

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

The Stata Journal (2017)
17, Number 3, pp. 573–599

Analyzing repeated measurements while accounting for derivative tracking, varying within-subject variance, and autocorrelation: The `xtmixediou` command

Rachael A. Hughes
Bristol Medical School
University of Bristol
Bristol, UK
rachael.hughes@bristol.ac.uk

Michael G. Kenward
Ashkirk, UK
mg.kenward@outlook.com

Jonathan A. C. Sterne
Bristol Medical School
University of Bristol
Bristol, UK
jonathan.sterne@bristol.ac.uk

Kate Tilling
Bristol Medical School and
MRC Integrative Epidemiology Unit
University of Bristol
Bristol, UK
kate.tilling@bristol.ac.uk

Abstract. Linear mixed-effects models are commonly used to model trajectories of repeated measures of biomarkers of disease. [Taylor, Cumberland, and Sy \(1994, *Journal of the American Statistical Association* 89: 727–736\)](#) proposed a linear mixed-effects model with an added integrated Ornstein–Uhlenbeck (IOU) process (linear mixed-effects IOU model). This allows for autocorrelation, changing within-subject variance, and the incorporation of derivative tracking (that is, how much a subject tends to maintain the same trajectory for extended periods of time). They argued that the covariance structure induced by the stochastic process in this model was interpretable and more biologically plausible than the standard linear mixed-effects model. However, their model is rarely used, partly because of the lack of available software. In this article, we present the new command `xtmixediou`, which fits the linear mixed-effects IOU model and its special case, the linear mixed-effects Brownian motion model. The model is fit to balanced and unbalanced data using restricted maximum-likelihood estimation, where the optimization algorithm is the Newton–Raphson, Fisher scoring, or average information algorithm, or any combination of these. To aid convergence, `xtmixediou` allows the user to change the method for deriving the starting values for optimization, the optimization algorithm, and the parameterization of the IOU process. We also provide a `predict` command to generate predictions under the model. We illustrate `xtmixediou` and `predict` with a simulated example of repeated biomarker measurements from HIV-positive patients.

Keywords: st0487, `xtmixediou`, `xtmixediou` postestimation, autocorrelation, derivative tracking, integrated Ornstein–Uhlenbeck process, repeated-measures data, within-subject variability

1 Introduction

Linear mixed-effects models, proposed by [Laird and Ware \(1982\)](#), are commonly used to model trajectories of repeated measures of biomarkers of disease, for example, trajectories of CD4 counts in HIV-positive patients ([Boscardin, Taylor, and Law 1998](#)) or trajectories of progesterone during a menstrual cycle ([Sowers et al. 1998](#)). In such settings, the data are typically unbalanced, meaning that the number of measurements differs between subjects and the time interval between consecutive measurements differs within and between subjects. The variance of the biomarker may be nonstationary (vary over time). When measurements on the same subject are recorded close together in time, within-subject measurements may be serially correlated (also known as autocorrelation).

[Taylor, Cumberland, and Sy \(1994\)](#) proposed a model where between-subject and within-subject variability are described by subject-level random effects, an integrated Ornstein–Uhlenbeck (IOU) stochastic process, and measurement errors. We will refer to Taylor's model as the linear mixed-effects IOU model, and we will refer to a model without the IOU process (that is, including only fixed effects, subject-level random effects, and measurement errors) as a standard linear mixed-effects model. The linear mixed-effects IOU model estimates the degree of derivative tracking from the data; that is, how much a subject's measurements maintain the same trajectory over long periods. It covers a range of models from strong derivative tracking to no derivative tracking.

Figure 1 shows predicted biomarker measurements for a subject generated under four linear mixed-effects models with different degrees of derivative tracking. The model without an IOU process corresponds to a standard linear mixed-effects model, which assumes strong derivative tracking (that is, maintains the same trajectory throughout). Therefore, a subject's predicted measurements identically track the parametric trajectory (a linear slope) given by the fixed and random effects. The remaining three models include an IOU process, where weaker degrees of derivative tracking correspond to greater departures in the path of the predicted measurements from the parametric trajectory.

[Taylor, Cumberland, and Sy \(1994\)](#) argued that a complex biomarker, such as CD4 cell counts, would not be likely to maintain the same trajectory over long periods, so the linear mixed-effects IOU model was more biologically plausible than a standard linear mixed-effects model. Unlike a standard linear mixed-effects model, the linear mixed-effects IOU model also allows for autocorrelation and nonconstant within-subject variance. Based on a simulation study, [Taylor and Law \(1998\)](#) concluded that, when predicting future measurements in subjects, the linear mixed-effects IOU model was more robust than a standard linear mixed-effects model to incorrect specification of the true covariance structure of the data. Previously, the authors evaluated the feasibility and practicality of estimating the linear mixed-effects IOU model ([Hughes et al. 2017](#)). The model is rarely used in practice because of the lack of available software.

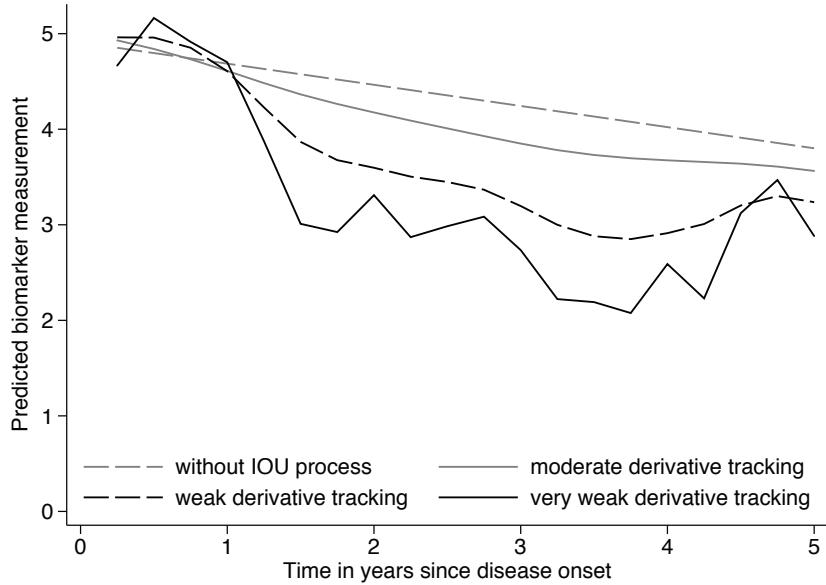


Figure 1. Different degrees of derivative tracking

In this article, we describe **xtmixediou**, a new command that fits the linear mixed-effects IOU model. We also describe the corresponding **predict** command, which generates predictions under this model. We illustrate the **xtmixediou** command using simulated data of repeated measurements of an immunologic marker (CD4 cell count) from HIV-positive subjects. We examine the variance structures of six different linear mixed-effects models and compare the accuracy of predictions under these models.

2 The linear mixed-effects IOU model

Consider a dataset of m subjects, where subject i has n_i repeated measurements $\mathbf{y}_i = \{y_{ij}\}$ recorded at time points $\mathbf{t}_i = \{t_{ij}\}$ ($i = 1, \dots, m$; $j = 1, \dots, n_i$). For subject i , let $\mathbf{X}_i = \{X_{ij}\}$ denote the $n_i \times p$ design matrix associated with fixed effects $\boldsymbol{\beta}$ (population regression coefficients), let \mathbf{Z}_i denote the $n_i \times q$ design matrix associated with random effects \mathbf{u}_i (subject-specific regression coefficients), let $\mathbf{w}_i = \{w_{ij}\}$ denote the n_i vector of realized values of the IOU stochastic process, and let \mathbf{e}_i denote the n_i vector of independent measurement errors. The random effects \mathbf{u}_i , IOU realizations \mathbf{w}_i , and measurement errors \mathbf{e}_i are assumed to be mutually independent.

