
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

The Stata Journal (2017)
17, Number 3, pp. 630–651

Randomization inference with Stata: A guide
and software

Simon Heß
Goethe Universität Frankfurt am Main

Faculty of Economics and Business Administration
Frankfurt, Germany

hess@econ.uni-frankfurt.de

Abstract. Randomization inference or permutation tests are only sporadically
used in economics and other social sciences—this despite a steep increase in ran-
domization in field and laboratory experiments that provide perfect experimental
setups for applying randomization inference. In the context of causal inference,
such tests can handle problems often faced by applied researchers, including issues
arising in the context of small samples, stratified or clustered treatment assign-
ments, or nonstandard randomization techniques. Standard statistical software
packages have either no implementation of randomization tests or very basic im-
plementations. Whenever researchers use randomization inference, they regularly
code individual program routines, risking inconsistencies and coding mistakes. In
this article, I show how randomization inference can best be conducted in Stata
and introduce a new command, ritest, to simplify such analyses. I illustrate
this approach’s usefulness by replicating the results in Fujiwara and Wantchekon
(2013, American Economic Journal: Applied Economics 5: 241–255) and running
simulations. The applications cover clustered and stratified assignments, with
varying cluster sizes, pairwise randomization, and the computation of nonapprox-
imate p-values. The applications also touch upon joint hypothesis testing with
randomization inference.

Keywords: st0489, ritest, randomization inference, permutation tests, treatment
effects, causal inference

1 Introduction

The past decades saw a steep increase in using randomization as a tool to identify
causal relationships in experimental studies. Randomized control trials (RCTs) enable
researchers to credibly identify causal relationships. Such studies are conducted in
many fields to test the effectiveness of large development interventions, to understand
effects and side effects of medical treatments, and to shed light on human behavior in
psychology and behavioral economics. Thus it is paramount to ensure that statistical
hypothesis tests—usually materializing in p-values—are conducted correctly. As an
alternative to classical inference, Fisherian randomization inference provides the means
to assess whether an observed realization of a statistic, such as a treatment-effect (TE)
estimate, is unlikely to be observed by chance and is hence statistically significant.

c© 2017 StataCorp LLC st0489

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X1701700306&domain=pdf&date_stamp=2017-09-01

S. Heß 631

The most common methods to study data obtained with RCTs are well-established
econometric methods. Most of these methods are geared toward making inference with
large samples drawn from infinite populations, relying on asymptotic properties of es-
timators; these methods generally make strong model assumptions. As Young (2016),
with reference to Leamer (2010), points out, data obtained from RCTs at times do not
meet the requirements to rely on asymptotic properties. However, randomization in
the experimental design enables researchers to use the powerful tool of randomization
inference, as introduced by Fisher (1935), further developed by Rosenbaum (2002), and
recently used in first-rate articles in economics and political science (including, Fu-
jiwara and Wantchekon [2013], Ichino and Schündeln [2012], Cohen and Dupas [2010],
Bloom et al. [2006]). In RCTs, the researcher usually knows exactly how the randomiza-
tion was carried out, and randomization inference uses this knowledge of randomization
to assess whether observed outcomes in a given sample are likely to have been ob-
served by chance even if treatment had no effect. There is also a growing literature
applying randomization inference to data obtained outside the realm of RCTs. For ex-
ample, Cattaneo, Titiunik, and Vazquez-Bare (Forthcoming) and Cattaneo, Frandsen,
and Titiunik (2015) use randomization inference in the context of regression disconti-
nuity designs, and Ganong and Jäger (2015) use randomization inference in the context
of regression kink designs.

For a more detailed primer in permutation tests, see the books by Rosenbaum (2010)
or Imbens and Rubin (2015), which provide detailed introductions. The intuition be-
hind randomization inference is fairly straightforward. Consider a data-generating pro-
cess that involves a random draw from a known distribution, for example, treatment
assignment. Under the null hypothesis that this random draw has no influence on other
aspects of the data, the distribution of any statistics derived from the data is known
too. These distributions can be numerically obtained through Monte Carlo methods
by computing the desired statistics repeatedly for varying realizations of the random
draw. To test the null hypothesis that there is no effect of the original random draw
on the data, a researcher merely needs to assess whether the sample realization of the
statistic is consistent with the numerically inferred distribution. This last step is most
commonly done using the rank statistic.

In the usual large-sample approach, that is, when basing inference on asymptotic
variance estimators, one assumes the estimation sample will be random draws from an
infinite population that one wants to learn about. Of course, this is only one of several
ways to conceptualize experiments. Under randomization inference, the experimental
sample is taken as fixed. The only aspect assumed to be random is the assignment to
either arm of the treatment—or whatever other variable is of interest.

The first step in conducting randomization inference is defining the test statistic
of interest, such as the regression coefficient in a regression of the outcome on treat-
ment and controls. The exact distribution of this test statistic under the sharp null
hypothesis of no TE is obtained by computing the statistic for each possible alternative
assignment of treatment. Because randomization inference is not built on or assumes
random sampling from the population, it does not rely on large-sample theory to ap-
ply. It merely requires knowledge of the randomization process. Furthermore, while the

632 Randomization inference with Stata: A guide and software

statistic studied may be based on a model—such as average TE estimates from regres-
sions with control variables—the validity of the carried-out inference does not depend
on the validity of that model or the size of the sample. In that sense, randomization
inference does not make assumptions about the sampling but is always conditional on
the sample at hand.

