alpha* tl1~) +
> exp(-alpha*obstime) - 1 - exp(-alpha*(obstime-"t17)))

\

. generate rfpiou_corr = rfpiou_cov/(sqrt( varl~)x*sqrt(rfpiou_var))
* random fractional polynomial BM model
scalar varRO5 = .2881752
scalar varRI = .2680412

scalar covRIO5 = -.2032494
scalar phi = .0773855
scalar varME = .0653691

* variance over time

. generate rfpbm_var = varRI + varRO5*obstime_05"2 + 2*covRIO5*obstime_05 +
> phi*obstime + varME

* correlation with first measurement over time
local varl = rfpbm_var in 1

. generate rfpbm_cov = varRI + varRO5* t1_05"*obstime_05 +
> ("t1_05" + obstime_05)*covRIO5 + phi* t1-

. generate rfpbm_corr = rfpbm_cov/(sqrt( varl”)*sqrt(rfpbm_var))
* random intercept model
scalar varRI = .3939691
scalar varME = .199089
* variance over time
. generate ri_var = varRI + varME
* correlation with first measurement over time
local varl = ri_var in 1

. generate ri_corr = varRI/(sqrt( varl )*sqrt(ri_var))
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* random fractional polynomial model

scalar varRln = .2203064
scalar varRO5 = 1.329548
scalar varRI = 1.538193
scalar covlnO5 = -.4527635
scalar covRIln = .5217772
scalar covRIO5 = -1.325447
scalar varME = .0850865

* variance over time

. generate rfp_var = varRI + varRln*obstime_ln"2 + varRO5*obstime_0572 +
> 2*%covRIln*obstime_1ln + 2*covRIO5*obstime_05 +
> 2*covlnO5*obstime_ln*obstime_05 + varME

* correlation with first measurement over time

. generate rfp_cov = varRI + varRln* t1_ln *obstime_ln +

> varRO5* t1_05 "*obstime_05 + (“t1_ln~ + obstime_ln)*covRIln
> + ("t1_05" + obstime_05)*covRIO5 +
> ("ti1_1ln"*obstime_05 + obstime_ln* t1_05")*covln05

local varl = rfp_var in 1
. generate rfp_corr = rfp_cov/(sqrt("varl~)*sqrt(rfp_var))

save patterns, replace
(note: file patterns.dta not found)
file patterns.dta saved