The linear mixed-effects IOU model can be written as

$$\mathbf{y}_i = \mathbf{X}_i \boldsymbol{\beta} + \mathbf{Z}_i \mathbf{u}_i + \mathbf{w}_i + \mathbf{e}_i \quad (1)$$

where \mathbf{u}_i , \mathbf{w}_i , and \mathbf{e}_i are independent and normally distributed with 0 means and covariances \mathbf{G} , \mathbf{H}_i , and $\sigma^2 \mathbf{I}_{n_i}$, respectively. \mathbf{G} is unstructured (that is, variances and covariances are distinctly estimated), and \mathbf{H}_i is defined as follows (for $j_1, j_2 = 1, \dots, n_i$):

$$\begin{aligned} H_i^{j_1 j_2} &= \frac{\tau^2}{2\alpha^3} \times \{2\alpha \min(t_{ij_1}, t_{ij_2}) \\ &\quad + \exp(-\alpha t_{ij_1}) + \exp(-\alpha t_{ij_2}) - 1 - \exp(-\alpha|t_{ij_1} - t_{ij_2}|)\} \end{aligned}$$

The IOU stochastic process is parameterized by α and τ . Taylor, Cumberland, and Sy (1994) state that α can be interpreted as a measure of the degree of derivative tracking, where a small value of α indicates strong derivative tracking. Parameter τ serves as a scaling parameter. As α tends toward ∞ (derivative tracking becomes progressively weaker) and with ratio τ^2/α^2 held constant, \mathbf{w}_i becomes a realization of a scaled Brownian motion (BM) process (also known as the Wiener stochastic process) with covariance matrix

$$H_i^{j_1 j_2} = \phi t_{j_1}$$

for $j_1, j_2 = 1, \dots, n_i$ and $j_1 \leq j_2$ (Taylor, Cumberland, and Sy 1994). The BM stochastic process is parameterized by a single parameter ϕ and can be interpreted as no derivative tracking (Sy, Taylor, and Cumberland 1997). When \mathbf{w}_i is the realization of a scaled BM process, we will refer to model (1) as a linear mixed-effects BM model. The covariance matrix of \mathbf{y}_i is $\mathbf{V}_i = \mathbf{Z}_i \mathbf{G} \mathbf{Z}_i^T + \mathbf{H}_i + \sigma^2 \mathbf{I}_{n_i}$ (Patterson and Thompson 1971), and we denote the vector of unknown variance parameters by $\boldsymbol{\theta}$, which consists of the unique components of \mathbf{G} , the IOU or BM parameters, and σ^2 .

2.1 Fitting of the model

The model is fit using restricted maximum-likelihood (REML) estimation (Patterson and Thompson 1971). REML estimates of $\boldsymbol{\theta}$ are calculated using an optimization algorithm: the Newton–Raphson (NR) algorithm, the Fisher scoring (FS) algorithm, the average information (AI) algorithm, or a combination of these (Gumedze and Dunne 2011). The FS and AI algorithms are variants of the NR algorithm. The FS algorithm replaces the observed information matrix with the expected information matrix in the NR algorithm, and the AI algorithm replaces the observed information matrix with the average of the observed and expected information matrices (called the AI matrix). The convergence time for the NR algorithm is quicker than for the FS algorithm because the NR algorithm converges in fewer iterations and its cost per iteration is only slightly slower than that of the FS algorithm (Gumedze and Dunne 2011). However, the FS algorithm is more robust to poor starting values than is the NR algorithm, so Jennrich and Sampson (1976) recommended starting with a few iterations of the FS algorithm and then switching to the NR algorithm.

We provide two methods for calculating starting values. The default method fits a standard linear mixed-effects model with the `mixed` command. The resulting estimates become the starting values for the random effects and measurement-error variance, while

the IOU or BM parameters are set to fixed values representing strong derivative tracking ($\alpha = 1$ and $\tau = 0.1$ or $\phi = 0.01$).

The alternative method derives all starting values from the data. First, the alternative method predicts the residuals of the response after accounting for the model's mean structure by using the `regress` and `predict` commands. Second, the data are discretized according to a given time-window interval, derived from the observed frequency of measurement. Third, the method calculates the variance of the residuals within a time-window interval and calculates the covariance of the residuals between time-window intervals. Starting values are then calculated based on these variances and covariances and their changes over time. For example, for a model with a random intercept and IOU process, the linear change in residual variances over time gives an approximate estimate for the ratio $\omega = (\tau/\alpha)^2$.

Taylor, Cumberland, and Sy (1994) parameterized the IOU process as α and $\omega = (\tau/\alpha)^2$, and the process experienced convergence problems as α became increasingly large or small. They then suggested reparameterizing α as $\ln \alpha$ or as α^{-2} if α was suspected to be large. We allow six different parameterizations of the IOU process: $[\alpha; \tau]$, $[\alpha; \omega]$, $[\ln \alpha; \tau]$, $[\ln \alpha; \omega]$, $[\alpha^{-2}; \tau]$, and $[\alpha^{-2}; \omega]$.

The restricted log likelihood is profiled with respect to σ^2 to reduce the number of parameters to be optimized. The optimized parameters θ^* are the unique elements of the log-Cholesky parameterization of $G^* = \sigma^{-2}G$, the selected IOU parameterization (with τ/σ or ω/σ^2), or the BM parameter ϕ/σ^2 . The optimization algorithm finds the value of θ^* that minimizes the negative of twice the profiled restricted log likelihood. Once minimization with respect to θ^* is completed, the REML estimates of (θ^*, σ^2) are transformed to parameters with ranges $(-\infty, \infty)$, and the information matrix with respect to these transformed parameters is calculated. Normal-based 95% confidence intervals are calculated, and the endpoints are back-transformed to the required scale (for example, G , α , τ , and σ^2). The variance–covariance matrix of the estimates on the untransformed scale is calculated using the delta method (Oehlert 1992; Rice 2007).

We implemented `xtmixediou` using Stata's matrix programming language, Mata, and used the built-in Mata function `optimize()` to perform the optimization.

3 The `xtmixediou` command

3.1 Syntax

The `xtmixediou` command fits the linear mixed-effects IOU model (or the linear mixed-effects BM model), as described in section 2. The data must be in long form (see [D] `reshape`). The command is compatible with Stata 11 and above. The syntax of `xtmixediou` is as follows:

```
xtmixediou depvar [indepvars] [if] [in], id(levelvar) time(timevar)
[nofeconstant reffects(varlist) noreconstant iou(ioutype) brownian
svdатaderived algorithm(algorithm_spec) iterate(#) difficult nolog
trace gradient showstep hessian]
```

depvar is the dependent variable Y_i , which contains the repeated measurements.

indepvars are the covariates X_i for the fixed portion of the model (that is, the fixed effects). `xtmixediou` automatically includes a constant term (that is, an intercept) in the fixed effects. Factor variables are allowed (see [U] **11.4.3 Factor variables**).

3.2 Options

`id(levelvar)` defines the variable for identifying individuals (that is, the level-2 units). *levelvar* may be a numeric variable or a string variable. `id()` is required.

`time(timevar)` defines the numeric variable for the time points t_i at which the measurements of *depvar* were observed. `time()` is required.

`nofeconstant` suppresses the constant term for the fixed portion of the model. By default, a constant term is included in the fixed portion of the model.

`reffects(varlist)` defines the random effects of the model. `xtmixediou` automatically includes a constant term in the random effects. For two or more random effects, an unstructured covariance matrix is assumed (that is, all variances and covariances are distinctly estimated). Factor variables are not allowed. The default is a random intercept.