Fisherian randomization inference for TE analysis in the social sciences is still limited
to a few articles and is often sidelined into footnotes or appendix tables of robustness
checks. Young (2016) revisited results of almost 2,000 regressions from more than
50 articles published in leading journals, repeating their analyses using randomization
inference. Young not only computes p-values for each of these tests but also uses ran-
domization inference to conduct joint tests for related coefficients within and across
equations. He finds that more than 10% of significant tests do not remain significant
at the same level. More than 30% of equations with multiple treatment measures and
individually significant coefficients fail to pass joint tests of significance. Lastly, when
accounting for multiple hypotheses testing, he finds that less than half the experimental
articles can maintain the hypothesis that any TE exists at all.

ritest is an easy yet versatile toolkit for randomization inference in Stata. As al-
ready stated by Bruhn and McKenzie (2009), conducting randomization inference cur-
rently requires significant programming skills from a researcher. When researchers use
randomization inference, they often write their own code, which increases unnecessary
additional risk of coding errors. When do-files for conducting randomization inference
tests are published alongside research articles, they tend to be highly specific to the
data they are applied to and can get very large.1 I take this as a strong indication
that ritest and this article, serving as a guideline, will be useful. I argue that more
researchers would use randomization inference if standard statistical software endowed
them with the necessary means, and I introduce the ritest command for this purpose.
Notable in this context are the R-packages RItools (Bowers, Fredrickson, and Hansen
2016) and ri (Aronow and Samii 2012), which provide tools for randomization infer-
ence in R. However, the software available within Stata for this is limited. The built-in
permute command only permutes individual observations, allowing the user to specify
strata, but fails when more complicated treatment assignments—for example, clustered
assignment—are to be modeled. rdlocrand, by Cattaneo, Titiunik, and Vazquez-Bare
(2016), is a comprehensive user-written package that provides the means to conduct
randomization inference specifically in the context of regression discontinuity designs
under local randomization.

In this article, I focus on evaluating TE with binary treatment. The logic of random-
ization inference equally applies to other data-generating processes. While this is not
explicitly covered, this article can still be useful for researchers working with continu-
ous treatments and observational data. ritest is in no way restricted to handle only
binary treatment indicators. In any situation where assumptions about the underlying
distribution of independent variables of interest are justified, randomization inference
is applicable.

1. For example, Cohen and Dupas (2010) wrote 332 lines of code just to compute their p-values.

S. Heß 633

The rest of this article is structured as follows: Section 2 presents the theoretical
background for randomization inference in Stata. Section 3 introduces ritest and its
syntax. Finally, section 4 shows three alternative applications.

2 Theoretical building blocks

Fisherian randomization inference produces the distribution of a test statistic under a
designated null hypothesis, allowing a researcher to assess whether the actually observed
realization of the statistic is “extreme” and hence whether the null hypothesis has to be
rejected. Such a test does not rely on assumptions regarding sample size, the accuracy
of the model for the data-generating process, or the distribution of a model’s noise
term. Unlike asymptotic inference, which assumes each observation to be a draw from
a distribution of outcomes (or noise terms), randomization inference takes the set of
study subjects as fixed and regards only the treatment assignment as a random draw.

Because randomization inference is based on permuting or resampling the variable
of interest, it is often referred to as permutation tests, [re]randomization tests, or resam-
pling tests. In this article, I will make no distinction and use these terms interchangeably.

There is flexibility in choosing the test statistic used in randomization inference. In
TE analyses, the coefficient estimate or the t statistic of the TE estimate are the most
common choices. Unless stated differently, I will be assuming study of the estimand τ
obtained by comparing means in the treatment and control group or from a regression

Y = τD +X ′β + ε

where Y is a vector containing the observed outcome of interest for each observation,
D is a vector indicating treatment status for each observation, and X is a matrix of
pretreatment control variables. In some cases, researchers have shown that basing ran-
domization inference on the t statistics rather than the coefficient estimates can be
beneficial. MacKinnon and Webb (2016) discuss cases where the two approaches yield
different results, and Young (2016) also compares both methods. Each particular statis-
tic will have a different alternative hypothesis against which that particular statistic has
the most power. The ideal choice will depend on the particularities of the data at hand,
and I recommend using simulations to make an informed decision.

634 Randomization inference with Stata: A guide and software

In general, any null hypothesis that specifies a TE for every observation can be tested
with randomization inference. The typical randomization inference null hypothesis to
test would be the sharp hypothesis of a zero TE,

yi(D = 1) = yi(D = 0) for all i = 1, 2, . . . , n

where yi(D = 1) and yi(D = 0) denote the outcomes that would be observed for
individual i under treatment and under no treatment, respectively. Note that this
differs from the null hypothesis of no average TE, which is usually used in asymptotic
TE analysis.2 In what follows, I refer to the sharp null hypothesis of no TE, unless
explicitly stated otherwise.

To obtain the distribution of the test statistic under the null hypothesis, one must
compute the test statistic for each possible permutation of the treatment vector. Because
the set of possible permutations can get excessively large, it is common practice to use
only several thousand random draws for the treatment vector.