`noreconstant` suppresses the constant term for the random effects of the model. By default, a constant term is included in the random portion of the model.

`iou(ioutype)` specifies the parameterization of the IOU process used during estimation, where *ioutype* is one of six parameterizations given in table 1. The default parameterization is α and τ . Changing the IOU parameterization may improve convergence. For example, parameterizations $\ln \alpha$ or α^{-2} may be useful if α is suspected to be large. There is no guarantee that the other parameterizations will work better than the default.

Table 1. IOU parameterizations

<i>ioutype</i>	Description
at	α and τ , the default
ao	α and $\omega = (\tau \div \alpha)^2$
lnat	$\ln \alpha$ and τ
lnao	$\ln \alpha$ and $\omega = (\tau \div \alpha)^2$
isat	α^{-2} and τ
isao	α^{-2} and $\omega = (\tau \div \alpha)^2$

brownian specifies a scaled BM process, a special case of the IOU process (see section 2) that is parameterized by a single parameter, ϕ . The BM process represents no derivative tracking, and the fitted model then becomes the linear mixed-effects BM model.

svdataderived specifies that the starting values of all of the model's variance parameters (that is, the random-effects variances and covariances, IOU or BM parameters, and measurement-error variance) are derived from the data (see section 2.1). The option **svdataderived** assumes the user specified (using the **reffects()** or **noreconstant** option) that the random effects include only a random intercept, a random linear slope, or both. The default fits a linear mixed-effects model—without an added IOU or BM process—using Stata's **mixed** command. The resulting expectation-maximization estimates are used as the starting values for the random-effects variances and covariances as well as the measurement-error variance, while the starting values for the IOU or BM parameters are set to small positive values (that is, representing strong derivative tracking). **xtmixediou** saves the starting values to matrix **e(sv)**.

algorithm(algorithm_spec) specifies the algorithm to use. *algorithm_spec* is

algorithm [$\#$ [*algorithm* [$\#$]] \dots]

and *algorithm* is {**nr** | **fs** | **ai**}.

algorithm(nr), the default, specifies the NR algorithm.

algorithm(fs) specifies the FS algorithm.

algorithm(ai) specifies the AI algorithm.

You can switch between algorithms by specifying more than one in the **algorithm()** option. By default, an algorithm is used for five iterations before switching to the next algorithm. To specify a different number of iterations, include the number after the algorithm's abbreviation in the option. For example, specifying **algorithm(fs 10 nr 100)** requests 10 iterations using the FS algorithm, followed by 100 iterations using the NR algorithm, then another 10 iterations using the FS algorithm, and so on. The process continues until convergence or until the maximum number of iterations is reached.

Convergence of the NR algorithm may be improved by starting with a few—say, three—iterations of the FS or AI algorithm, especially when the starting values of the parameters are suspected to be far from the REML estimates.

The following options are also described in [R] **maximize**.

iterate(#) specifies the maximum number of iterations. When the number of iterations equals **iterate()**, the optimizer stops and presents the current results. If convergence is declared before this threshold is reached, it will stop when convergence is declared. The default is **iterate(16000)**.

difficult specifies that the likelihood function will probably be difficult to maximize because of nonconcave regions (that is, when the message “not concave” appears repeatedly) and that the standard stepping algorithm is not working well. **difficult** specifies that a different stepping algorithm be used in the nonconcave regions. There is no guarantee that **difficult** will work better than the default. You should use the **difficult** option only when the default stepper declares convergence and the last iteration is “not concave” or when the default stepper is repeatedly issuing “not concave” messages and producing only tiny improvements in the log likelihood.

nolog suppresses the display of the iteration log showing the progress of the log likelihood. The log is displayed by default.

trace adds a display of the current parameter vector to the iteration log.

gradient adds a display of the current gradient vector to the iteration log.

showstep adds a report on the steps within an iteration to the iteration log.

hessian adds a display of the current negative Hessian matrix to the iteration log.

3.3 Stored results

xtmixediou stores the following in **e()**:

Scalars

e(N)	number of observations
e(k)	number of parameters
e(k_f)	number of fixed-effects parameters
e(k_r)	number of random-effects parameters
e(k_res)	number of residual-error parameters
e(l1)	restricted log likelihood
e(converged)	1 if converged, 0 otherwise

Macros	
e(cmd)	xtmixediou
e(cmdline)	command as typed
e(depvar)	dependent variable
e(title)	title in estimation output
e(id)	variable identifying level-2 units
e(time)	<i>timevar</i> , the time-point variable for <i>depvar</i>
e(revars)	random-effects variables
e(redim)	random-effects dimension
e(iou)	iou() specification
e(method)	REML
e(ml_method)	type of <i>ml</i> method
e(opt)	type of optimization
e(predict)	program used to implement <i>predict</i>
e(properties)	b V
Matrices	
e(b)	coefficient vector
e(V)	variance-covariance matrix of the estimators
e(sv)	starting values of the variance parameters
e(N_g)	group counts
e(g_min)	group-size minimum
e(g_avg)	group-size average
e(g_max)	group-size maximum
Functions	
e(sample)	marks estimation sample

3.4 Syntax for predict

The **xtmixediou** command supports the postestimation command **predict** (see [R] **predict**) to compute linear predictions, standard errors, fitted values, and residuals. The syntax for **predict** following **xtmixediou** is

```
predict newvar [if] [in] [, xb stdp fitted residuals]
```

Options

xb, the default, calculates the linear prediction for the fixed portion of the model only.

stdp calculates the standard error of the fixed portion linear prediction.

fitted calculates the fitted values, that is, the fixed portion linear prediction plus contributions based on predicted random effects and the realizations of the IOU (or BM) process.

residuals calculates the residuals, that is, the response minus fitted values.

4 Example

The data for this example are simulated based on characteristics of data from an HIV/AIDS cohort study ([UK Collaborative HIV Cohort Steering Committee 2004](#)). This study routinely collects clinical information on HIV-positive individuals aged over 16

years who have attended one of the collaborating centers for care at any time since 1996. One of the purposes of the study is to analyze the data to monitor response to antiretroviral therapy. A patient's repeated measurements of CD4 cell counts reflect both HIV disease progression and recovery after a patient starts therapy (Sabin and Lundgren 2013). For example, an analysis using a standard linear mixed-effects model (that is, Stata's `mixed` command) showed that CD4 cell counts continue to increase up to eight years after initiation of therapy among patients who maintained virological suppression (Hughes et al. 2011). A strong derivative tracking model was used that assumed a patient's CD4 counts maintained (or closely tracked) the same parametric trajectory (a two-degree fractional polynomial [Royston and Altman 1994]) throughout the patient's follow-up, and that within-patient residuals were uncorrelated with constant variance over time. Taylor, Cumberland, and Sy (1994) state that it is unlikely that something as complex as a measurement of a patient's immune system would maintain the same parametric trajectory over long periods of time. In our original analysis, we were interested in the population trajectories (that is, fixed effects), which are robust to the assumption of strong derivative tracking and incorrect specification of the variance structure. However, such robustness may not apply when one is interested in patient-level predictions (Taylor and Law 1998).

In the following analysis, we fit a linear mixed-effects IOU model, a linear mixed-effects BM model, and a standard linear mixed-effects model, and compare their model fit and accuracy of patient-level predictions.

4.1 The data

The original dataset consisted of data on 18,045 patients, who were expected to attend an HIV clinic about every three months. These patients had not received previous treatment for HIV, started therapy after 1997, had at least one CD4 cell count measurement before start of therapy, and had at least two CD4 cell count measurements during follow-up. Also, these patients had recorded values for the following pretherapy (or baseline) patient characteristics: sex, age at start of therapy, ethnicity (white, black African, other), risk group for HIV infection (homosexual, heterosexual, other), and pretherapy CD4 cell count group (0–99, 100–199, 200–349, and ≥ 350 cells/mm³).

We simulated an unbalanced dataset of 1,000 patients in three separate stages. In the first stage, patient characteristics were simulated under a general location model (Olkin and Tate 1961). In the second stage, the number of measurements per patient, the length of follow-up, and the time intervals between consecutive measurements within a patient were simulated based on these features of the original dataset. In the third stage, we simulated longitudinal CD4 counts (on the natural logarithm scale) under a linear mixed-effects BM model. In this simulation, the population trajectory was described by a fractional polynomial with powers 0 (interpreted as a natural log transformation) and 0.5, the aforementioned pretherapy patient characteristics were also included as fixed effects, and the fractional polynomial power 0.5 and the intercept were included as random effects with an unstructured random-effects covariance matrix. The parameters of the models were set to the (restricted) maximum likelihood estimates from fitting the same models to the original dataset.

The following code (with corresponding output) describes the simulated dataset, lists the possible values of the categorical variables, and displays the first three measurements for two patients. The `patid` variable uniquely identifies a patient, and the `sex`, `age`, `ethnicity`, `risk`, and `baselinecd4` variables are the pretherapy characteristics. `cd4` is the CD4 cell count measurement (cells/mm³) on its original scale, and `lncd4` is its corresponding value on the natural logarithm scale. `time` is time in years of the CD4 cell count measurement since initiation of therapy.

```

. use lncd4
(example for xtmixediou)
. describe
Contains data from lncd4.dta
  obs:      15,526
  vars:          10
  size:    853,930
example for xtmixediou
14 Sep 2016 15:28

variable   storage   display   value
variable   name     type      format   label     variable label
-----+
patid      int       %8.0g
measurement byte      %8.0g
time       float     %9.0g
cd4        float     %9.0g
lncd4      float     %9.0g
sex        double    %9.0g
ethnicity  double    %15.0g
risk        double    %12.0g
baselinecd4 double    %10.0g
age        double    %9.0g
Patient identifier
Measurement occasion
Time of CD4 measurement since
    start of therapy (in years)
CD4 cell count measurement
Natural logarithm CD4 count
Sex
Ethnicity group
Risk group for infection
baselineCD4_cat
Age at start of therapy

Sorted by: patid time
. label list sexLabel
sexLabel:
  0 male
  1 female
. label list ethnicLabel
ethnicLabel:
  0 white
  1 black African
  2 other ethnicity
. label list riskLabel
riskLabel:
  0 homosexual
  1 heterosexual
  2 other risk

```

```

. label list preCD4Label
preCD4Label:
  0 0 to 99
  1 100 to 199
  2 200 to 349
  3 350 plus
. format time lncd4 age %4.2g
. list if (patid == 12 | patid==13) & time <=1, noobs separator(0) abbreviate(3)
> string(3) compress

```

patid	mea-t	time	cd4	lncd4	sex	eth-y	risk	bas-4	age
12	1	.2	13	2.6	male	white	hom..	0 t..	25
12	2	.49	23	3.1	male	white	hom..	0 t..	25
12	3	.87	16	2.8	male	white	hom..	0 t..	25
13	1	.25	22	3.1	male	white	hom..	0 t..	29
13	2	.45	34	3.5	male	white	hom..	0 t..	29
13	3	.67	36	3.6	male	white	hom..	0 t..	29

4.2 Using command `xtrmixediou` to fit a linear mixed-effects IOU model

We will fit a series of linear mixed-effects models with different variance structures (listed in table 2) but the same mean structure. For the fixed portion of all models, we include the pretherapy variables as time-independent covariates, and the population trajectory is modeled by a fractional polynomial with powers 0 and 0.5.

Table 2. Variance structures of the fitted models^b

Model	Random effects	Stochastic process
<code>rriou</code>	constant	IOU
<code>ribm</code>	constant	BM
<code>rfpiou</code>	constant and <code>time</code> ^{0.5}	IOU
<code>rfpbm</code> [#]	constant and <code>time</code> ^{0.5}	BM
<code>ri</code>	constant	—
<code>rfp</code>	constant, <code>time</code> ^{0.5} , and <code>ln(time)</code>	—

^b All models include measurement-error variance.

[#] Model used to simulate the data.

First, we generate the fractional polynomial powers of `time` (see [R] `fp`). We do not need to change the origin of `time`, nor rescale the variable, because all its values are greater than 0 and its standard deviation is close to 1.

```

. summarize time
      Variable   Obs    Mean    Std. Dev.    Min    Max
      time       15,526  2.374024  1.407925  .1149897  4.999316
. generate time_ln = ln(time)
. generate time_05 = time^0.5

```

We begin by fitting a linear mixed-effects IOU model, where the only random effect is a random intercept, by using the following code. We refer to this model as a random-intercept IOU (`riiou`) model. The `xtmixediou` command supports Stata's factor notation (see [U] **11.4.3 Factor variables**). The code below specifies that the reference categories for `ethnicity`, `risk`, and `baseline_cd4` are, respectively, white, homosexual, and 200–349 cells/mm³. Following Stata's convention, by default an intercept is automatically added to the fixed effects and to the random effects. Therefore, because the model contains only a random intercept, we do not need to specify the `reffects()` option. The required `id()` and `time()` options declare, respectively, that variable `patid` is the unique identifier for patients and that `time` contains the measurement times. We specify that all starting values are derived from the data by using the `svdata` derived option.

Below is the output of the `xtmixediou` command. The layout of the output follows that of Stata's `mixed` command. The total number of observations and the minimum, maximum, and average number of observations per patient are displayed at the top right. Below these values is a table displaying the results for the fixed effects, random effects, IOU or BM parameters, and variance of the measurement error. Lastly, we store the estimation results to `riiou_model` and predict the fitted values and residuals.

<pre>. xtmixediou lncd4 time_ln time_05 age sex i.risk i.ethnicity > ib2.baselinecd4, id(patid) time(time) svdataderived (output omitted)</pre>					
<pre>Linear mixed IOU REML regression</pre>					
<pre>Number of obs = 15526 Number of groups = 1000</pre>					
<pre>Obs per group : min = 2 avg = 15.5 max = 26</pre>					
<pre>Restricted log likelihood = -6169.4427</pre>					
lncd4	Coef.	Std. Err.	z	P > z	[95% Conf. Interval]
time_ln	.1232436	.0223509	5.51	0.000	.0794366 .1670506
time_05	.077378	.0500194	1.55	0.122	-.0206582 .1754142
age	-.0000926	.0014625	-0.06	0.950	-.002959 .0027738
sex	.0923211	.0441723	2.09	0.037	.0057449 .1788972
risk					
heterosexual	-.1314315	.0452229	-2.91	0.004	-.2200668 -.0427961
other risk	-.1403481	.0555603	-2.53	0.012	-.2492443 -.0314519
ethnicity					
black African	-.1117199	.0455415	-2.45	0.014	-.2009796 -.0224601
other ethnic-y	-.1119597	.0382533	-2.93	0.003	-.1869347 -.0369847
baselinecd4					
0 to 99	-1.216405	.0362109	-33.59	0.000	-1.287377 -1.145433
100 to 199	-.3562389	.0354835	-10.04	0.000	-.4257853 -.2866925
350 plus	.4131572	.0405326	10.19	0.000	.3337148 .4925996
_cons	4.151499	.0803116	51.69	0.000	3.994091 4.308907
Variance parameters		Estimate	Std. Err.	[95% Conf. Interval]	
Random-effects:					
Var(_cons)		.1320698	.0080314	.1172301	.148788
IOU-effects:					
alpha		.9403315	.1105896	.7467442	1.184105
tau		.4873562	.0409801	.4133049	.5746751
Var(Measure. Err.)		.0747382	.0011132	.0725879	.0769522
<pre>. estimates store riiou_model . predict riiou_fit, fitted . predict riiou_res, residuals</pre>					

The top two fixed effects are the fractional polynomial powers, which describe the population average trajectory of lncd4. Fixed effect _cons describes the population average of lncd4 at the start of therapy among white, homosexual males with pretherapy CD4 cell count between 200 and 349 cells/mm³ and aged 0 years. The remaining fixed effects describe population average differences in lncd4 between different patient groups at the start of therapy. In the second table, Var(_cons) describes the between-subject variance (at start of therapy) after controlling for the fixed effects. The estimated value of α is quite small, indicating fairly strong derivative tracking. Lastly,

`Var(Measure. Err.)` describes the variance of the measurement-level errors (that is, the residuals).