2.1 Modes of treatment assignment

Enumerating all or a random subset of possible permutations of treatment can be triv-
ial if treatment assignment corresponds to individual-level coin tosses. You can test
this with Stata’s permute command. However, lab and field experiments are using
more sophisticated modes of randomization. Balancing methods, such as stratification
or pairwise matching, are commonly used to ensure balance between treatment and
control groups. Similarly, treatments are often assigned in clusters (schools, villages,
etc.) to contain spillover or simply because there is no other way. More sophisticated
experimental designs may feature multilevel assignment procedures or multidimensional
treatments.

This poses difficulty for computing standard errors and hence for testing hypotheses.
For treatment assignment in clusters, this difficulty stems from the fact that regression
model errors will not be independent within clusters because outcome variables typically
have nonzero intracluster correlation while treatment assignment is mechanically corre-
lated within clusters (Cameron and Miller 2015). Typical examples include treatment
assignment of school classes or villages. If a single school class benefits from unob-
servable teacher quality and this class falls into the treatment group, this unobserved
variable will affect multiple treatment observations at once. Inference regarding the TE

will need to account for the fact that model errors are correlated. Otherwise, standard
errors will be misleadingly small.

Especially in smaller samples, researchers tend to stratify the randomization pro-
cess to ensure balance of key baseline variables between treatment and control group.
Bugni, Canay, and Shaikh (2016), like Bruhn and McKenzie (2009), show that when

2. The sharp null hypothesis is stronger and implies the weaker hypotheses of no average TE. For a
discussion of this issue, see Young (2016). Other sharp hypotheses can be equally tested in this
framework, such as yi(D = 1) = yi(D = 0) + αi for all i = 1, 2, . . . , n, where αi are specified as
part of the hypothesis but may take on a different value for each observation i.

S. Heß 635

inference neglects the stratification, t tests tend to be overly conservative. This result
extends to other covariate balancing methods such as pairwise randomization, in which
observations are grouped into pairs, maximizing a measure of similarity within pairs.
Subsequently, one observation within each pair is assigned treatment, while the other
one is assigned to the control group.

Assuming enough clusters were used, clustered treatment assignment can be ac-
counted for using cluster–robust standard errors (Cameron and Miller 2015). Simi-
larly, the problems that stratification poses for standard-error estimation can be solved
using strata fixed effects (Bugni, Canay, and Shaikh 2016; Cameron and Miller 2015;
Bruhn and McKenzie 2009; Duflo, Glennerster, and Kremer 2008). In many of these
cases, however, the “correct” specification is not straightforward. Besides, what con-
stitutes a “large enough” sample is still a subject of ongoing debate and depends on
various factors of the study design. For example, cluster–robust inference can fail even
for larger samples if clusters vary in size (MacKinnon and Webb 2016). Similarly, if the
randomization protocol involves redrawing treatment until a certain balance criterion
was met, it is unclear what parametric specification to use (Bruhn and McKenzie 2009).

In contrast, to compute randomization inference p-values, one need only replicate
the original assignment method and determine the distribution of the test statistic un-
der the null hypothesis, F τ , through resampling. If the independent variable of interest
is a random treatment assignment of any kind, the original procedure using the same
randomization device can simply be repeated. However, note that a resampling test
that does not respect the original treatment assignment method will also produce in-
appropriate results (see Rosenberger and Lachin [2016, sec. 6.4]). For example, if the
original process involved treatment assignment by villages, the resampling or permu-
tation should not be based on individual-level permutations. In this regard, ritest is
an important extension to existing software because it provides the option to specify
virtually any form of randomization process.

When the independent variable of interest is not a mere random binary treatment
assignment, randomization inference is still possible. Of course, in such cases the resam-
pling or permutation still has to account for all relevant aspects of the data-generating
process. For example, rainfall shocks can be regarded as random draws from an ob-
servable distribution, but simple permutation of rainfall measures in a country-year
panel dataset destroys the spacial correlation and the autocorrelation across time. It is
crucial to take all relevant features of the dependent variable of interest into account.
Otherwise, permutation test results are rendered meaningless. Randomly permuting
years, but not countries, would allow the user to keep the spacial correlation intact but
destroy the autocorrelation. The derived distribution for a test statistic would hence be
the distribution under the assumptions of i) no effect of rain and ii) rainfall not being
autocorrelated across years, which may be justifiable in some contexts.

636 Randomization inference with Stata: A guide and software

2.2 From distributions of estimates to p-values

In the last step, one must assess whether the sample realization of the chosen test
statistic, τ̂ , is in line with its distribution under the null hypothesis, F τ , which is
obtained through resampling or permutation. This is often done using the rank or the
rank of the absolute value,3

rk =
M∑

m=1

�(̊τm ≤ τ̂) or rkabs =
M∑

m=1

�(|̊τm| ≥ |τ̂ |)

where τ̊m are the M independent and identically distributed (i.i.d.) draws from F τ .

For left- and right-sided tests, the p-value is straightforwardly computed as

pright = 1− 1

M
rk and pleft =

1

M
rk

In a two-sided test, the rank of the absolute test statistic is used to compute the p-value:

ptwo-sided =
1

M
rkabs

If the null hypothesis is true, (̊τm)m=1,...,M and τ̂ are i.i.d. random draws from the same
distribution, which implies that the resulting rank and hence the p-value are uniformly
distributed.4

2.3 Multiple hypotheses testing

Lastly, randomization inference provides a way to improve on joint and multiple hy-
potheses testing methods. When a researcher conducts more than one statistical test,
the expected rate of obtaining at least one false positive result is not bound by the
nominal significance level of the tests and grows with the number of tests conducted.
In classical statistics, Bonferoni corrections are most commonly used to gauge these
so-called familywise error rates. Randomization tests can be very useful in this context,
because when multiple tests are conducted at once, they also produce information about
the relatedness of the distribution of test statistics.