Below, we fit a random-intercept BM model (`ribm`) by adding the `brownian` option to the previous code (results not shown), store the estimation results to `ribm_model`, and make predictions under this model. The results of the linear mixed-effects BM model have the same layout as above except within the table of variance parameters; there, a single parameter `phi` replaces the IOU parameters `alpha` and `tau`.

```
. xtmixediou lncd4 time_ln time_05 age sex i.risk i.ethnicity
> ib2.baselinecd4, id(patid) time(time) svdataderived brownian
  (output omitted)
. estimates store ribm_model
. predict ribm_fit, fitted
. predict ribm_res, residuals
```

We can specify the fractional polynomial powers as random by using the `reffects()` option (demonstrated in the following code). We will refer to a model with a random intercept, one or more random fractional polynomial powers, and an IOU or BM process as a random fractional polynomial IOU or BM model (`rfpiou` or `rfpbm`), respectively. The data model used to simulate the data was the random fractional polynomial BM model. Because the random effects include variables that are neither a random intercept nor a random linear slope, we cannot use the `svdataderived` option. When we fit a model with both fractional polynomial powers as random effects (with an IOU or BM process), the corresponding variances and covariances associated with power 0 were close to 0 (results not shown). Therefore, we have excluded the random effect for power 0. For the random fractional polynomial IOU model, we use the `difficult` option because of nonconcave regions.

```
. * random fractional polynomial IOU model
. xtmixediou lncd4 time_ln time_05 age sex i.risk i.ethnicity
> ib2.baselinecd4, id(patid) time(time)
> reffects(time_05) difficult
  (output omitted)
. estimates store rfpiou_model
. predict rfpiou_fit, fitted
. predict rfpiou_res, residuals
. * random fractional polynomial BM model
. xtmixediou lncd4 time_ln time_05 age sex i.risk i.ethnicity
> ib2.baselinecd4, id(patid) time(time)
> reffects(time_05) brownian
  (output omitted)
. estimates store rfpbm_model
. predict rfpbm_fit, fitted
. predict rfpbm_res, residuals
```

For comparison, we also fit two standard linear mixed-effects models (that is, without an IOU or BM process) by using the `mixed` command (code shown below), where 1) only

the intercept is random (**ri**) and 2) the intercept and fractional polynomial powers 0 and 0.5 are included as random effects (**rfp**). For the latter model, none of the estimates for the random-effects variances and covariances are close to 0, and a model that includes both powers as random effects has lower deviance, Akaike information criterion (AIC), and Bayesian information criterion (BIC) values than a model that excludes power 0 as a random effect (results not shown). We save the data and the predictions to filename **lncd4_predictions**.

```
. * random intercept model
. mixed lncd4 time_ln time_05 age sex i.risk i.ethnicity
> ib2.baselinecd4 || patid:, var reml
    (output omitted)
. estimates store ri_model
. predict ri_fit, fitted
. predict ri_res, residuals
. * random fractional polynomial model
. mixed lncd4 time_ln time_05 age sex i.risk i.ethnicity
> ib2.baselinecd4 || patid: time_ln time_05, var reml cov(unstructured)
    (output omitted)
. estimates store rfp_model
. predict rfp_fit, fitted
. predict rfp_res, residuals
. save lncd4_predictions, replace
file lncd4_predictions.dta saved
```

We use Stata's **estimates stats** command to compare the models with respect to the AIC and BIC values. The AIC and BIC values for the random-intercept model (**ri**) are almost double the corresponding values for the other models, indicating that this model is by far the poorest fit to the data (see code and output below). The model with the lowest AIC and BIC values is the random fractional polynomial BM model (the model used to simulate the data), although the AIC and BIC values for the random fractional polynomial IOU model are very similar. Based on these criteria, a user would select a model with an IOU or BM process over the random fractional polynomial model (without an IOU or BM process).

The **estimates stats** command calculates the AIC value as $-2 \ln L + 2k$ and the BIC value as $-2 \ln L + k \times \ln N$, where $\ln L$ is the maximized log likelihood of the model, $k = p + q$ is the number of fixed-effects coefficients (p) plus the number of variance parameters (q), and N is the sample size (see [R] **estat**). For REML estimation, the AIC and BIC values can also be calculated as $-2 \ln L + 2q$ and $-2 \ln L + \ln(N - p) \times q$, respectively (Smith 2011). The AIC and BIC values calculated using the latter formula are very similar to those calculated by **estimates stats** and lead to the same conclusions (results not shown). Note that the AIC and BIC values (of both sets of formulas) are based on the (restricted) log likelihood of the marginal model $y \sim N(X\beta, V)$. Criteria based on the marginal model may not be reliable for selection of the variance structure of a linear mixed model (Vaida and Blanchard 2005; Liang, Wu, and Zou 2008; Greven and Kneib 2010; Müller, Scealy, and Welsh 2013).

```
. estimates stats rriou_model ribm_model rfpiou_model rfpbm_model
> ri_model rfp_model
Akaike's information criterion and Bayesian information criterion
```

Model	Obs	ll(null)	ll(model)	df	AIC	BIC
rriou_model	15,526	.	-6169.443	16	12370.89	12493.29
ribm_model	15,526	.	-6249.674	15	12529.35	12644.1
rfpiou_model	15,526	.	-6046.815	18	12129.63	12267.34
rfpbm_model	15,526	.	-6046.857	17	12127.71	12257.77
ri_model	15,526	.	-11226.74	14	22481.47	22588.58
rfp_model	15,526	.	-6377.38	19	12792.76	12938.11

Note: N=Obs used in calculating BIC; see [R] BIC note.

Lastly, among the linear mixed-effects IOU and BM models (`rriou`, `ribm`, `rfpiou`, and `rfpbm`), the estimates of fixed effect $\ln(\text{time})$ (fractional power 0) were slightly larger than those from the standard linear mixed-effects models (`ri` and `rfp`), while estimates of fixed effect $\text{time}^{0.5}$ were slightly smaller among the linear mixed-effects IOU and BM models. However, for both fractional-power fixed effects, the 95% confidence intervals from all models overlapped. The estimates of the remaining fixed effects (baseline characteristics) were similar among all models. (Results for the fixed-effects estimates not shown.)

4.3 Comparison of the variance structures

The previous six models make different assumptions about how the variance of `lncd4` changes over time and how the correlation between measurements changes over time. For each model in turn, using its variance function and estimates of the variance parameters, we can plot a model's assumed pattern of variances and correlations over time. To further assess model fit, we will compare the models' patterns in variances and correlations with the observed changes in variance and correlation of `lncd4`. The appendix shows how we derive the variables for the observed variances of `lncd4` and the observed correlations with the first measurement, and the corresponding variances and correlations under the six models. In the last example of the appendix, we save these derived variables to filename `patterns`.