Methods for this were developed by Romano and Wolf (2005) and developed further
by Young (2016). It is possible to conduct the permutations computing two or more
statistics simultaneously, for example, TE on multiple outcomes. The permutations

3. Using the rank as a p-value is potentially misleading if the distribution is multimodal. For the most
commonly used cases, the rank will suffice and is useful to assess whether the realized test statistic
is extreme.

4. Young (2016) provides a proof of the uniformity of the relative rank irrespective of distribution
assumptions or sample sizes in the online appendix. His version is slightly different with regard to
how ties are treated. In keeping with Stata’s implementation of permute, ritest treats ties always
in favor of the sample realization being less extreme, so that the p-values tend to be marginally
more conservative than uniform. This effect is marginal in most applications and becomes visible
in the simulations in section 4.2.

S. Heß 637

then reveal the joint distribution of the statistics under the null hypothesis. When one
uses this information, the power of joint tests can be improved compared with tradi-
tional methods. Bonferroni-type corrections make conservative assumptions in lieu of
the means to assess the relatedness of tests. Romano and Wolf (2005) suggest a stepwise
procedure applied to the joint distribution of t statistics computed from rerandomiza-
tion. Young (2016) builds upon their approach but suggests using the joint distribution
of p-values computed from rerandomization to avoid issues arising from varying distri-
butions across t statistics. The focus of this article is not on the joint tests, but ritest
allows the user to store joint estimates to infer joint distributions and conduct these
joint tests, as illustrated in the example in section 4.3.

3 The ritest command

The ritest source code is based on the code for permute. ritest provides an addi-
tional set of features to mimic a wide array of rerandomization methods. In section 3.1,
ritest’s syntax is defined. The accompanying help file contains a more detailed descrip-
tion of all options. Section 3.2 explains available permutation and resampling methods,
as well as the syntax to invoke them.

3.1 Syntax

The general structure of ritest is

ritest resampvar exp list
[
, options

]
: command

resampvar is the name of a variable to be resampled, for example, a treatment indicator
variable treatment. exp list is a list of expressions to be collected in each step and to be
compared with the realization in the main estimation sample, for example, a regression
coefficient b[treatment]. options specify the details of the resampling process, the
computation of p-values, or the output. command is the program to be executed with
each replication, for example, a regression such as regress testscore treatment age.

A typical example would be

ritest treatment _b[treatment], cluster(class) strata(school): ///
regress testscore treatment age

638 Randomization inference with Stata: A guide and software

options Description

Main
reps(#) perform # random permutations; default

is reps(100)
left | right compute one-sided p-values; default is

two-sided

Automatic resampling
strata(varlist) permute resampvar within strata
cluster(varlist) keep resampvar constant within clusters

File-based resampling
samplingsourcefile(filename) take permutations of resampvar from Stata

data file filename, containing variables
named resampvar1, resampvar2,
resampvar3, . . .

samplingmatchvar(varlist) merge permutations in

samplingsourcefile() with the data
using these variables (1:1 or m:1)

Program-based resampling
samplingprogram(programname) generate permutations of resampvar by

calling user-written program
programname

samplingprogramoptions(string) optionally pass string as options to

programname

Reporting
level(#) set confidence level; default is level(95)
verbose display full table legend
nodots suppress replication dots
noisily display any output from command

Advanced
null(outcome value) specify a null hypothesis of TE

value or varname for outcome outcome
kdensityplot plot the densities of each statistic in exp list
kdensityoptions(string) additional options to be passed on to

kdensity

saveresampling(filename) save all permutations of resampvar in a file
called filename for later inspection

noanalytics do not send anonymized usage statistics to

Google Analytics
seed(#) set random-number seed to #
eps(#) numerical tolerance; seldom used
force force ritest to accept weights in command

S. Heß 639

3.2 Description of resampling methods

Unlike permute, ritest allows one to specify more complex resampling structures in
three different ways: i) resampling can be done automatically by permutation if the
researcher specifies one or both of the cluster(varlist) and strata(varlist) options;
ii) alternative assignments of the resampling variable can be read from an external file;
or iii) the researcher can supply the name of a program that executes the resampling.
Below I provide sample syntax for each of these cases along with a short description of
their functionality. First, I give a brief overview of how the resampling variable and test
statistics can be specified.

Specifying the resampling variable and test statistics

The first argument passed to ritest is the variable to be permuted. In the examples
below, the variable is always a binary treatment indicator, but in principle, it can be
any type of variable. The subsequent arguments passed to ritest are the expressions to
be evaluated for each resampling iteration. If the command of interest is regress with
a treatment dummy variable, specifying the expression b[treatment] will correspond
to using the coefficient estimate as a randomization statistic. Similarly, one can specify
composite expressions, such as b[treatment]/ se[treatment], which corresponds to
using the t statistic.