Figure 2 shows the changes in variance over time, where the observed variances are displayed as scatter points and the model variance patterns as lines. The variance patterns of all models except the random-intercept model (`ri`) and the random-intercept BM model (`ribm`) closely follow the observed changes in variance over time.

```

. use patterns, clear
. scatter obsvar obstime, legend(label(1 "observed")) mcolor(gs0) ||
> line ri_var obstime, legend(label(2 "ri"))
> lcolor(gs0) lpattern(shortdash) ||
> line rfp_var obstime, legend(label(3 "rfp"))
> lcolor(gs10) lpattern(solid) ||
> line rriou_var obstime, legend(label(4 "rriou"))
> lcolor(gs0) lpattern(longdash) ||
> line ribm_var obstime, legend(label(5 "ribm"))
> lcolor(gs10) lpattern(longdash) ||
> line rfpiou_var obstime, legend(label(6 "rfpiou"))
> lcolor(gs0) lpattern(solid) ||
> line rfpbm_var obstime, legend(label(7 "rfpbm") cols(4))
> lcolor(gs10) lpattern(shortdash)
> xtitle("Time in years") ytitle("Variance of lnccd4")
> ylabel(0(0.2)1.5,angle(0)) plotregion(style.none))

```

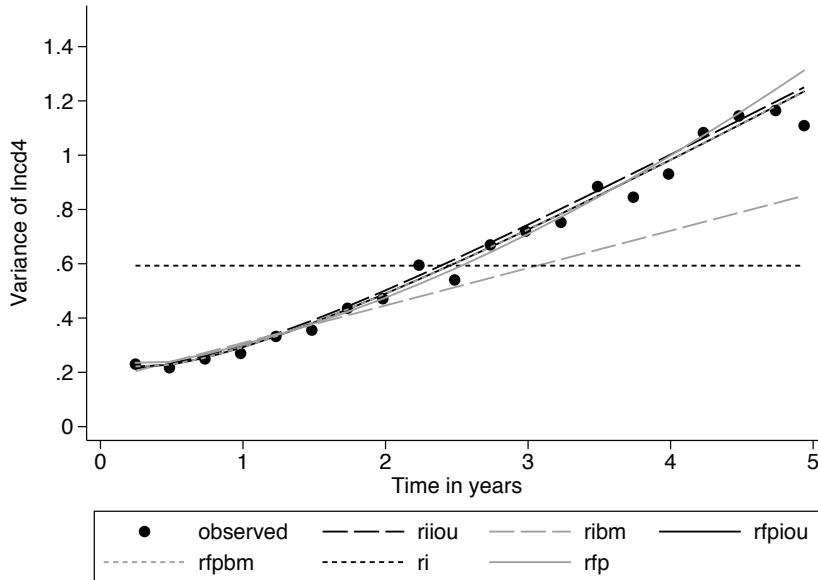


Figure 2. Changes in variance over time

Figure 3 shows the changes in the correlations (with the first measurement) over time, where the observed correlations are displayed as scatter points and the model correlation patterns as lines. The correlation patterns for the random fractional polynomial BM model (**rfpbm**) and the random fractional polynomial IOU model are virtually identical, with the two patterns overlaying each other. The correlation patterns that most closely follow the observed changes are for the three models that include at least one of the fractional polynomial powers as a random effect (**rfp**, **rfpiou**, and **rfpbm**). Given that model **rfp** does not include an added stochastic process, the similarity of the correlation pattern of model **rfp** with those of models **rfpiou** and **rfpbm** may be explained by the

additional random effect (for power 0) present in model `rfp` that is not present in models `rfpiou` and `rfpbm` (see table 2). We considered correlations with the first measurement as a reference because we could calculate at least one correlation for all subjects (that is, the minimum number of measurements was two), and similarly, we could have considered correlations with the second measurement as a reference. However, using the third or later measurements as a reference would have resulted in some subjects being excluded from the correlation calculations.

```
. scatter obscorr obstime, legend(label(1 "observed") mcolor(gs0) ||
> line rriou_corr obstime, legend(label(2 "rriou"))
> lcolor(gs0) lpattern(longdash) ||
> line ribm_corr obstime, legend(label(3 "ribm"))
> lcolor(gs10) lpattern(longdash) ||
> line rfpiou_corr obstime, legend(label(4 "rfpiou"))
> lcolor(gs0) lpattern(solid) ||
> line rfpbm_corr obstime, legend(label(5 "rfpbm") cols(4))
> lcolor(gs10) lpattern(shortdash) ||
> line ri_corr obstime, legend(label(6 "ri"))
> lcolor(gs0) lpattern(shortdash) ||
> line rfp_corr obstime, legend(label(7 "rfp"))
> lcolor(gs10) lpattern(solid)
> xtitle("Time in years",margin(small)) ylabel(0(0.2)1,angle(0))
> ytitle("Correlation with first measure") plotregion(style(none))
```

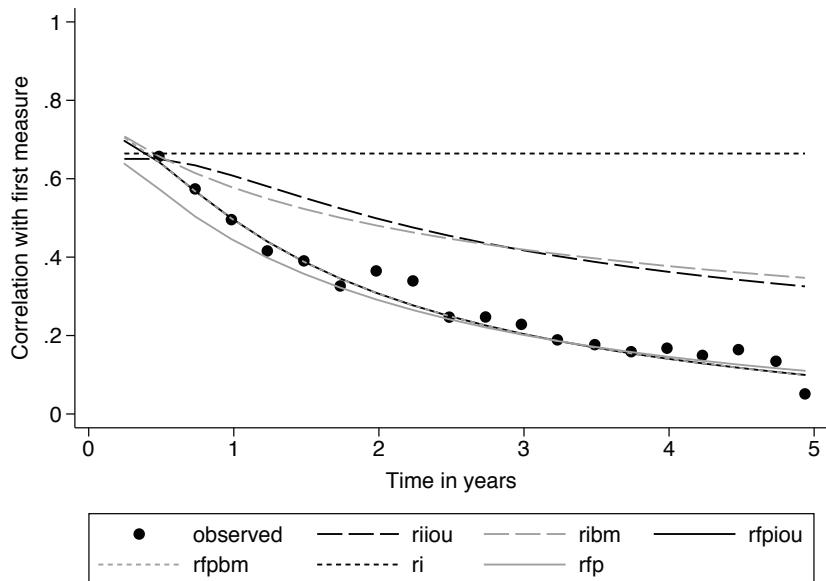


Figure 3. Changes in correlation over time

4.4 Comparison of the fitted values

In this section, we compare the fitted values of the six models with respect to two measures: 1) the mean squared error, which is the average squared difference between the fitted values and the observed values, and 2) the percentage of fitted values within 5% of the observed values.

We previously saved the fitted values of the six models to `lncd4_predictions.dta`. First, separately for each model, we generate a variable for the squared difference between the fitted and observed values, and then we generate a variable to indicate whether a fitted value is within 5% of the observed value. We then use the `collapse` command to calculate the average squared difference across all measurements and to sum the number of fitted values within the 5% interval.

```
. use lncd4_predictions, clear
(example for xtmixediou)

. * lower and upper limits for 5% interval
. generate l15 = lncd4 - 0.05*lncd4
. generate u15 = lncd4 + 0.05*lncd4
. local listing "riiou ribm rfpiou rfpbm ri rfp"
. foreach model of local listing {
2.         * squared difference
.         generate mse_`model' = (`model'_fit - lncd4)^2
3.         * indicator of within 5% interval
.         generate in5_`model' = 1 if `model'_fit>=l15 & `model'_fit<=u15
4. }
(output omitted)
. collapse (mean)mse* (sum)in5*
. list mse*, clean noobs abbreviate(14)
      mse_riiou    mse_ribm    mse_rfpiou    mse_rfpbm    mse_ri    mse_rfp
      .0597014     .0381547     .0491328     .0464631     .1867051     .0727348
. list in5*, clean noobs abbreviate(14)
      in5_riiou    in5_ribm    in5_rfpiou    in5_rfpbm    in5_ri    in5_rfp
      8844        10441        9522        9738        5970        8227
```

The lower the mean squared error and the larger the number of values within the 5% interval, the greater the accuracy of the fitted values. The models without an added IOU or BM process (`ri` and `rfp`) generated the least accurate fitted values. The model that generated the fitted values closest to the observed values is the random-intercept BM model, even though the data were simulated under the random fractional polynomial BM model and the model fit statistics, and figures 2 and 3 suggested that other models provided a better fit to the data. This is consistent with previous findings that when fitting a linear mixed-effects IOU model, it is sufficient to include a random intercept plus the IOU or BM process, and predictions under the linear mixed-effects IOU or BM model are robust to incorrect specification of the true covariance structure (Taylor, Cumberland, and Sy 1994; Taylor and Law 1998). If we are evaluating a model for its predictive ability, then selection based on accuracy of prediction may be preferable. Also, as noted earlier, selecting the variance structure of a linear mixed-effects model based on marginal model criteria may be unreliable.