Automatic permutation

ritest resampvar exp_list, reps(#) strata(varlist) cluster(varlist): command

This call randomly permutes the values in resampvar # times, respecting strata()

and cluster(), each time executing command and collecting the realized values for
the expressions in exp list. Not specifying strata assumes no strata were used, which
is equivalent to all observations being in one single stratum. Not specifying clusters
assumes no clusters were used, which is equivalent to each observation being a separate
cluster.

This is the easiest but also the most restrictive way to define the resampling. All
aspects of the original sampling are simply inferred from the specified strata and cluster
variables as well as the observed distribution of the resampling variable. On the cluster
level, the distribution of the resampling variable will remain unchanged. For example, if
the original assignment involved 2 strata, of which the first stratum had 1 of 10 clusters
treated and the second had 9 of 10 clusters treated, the distribution will stay the same in
all resampling iterations. However, on the individual level, the distribution of treatment
can change, for example, if clusters vary in size (for instance, because a large treated
cluster and a small control cluster switch states).

640 Randomization inference with Stata: A guide and software

Note that only realizations of the resampling variable that exist in the data are used
for the permutation. For continuous variables, for example, this can be a strong restric-
tion on the rerandomization process. If known, one should use the original distribution
of the resampling variable with one of the two following methods to avoid this.

File-based resampling

ritest resampvar exp_list, reps(#) samplingsourcefile(filename) ///
samplingmatchvar(varlist): command

This call merges the data # times using the file specified in samplingsourcefile()

based on the ID variables specified in samplingmatchvar() (1:1 or, if IDs are not unique,
m:1). command is executed each time, replacing resampvar iteratively with resampvar1,
resampvar2, resampvar3, samplingsourcefile() must be created manually prior
to executing ritest.

Program-based resampling

ritest resampvar exp_list, reps(#) samplingprogram(progname) ///
samplingprogramoptions(string): command

This call redraws resampvar by executing samplingprogram() while simultane-
ously passing samplingprogramoptions() as options to it. This is the most versa-
tile method and allows for many applications.5 If the original randomization of an
experiment was carried out with a do-file, the original code can be used to define pro-
gram used in samplingprogram(). Beyond samplingprogramoptions(), two more
arguments are passed to the program: the variable name of the resampling variable
resampvar(varname) and an integer containing the count index of the current itera-
tion run(integer). In principle, the program may also alter characteristics of the data
other than just the resampling variable. For example, it could resample more than one
variable at once. The count index of the current iteration can be used to enumerate the
full set of possible permutations as done below in section 4.1.

4 Applications and examples

In this section, I present three simple applications with different focuses. In section 4.1,
I replicate results from Fujiwara and Wantchekon (2013), who already consistently use
randomization inference in a dataset with few units of treatment assignment. The
original analysis was done with preexisting software packages. I add to their work by
showing how to obtain nonapproximate p-values and how to analyze the distributions
of average TE estimators under the null hypothesis. I do this to illustrate that ritest
produces the same results as existing Stata commands in cases where existing software
is applicable but that it can be used to go beyond what permute can do. Section 4.2
uses simulated data to illustrate randomization inference in a sample with clustered

5. In fact, the other methods are implemented by calling this method with prespecified programs.

S. Heß 641

treatment assignment and varying cluster sizes—a setting where traditional methods
have proven unreliable (MacKinnon and Webb 2017). Section 4.3 also uses simulated
data to briefly touch upon the usefulness of randomization inference in the context of
joint tests of related hypotheses.

4.1 Clientelism in Benin

Among the few articles that consistently use randomization inference is Fujiwara and
Wantchekon’s 2013 study of political clientelism in Benin. They studied village-level ag-
gregates of survey data from 24 villages, half of which received a randomized treatment.
The village-level treatment involved a change in how candidates campaigned there dur-
ing a presidential election. Treatment involved holding meetings to discuss policy as
opposed to the prevalent clientelist rallies held by candidates in other villages. The
authors’ findings indicate that these meetings reduce clientelism overall and decrease
the chances of the candidate with a political stronghold in the community.

The original sample covers 24 villages, which is quite small. Furthermore, treatment
assignment was stratified by district, such that the 24 villages belonged to 12 pairs.
In each pair, one village randomly received treatment. This complicates matters for
classical inference and would imply that it is necessary to control for pair-fixed ef-
fects (Duflo, Glennerster, and Kremer 2008) to get the standard errors correct. Thus
24 observations would be used to estimate the 12 intercepts and a TE. In no way does
this setup allow the researchers to assume that asymptotic results would hold. Thus,
inference based on asymptotics would be weak.

The fairly simple randomization structure (stratified but not clustered treatment
assignment and binary treatment) allows the authors to conduct randomization infer-
ence using Stata’s permute command. Their p-values are based on 1,000 draws from
the distribution of their TE estimate under the sharp null hypothesis of no effect. My
replication starts off with an exact replication of their results using ritest but goes
further by computing precise p-values instead of approximated ones and by studying
the shapes of the distributions of TE estimates.

Table 1 shows the results of the replication. The upper panel contains the pretreat-
ment balance tests from their table 1, and the lower panel shows the TE estimates on
their outcomes, equivalent to the first panel of their table 2. Columns 1–4 are equivalent
to what they publish in their article based on permute. Column 5 contains a replication
of column 4 using ritest. Differences between column 4 and 5 are solely due to the
two being different realizations of the same random process.

642 Randomization inference with Stata: A guide and software

T
ab

le
1.

R
ep
li
ca
ti
o
n
(c
o
lu
m
n
s
1
–
4
)
a
n
d
ex
te
n
si
o
n
(c
o
lu
m
n
s
5
–
6
)
o
f
p
a
n
el
s
A

in
ta
b
le
s
1
a
n
d
2
fr
o
m

F
u
ji
w
a
ra

an
d
W
an

tc
h
ek
o
n

(2
01
3
)

R
a
n
d
o
m
iz
a
ti
o
n

R
a
n
d
o
m
iz
a
ti
o
n

R
a
n
d
o
m
iz
a
ti
o
n

in
fe
re
n
ce

in
fe
re
n
ce

in
fe
re
n
ce

p
-v
a
lu
e

p
-v
a
lu
e

C
o
n
tr
o
l

S
ta
n
d
a
rd

p
-v
a
lu
e

r
i
t
e
s
t

r
i
t
e
s
t

m
ea

n
T
re
a
tm

en
t–

co
n
tr
o
l

er
ro
r

p
e
r
m
u
t
e

(a
p
p
ro
x
.)

(p
re
ci
se
)

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

F
em

a
le

0
.5
0

0
.0
1

0
.0
1

0
.1
6
9

0
.1
7
3

0
.1
6
4

A
g
e
(i
n
y
ea

rs
)

4
1
.7
1

0
.3
9

1
.1
3

0
.7
4
3

0
.7
4
8

0
.7
4
0

F
o
n
et
h
n
ic
it
y

0
.5
0

−0
.0
1

0
.0
1

0
.2
1
0

0
.2
0
7

0
.2
1
9

Y
o
ru

b
a
et
h
n
ic
it
y

0
.1
4

0
.0
2

0
.0
1

0
.0
3
2

0
.0
3
3

0
.0
3
1

F
re
n
ch

sp
ea

k
er

0
.2
7

−0
.0
1

0
.0
3

0
.7
6
8

0
.7
8
9

0
.7
6
6

F
o
n
sp

ea
k
er

0
.5
3

0
.0
4

0
.0
2

0
.0
4
6

0
.0
3
5

0
.0
4
3

C
h
ri
st
ia
n

0
.4
9

0
.1
0

0
.0
5

0
.0
5
8

0
.0
5
4

0
.0
5
9

M
u
sl
im

0
.2
2

−0
.0
6

0
.0
4

0
.1
7
1

0
.1
9
1

0
.1
7
2

P
ri
m
a
ry

sc
h
o
o
li
n
g

0
.2
4

0
.0
2

0
.0
3

0
.5
0
7

0
.5
0
2

0
.4
9
2

S
ec
o
n
d
a
ry

sc
h
o
o
li
n
g

o
r
h
ig
h
er

0
.0
9

0
.0
3

0
.0
1

0
.0
8
2

0
.0
8
9

0
.0
7
9

S
in
g
le

0
.0
3

0
.0
2

0
.0
1

0
.0
5
2

0
.0
6
4

0
.0
5
4

M
a
rr
ie
d
(m

o
n
o
g
a
m
o
u
s)

0
.5
2

0
.0
1

0
.0
4

0
.8
6
0

0
.8
3
3

0
.8
6
0

M
a
rr
ie
d
(p

o
ly
g
a
m
o
u
s)

0
.3
5

−0
.0
4

0
.0
4

0
.4
0
5

0
.3
9
3

0
.4
0
6

H
a
s
re
g
u
la
r
in
co

m
e

0
.4
1

−0
.0
3

0
.0
3

0
.4
2
4

0
.4
3
0

0
.4
2
4

O
w
n
s
fa
rm

0
.7
5

−0
.0
8

0
.0
6

0
.2
9
1

0
.3
0
9

0
.2
8
6

E
le
ct
ri
ca

l
li
g
h
ti
n
g
a
t
h
o
m
e

0
.0
5

0
.0
4

0
.0
3

0
.2
6
2

0
.2
1
5

0
.2
5
0

M
em

b
er

o
f
A
ss
o
c.
/
N
G
O

0
.3
6

−0
.0
0

0
.0
4

0
.9
2
9

0
.9
4
5

0
.9
3
6

C
li
en

te
li
sm

in
d
ex

0
.0
0

−0
.2
3

0
.0
8

0
.0
2
4

0
.0
1
2

0
.0
2
0

C
li
en

te
li
sm

in
d
ex

,
ex

cl
.
v
o
te

b
u
y
in
g

0
.0
0

−0
.2
2

0
.1
0

0
.0
4
9

0
.0
4
3

0
.0
4
5

V
o
te

b
u
y
in
g

0
.2
2

−0
.0
4

0
.0
3

0
.1
6
6

0
.1
5
2

0
.1
5
4

S. Heß 643

Given that the authors’ sample consists of a mere 12 strata in which always either the
first or the second observation is treated, there exist only 212 = 4096 possible permuta-
tions of treatment that are all equally likely to occur. These can easily be enumerated.
Thus there is no real reason to use an approximation, aside from permute not allowing
anything but i.i.d. reshuffling of treatment. Column 6 computes the precise p-value
of the test by enumerating all 4,096 possible permutations. The results do not differ
strongly from the approximations in columns 4 and 5. This result is unsurprising, given
that they sample (with replacement) 1,000 of 4,096 treatment assignments. In general,
computing nonapproximate p-values with ritest can be as easy as approximating them
and should hence be preferred.