5 Discussion

We have presented the new command `xtmixediou`, which implements the linear mixed-effects IOU model and its special case, the linear mixed-effects BM model. The model allows for autocorrelation, changing within-subject variance, and incorporating derivative tracking (that is, how much a subject tends to maintain the same trajectory for extended periods of time). The data may be unbalanced with a differing number of measures per subject, and the time interval between consecutive measurements may differ within and between subjects. To make our command user-friendly, we designed `xtmixediou` to have many of the same features as Stata's own regression commands; for example, the displayed results of `xtmixediou` follow the same format as Stata's `mixed` command, and factor notation is supported. When convergence problems occur, the command allows the user to change the method for deriving the starting values for optimization, the optimization algorithm, and the parameterization of the IOU process. Also, we have incorporated Stata's `maximize` option `difficult`, which specifies to use a different stepping algorithm in nonconcave regions. We also provide a `predict` command to generate predictions under the linear mixed-effects IOU model.

A limitation of our `predict` command is that we do not provide the best linear unbiased predictions of the random effects nor realizations of the IOU (or BM) process. Solving Henderson's mixed-model equations (Gumedze and Dunne 2011) for three unknowns (the fixed-effects coefficients, random effects, and realizations of the stochastic process) entails complex matrix algebra. Instead, we have solved these equations for two unknowns: the fixed-effects coefficients and the random effects plus the realizations of the stochastic process. Therefore, we are able to predict fitted values. In future work, we will provide separate predictions for the random effects and the realizations of the stochastic process.

We are not aware of other publicly available software that fits the linear mixed-effects IOU model. We hope our command `xtmixediou` will encourage and help statisticians to apply the linear mixed-effects IOU model.

6 Acknowledgments

We thank Professor Caroline Sabin from the Research Department of Infection and Population Health at the University College London for granting access to the UK collaborative HIV cohort data. Rachael Hughes was supported by the Medical Research Council, grant number MR/J013773/1. Jonathan Sterne was supported by the National Institute for Health Research Senior Investigator award NF-SI-0611-10168. Kate Tilling was supported by the Medical Research Council Integrative Epidemiology Unit at the University of Bristol (MC_UU_12013/9).

7 References

Boscardin, W. J., J. M. G. Taylor, and N. Law. 1998. Longitudinal models for AIDS marker data. *Statistical Methods in Medical Research* 7: 13–27.

Greven, S., and T. Kneib. 2010. On the behaviour of marginal and conditional AIC in linear mixed models. *Biometrika* 97: 773–789.

Gumedze, F. N., and T. T. Dunne. 2011. Parameter estimation and inference in the linear mixed model. *Linear Algebra and its Applications* 435: 1920–1944.

Hughes, R. A., M. G. Kenward, J. A. C. Sterne, and K. Tilling. 2017. Estimation of the linear mixed integrated Ornstein–Uhlenbeck model. *Journal of Statistical Computation and Simulation* 87: 1541–1558.

Hughes, R. A., J. A. C. Sterne, J. Walsh, L. Bansi, R. Gilson, C. Orkin, T. Hill, J. Ainsworth, J. Anderson, M. Gompels, D. Dunn, M. A. Johnson, A. N. Phillips, D. Pillay, C. Leen, P. Easterbrook, B. Gazzard, M. Fisher, and C. A. Sabin. 2011. Long-term trends in CD4 cell counts and impact of viral failure in individuals starting antiretroviral therapy: UK Collaborative HIV Cohort (CHIC) study. *HIV Medicine* 12: 583–593.

Jennrich, R. I., and P. F. Sampson. 1976. Newton–Raphson and related algorithms for maximum likelihood variance component estimation. *Technometrics* 18: 11–17.

Laird, N. M., and J. H. Ware. 1982. Random-effects models for longitudinal data. *Biometrics* 38: 963–974.

Liang, H., H. Wu, and G. Zou. 2008. A note on conditional AIC for linear mixed-effects models. *Biometrika* 95: 773–778.

Müller, S., J. L. Scealy, and A. H. Welsh. 2013. Model selection in linear mixed models. *Statistical Science* 28: 135–167.

Oehlert, G. W. 1992. A note on the delta method. *American Statistician* 46: 27–29.

Olkin, I., and R. F. Tate. 1961. Multivariate correlation models with mixed discrete and continuous variables. *Annals of Mathematical Statistics* 32: 448–465.

Patterson, H. D., and R. Thompson. 1971. Recovery of inter-block information when block sizes are unequal. *Biometrika* 58: 545–554.

Rice, J. A. 2007. *Mathematical Statistics and Data Analysis*. 3rd ed. Belmont, CA: Duxbury.

Royston, P., and D. G. Altman. 1994. Regression using fractional polynomials of continuous covariates: Parsimonious parametric modelling (with discussion). *Journal of the Royal Statistical Society, Series C* 43: 429–467.

Sabin, C. A., and J. D. Lundgren. 2013. The natural history of HIV infection. *Current Opinion in HIV and AIDS* 8: 311–317.

Smith, R. B. 2011. *Multilevel Modeling of Social Problems: A Causal Perspective*. New York: Springer.

UK Collaborative HIV Cohort Steering Committee. 2004. The creation of a large UK-based multicentre cohort of HIV-infected individuals: The UK Collaborative HIV Cohort (UK CHIC) Study. *HIV Medicine* 5: 115–124.

Sowers, M., J. F. Randolph, Jr., M. Crutchfield, M. L. Jannausch, B. Shapiro, B. Zhang, and M. La Pietra. 1998. Urinary ovarian and gonadotropin hormone levels in premenopausal women with low bone mass. *Journal of Bone and Mineral Research* 13: 1191–1202.

Sy, J. P., J. M. G. Taylor, and W. G. Cumberland. 1997. A stochastic model for the analysis of bivariate longitudinal AIDS data. *Biometrics* 53: 542–555.

Taylor, J. M. G., W. G. Cumberland, and J. P. Sy. 1994. A stochastic model for analysis of longitudinal AIDS data. *Journal of the American Statistical Association* 89: 727–736.

Taylor, J. M. G., and N. Law. 1998. Does the covariance structure matter in longitudinal modelling for the prediction of future CD4 counts? *Statistics in Medicine* 17: 2381–2394.

Vaida, F., and S. Blanchard. 2005. Conditional Akaike information for mixed-effects models. *Biometrika* 92: 351–370.

About the authors

Rachael A. Hughes is a research fellow at the Bristol Medical School, University of Bristol. Her research interests focus on analysis in the presence of incomplete data, longitudinal analysis using mixed-effects models, and clinical epidemiology of HIV and AIDS in the era of antiretroviral therapy.