Analyzing the distribution of parameter estimates under the null hypothesis

Often, it is informative to study the distribution of an estimator under the null hy-
pothesis. Density plots of the results from the replications can be created by passing
the kdensityplot option to ritest. Figure 1 shows such plots for two of the balance
tests in table 1. For illustration, a very balanced variable (age) and a fairly unbalanced
variable (whether the respondent speaks Fon) are both used here. The vertical lines
represent the parameter estimates in the actual sample.

0
5

10
15

D
en

si
ty

−0.06 0.06Sample
kernel = epanechnikov, bandwidth = 0.0040

Outcome: speaks_fon

0
.1

.2
.3

.4
D

en
si

ty

−3.36 3.36Sample
kernel = epanechnikov, bandwidth = 0.1860

Outcome: age

Figure 1. Densities of estimates under the null hypothesis obtained through resampling.
The vertical line indicates the location of the estimate under the implemented treatment
assignment.

One may want to study the joint distribution of several parameter estimates under
the null hypothesis. Young (2016) and Romano and Wolf (2005) propose variations of
tests that correct for multiple hypothesis testing if several parameters are tested. To this
end, the joint distributions of multiple estimates under the null hypothesis are needed.
When the saving(filename) option is used, ritest stores a copy of the estimates. This
facilitates the study of joint distributions. A simple example of this is given in figure 2.
Two of the outcomes studied by Fujiwara and Wantchekon (2013) are the clientelism
index (excluding vote buying) and the vote buying measure. Considering the p-values
in column 6 of table 1, we see that the former is just marginally significant on a 5%
level and that the latter has a p-value of 0.154. That is, both are somewhat marginal

644 Randomization inference with Stata: A guide and software

in their distributions under the null hypothesis but not extreme. In figure 2, their joint
distributions under the null hypothesis are depicted. We can see that the estimate
under the true treatment allocation is much more extreme than revealed when solely
considering the marginal distribution for each estimand separately. The point cloud in
figure 2 also indicates that the two tests are fairly independent. A case where this is
different will be considered in section 4.3.

−
.1

−
.0

5
0

.0
5

.1
E

ffe
ct

 o
n

vo
te

 b
uy

in
g

−.4 −.2 0 .2 .4
Effect on index, excl. vote buying

RI draws Parameter estimate

Figure 2. Joint distribution of two TE estimators under the null hypothesis

Implementation of the preceding analysis in Stata

This section describes how to implement the preceding analysis in Stata with ritest.
To compute the results in table 1, the loop in the code fragment below iterates over all
variables and computes the mean in the control group (line 4 in the code below), the
TE estimate (line 5), the randomization inference p-values as in the article (line 6), and
the approximate as well as the accurate p-values using ritest (lines 7 and 8).

1 use survey_data_AEJ.dta
2 generate observation_id = _n
3 foreach i in female age ethn_fon ethn_yoruba speaks_french speaks_fon ///

christian islam primary_schooling secondary_schooling single monog ///
polyg reg_income has_farm electri member index index_nocash cash {

4 summarize `i´ if treat==0
5 areg `i´ treat, robust absorb(depcom)
6 permute treat _b[treat], strata(depcom) reps(1000) seed(0) nodots: ///

regress `i´ treat dcom2-dcom12
7 ritest treat _b[treat], strata(depcom) reps(1000) seed(0) nodots: ///

regress `i´ treat dcom2-dcom12
8 ritest treat _b[treat], samplingprogram(enumerate_permutations) ///

samplingprogramoptions("stratavar(depcom) obsid(observation_id)") ///
r(4096) kdensityplot nodots: regress `i´ treat dcom2-dcom12

}

S. Heß 645

Line 8 calls a program that has to be defined before its use. To compute nonapproximate
p-values, the user needs a program that returns a distinct treatment assignment vector
for each integer passed inside the argument run(). Treatment assignment was stratified
by 12 districts, where each district contained 2 villages. Hence, each stratum can take
on two states: “high”, if the first of the two villages is being treated, and “low”, if the
second village is treated. The program converts the passed integer into a 12-digit binary
variable, then uses each digit to determine treatment allocation in the corresponding
district. If the ith digit takes on the value zero, stratum i is in state low, and the
second village is assigned to treatment. Conversely, if the ith digit takes on the value
one, the first village is assigned to treatment because i is in state high. For example,
index = 2057 yields assignment 100,000,001,001, which implies that in districts 1, 9,
and 12, the first village receives treatment, while in all other districts the second village
receives treatment. The program code is as follows:

program enumerate_permutations
syntax, resampvar(varname) stratavar(varname) obsid(varname) run(integer) *
local index=`run´-1 //which assignment is picked
sort `stratavar´ `obsid´, stable
mata: st_strscalar("assignment",(inbase(2,`index´)))
local av = string(real(assignment),"%0`: di _N/2´.0f")
// av is now a string of 0s and 1s where a 1 [0] at position X indicates ///

that the Xth strata has the first [second] observation treated
levelsof `stratavar´, local(strata)
local counter = 0
foreach statum of local strata {

by `stratavar´: replace `resampvar´=real(substr("`av´",`++counter´,1)) ///
if `stratavar´==`statum´ & _n==1

by `stratavar´: replace `resampvar´=1-real(substr("`av´",`counter´,1)) ///
if `stratavar´==`statum´ & _n==2