Michael G. Kenward has recently retired as Professor of Biostatistics at the London School of Hygiene and Tropical Medicine. His main interests are handling of missing data, longitudinal data analysis, the design and analysis of crossover trials, and REML. He has coauthored texts on missing data in clinical research, multiple imputation, and crossover trials.

Jonathan A. C. Sterne is a professor of medical statistics and epidemiology at the Bristol Medical School, University of Bristol. His main research interests are clinical epidemiology of HIV and AIDS in the era of antiretroviral therapy; meta-analysis and systematic reviews; causal inference; methodology for epidemiology and health services research; and epidemiology of asthma and allergic diseases.

Kate Tilling is a professor of medical statistics at the Bristol Medical School, University of Bristol. Her main interests are in longitudinal models, particularly multilevel models, and in methods to minimize the bias due to missing data. Applied interests include childhood growth, disease monitoring and progression, and modeling longitudinal changes in biomarkers.

A Appendix

We wish to examine the changes in the variance of `lncd4` over time after accounting for the mean structure of the model (which is the same for all six models). Therefore, we fit a linear regression model with the same mean structure and predict residuals under this model. We will use these residuals to examine the variance structure of the observed data.

```
. use lncd4_predictions, clear
(example for xtmixediou)
. regress lncd4 time_ln time_05 age sex i.risk i.ethnicity
> ib2.baselinecd4
    (output omitted)
. predict reg_res, residuals
```

Next, we group the data according to the nearest three-month interval and drop any duplicates where a patient has more than one measurement within the same three-month interval. We then reshape the data into wide format and, for each interval, calculate the variance of the residuals and its correlation with the first measurement. During the calculation process, the variances and correlations are stored in matrix `obs`. Afterward, the columns of the resulting matrix are converted into variables.

```
. * round to nearest 3-month interval
. generate record = round(time/0.25)
. * drop duplicate patient records within same interval
. duplicates drop patid record, force
Duplicates in terms of patid record
(3,871 observations deleted)
. * maximum number of records per patient
. summarize record
    (output omitted)
. local max = r(max)
. * reshape the data into wide format
. keep patid record reg_res time
. reshape wide reg_res time, i(patid) j(record)
(note: j = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)
    (output omitted)
. * calculate variances and correlations across patients
. matrix obs = J(`max',3,0)
. forvalues t=1(`max' {
    2.     quietly summarize reg_res`t', detail
    3.     matrix obs[`t',1] = r(Var)
    4.     quietly summarize time`t', detail
    5.     matrix obs[`t',2] = r(mean)
    6.     quietly correlate reg_res1 reg_res`t'
    7.     matrix obs[`t',3] = r(rho)
    8. }
. matrix obs[1,3] = .
```

```

. * create variables from matrix
. clear
. svmat obs
number of observations will be reset to 20
Press any key to continue, or Break to abort
number of observations (_N) was 0, now 20
. rename obs1 obsvar
. rename obs2 obstime
. rename obs3 obscorr

```

Using the models' variance functions and parameters' estimates, we generate the corresponding variances and correlations under the six models. We save these data to filename patterns.

```

. * generate fractional polynomial powers
. generate obstime_ln = ln(obstime)
. generate obstime_05 = obstime^0.5
. * extract first timepoint
. local t1 = obstime in 1
. local t1_ln = ln(`t1')
. local t1_05 = sqrt(`t1')
. * random intercept IOU model
. scalar varRI = .1320698
. scalar alpha = .9403315
. scalar tau = .4873562
. scalar varME = .0747382
. * variance over time
. generate riiou_var = varRI + ((tau^2)/(alpha^3))*(alpha*obstime +
> exp(-alpha*obstime) - 1) + varME
. * correlation with first measurement over time
. local t1 = obstime in 1
. local var1 = riiou_var in 1
. generate riiou_cov = varRI + ((tau^2)/(2*alpha^3))*(2*alpha*t1 +
> exp(-alpha*t1) + exp(-alpha*obstime) - 1
> - exp(-alpha*(obstime-t1)))
. generate riiou_corr = riiou_cov/(sqrt(`var1')*sqrt(riiou_var))
. * random intercept BM model
. scalar varRI = .1110791
. scalar phi = .1377509
. scalar varME = .0597721
. * variance over time
. generate ribm_var = varRI + phi*obstime + varME
. * correlation with first measurement over time
. local var1 = ribm_var in 1
. generate ribm_cov = varRI + phi*t1
. generate ribm_corr = ribm_cov/(sqrt(`var1')*sqrt(ribm_var))

```

```

. * random fractional polynomial IOU model
. scalar varR05 = .2872198
. scalar varRI = .2699737
. scalar covRI05 = -.2028851
. scalar alpha = 18.36982
. scalar tau = 5.134438
. scalar varME = .0672206
. * variance over time
. generate rfpiou_var = varRI + varR05*obstime_05^2 + 2*covRI05*obstime_05 +
> ((tau^2)/(alpha^3))*(alpha*obstime + exp(-alpha*obstime) -1) + varME
. * correlation with first measurement over time
. local var1 = rfpiou_var in 1
. generate rfpiou_cov = varRI + varR05*t1_05^*obstime_05 +
> (^t1_05^ + obstime_05)*covRI05 +
> ((tau^2)/(2*alpha^3))*(2*alpha*t1^ + exp(-alpha*t1^) +
> exp(-alpha*obstime) - 1 - exp(-alpha*(obstime-`t1'))))
. generate rfpiou_corr = rfpiou_cov/(sqrt(`var1`)*sqrt(rfpiou_var))
. * random fractional polynomial BM model
. scalar varR05 = .2881752
. scalar varRI = .2680412
. scalar covRI05 = -.2032494
. scalar phi = .0773855
. scalar varME = .0653691
. * variance over time
. generate rfpbm_var = varRI + varR05*obstime_05^2 + 2*covRI05*obstime_05 +
> phi*obstime + varME
. * correlation with first measurement over time
. local var1 = rfpbm_var in 1
. generate rfpbm_cov = varRI + varR05*t1_05^*obstime_05 +
> (^t1_05^ + obstime_05)*covRI05 + phi*t1^
. generate rfpbm_corr = rfpbm_cov/(sqrt(`var1`)*sqrt(rfpbm_var))
. * random intercept model
. scalar varRI = .3939691
. scalar varME = .199089
. * variance over time
. generate ri_var = varRI + varME
. * correlation with first measurement over time
. local var1 = ri_var in 1
. generate ri_corr = varRI/(sqrt(`var1`)*sqrt(ri_var))

```

```
. * random fractional polynomial model
. scalar varRln = .2203064
. scalar varR05 = 1.329548
. scalar varRI = 1.538193
. scalar covln05 = -.4527635
. scalar covRILn = .5217772
. scalar covRIO5 = -1.325447
. scalar varME = .0850865
. * variance over time
. generate rfp_var = varRI + varRln*obstime_ln^2 + varR05*obstime_05^2 +
>           2*covRILn*obstime_ln + 2*covRIO5*obstime_05 +
>           2*covln05*obstime_ln*obstime_05 + varME
. * correlation with first measurement over time
. generate rfp_cov = varRI + varRln`^t1_ln`*obstime_ln +
>           varR05`^t1_05`*obstime_05 + (`t1_ln` + obstime_ln)*covRILn
>           + (`t1_05` + obstime_05)*covRIO5 +
>           (`t1_ln`*obstime_05 + obstime_ln`^t1_05`)*covln05
. local var1 = rfp_var in 1
. generate rfp_corr = rfp_cov/(sqrt(`var1`)*sqrt(rfp_var))
. save patterns, replace
(note: file patterns.dta not found)
file patterns.dta saved
```