}
end

4.2 Simulations with varying cluster sizes

MacKinnon and Webb (2017) illustrate how classical cluster–robust inference can fail,
even if there are many clusters and the “rule of 42 [clusters]” (Angrist and Pischke 2009)
is satisfied. This can happen if i) clusters vary in size or if ii) the numbers of treated
clusters and untreated clusters are very different. The authors study this problem
and provide evidence that the Wild bootstrap can allow for valid inference under such
circumstances, at least if the treated-untreated imbalance does not become too severe.
Randomization inference is equally suited in this situation because it does not rely on
any assumptions about the cluster sizes or the ratio of treated to untreated clusters. In
this simulation, I mimic a dataset of students in classes of varying sizes.

If the unit of measurement is the student but the unit of assignment is the class,
treatment will ex-post be correlated with class size.6 In natural clusters (classes, coun-
tries, villages), a correlation between cluster sizes and other—potentially unobservable—

6. This is in spite of the correlation being zero in expectation before assignment. Of course, the
direction of the correlation is equally likely to turn out to be positive or negative. To see this, I
recommend simulating a dataset as described in this subsection.

646 Randomization inference with Stata: A guide and software

characteristics is very likely to occur. Thus varying cluster sizes result in correlations
between treatment and unobservables, even if treatment assignment is i.i.d. on the clus-
ter level.

In the following simulation, 42 classes are sorted into a treatment and a control
group. There exists an unobservable class characteristic εc ∼ N(0, 1). Class size Xc is
related to this characteristic in the following manner:

Xc =

{
20 if εc ≤ 1.5

100 if εc > 1.5

Treatment is assigned according to two similar regimes. In one version of the simu-
lation, every second class receives treatment, whereas the other classes are assigned to
the control group. In the other version, only 10 classes receive treatment. Two outcome
variables are used, one with and one without a TE (as indicated by the superscript), to
assess size as well as power. The two outcomes are distributed as

yno TE
i ∼ N(εci , 0)

yTE
i ∼ N(εci + τ ci , 0)

where τ ci is an indicator of the treatment status of class c.

Figure 3 shows the distributions of p-values from tests of the null hypothesis of no TE

in various versions. The upper panel shows the distributions of p-values if the outcome
without the TE is used. The gray bars correspond to the situation where treatment and
control groups contain the same number of clusters, and the black outlined bars show the
distribution when the treatment group contains fewer clusters than the control group.
The first two histograms show that randomization inference produces well-calibrated
tests, irrespective of whether the coefficient or the t statistic is used. Standard cluster–
robust inference produces highly oversized tests. This effect increases when treated
clusters become few in number. The wild bootstrap suffers less from varying cluster
sizes, especially the restricted version (compare MacKinnon and Webb [2017]). Yet, if
treated clusters are few, the wild bootstrap also over-rejects.

S. Heß 647

Figure 3. Distribution of p-values based on different testing methods

To illustrate statistical power, the lower half of figure 3 shows the same tests but uses
the outcome in which a constant TE was simulated. For this particular data-generating
process, randomization inference—in both variants—has more power than either the
restricted or the unrestricted wild bootstrap, despite the bootstraps being oversized.

4.3 Simulation with two strongly related tests

Assume TEs on two related outcomes are studied. It might not be possible to detect
a significant TE if the two tests are considered separately. When studied jointly, how-
ever, it becomes apparent that the combination of test results is very unlikely to occur
under the null hypothesis. Consider the simple case of two normal outcomes and a
constant average TE. Both outcomes are related, meaning they are affected by the same
unobservable noise term.

The data are generated as follows:

set obs 24 // sample size
generate x = 2*rnormal() // unobservable
generate t = round(runiform()) // treatment
generate y1 = x + t + rnormal() // first outcome
generate y2 = - x + t + rnormal() // second outcome

When one estimates the TE for either outcome, detecting treatment is difficult be-
cause power is low. Figure 4 shows the distribution of estimates under the null hy-
pothesis in contrast with the actual estimate in 1 sample of 24 observations. While the
location of the actual estimates is not extreme in either of the marginal distributions,
it is clearly an outlier in the joint distribution.

648 Randomization inference with Stata: A guide and software

Figure 4. Joint distribution of two TE estimators under the null hypothesis versus the
actual estimate

In this example, randomization inference provides a researcher with the correlation
structure of the two tests. This information can be used to derive further tests, either
by approximating and parameterizing the joint distribution under the null hypothesis
and assessing whether the realization falls into the tails of it or by picking an alternative
outcome measure that incorporates information from both dimensions. This could even
be done without or before observing the actual realization where data mining is a con-
cern. These can then be used to derive joint tests or to account for multiple hypothesis
testing as proposed by Romano and Wolf (2005) or Young (2016).

Implementation of the preceding analysis in Stata

Because ritest evaluates the return value of a single command, regressions for both
TEs have to be estimated by a single e-class program call. To do so, I define a simple
program that executes two commands and returns a particular estimate from both:

S. Heß 649

program two_estimates, eclass
syntax, command1(string) command2(string) estimate(string)
`command1´
local first=`estimate´
`command2´
estadd scalar first=`first´
estadd scalar second=`estimate´

end

Endowed with this wrapper-command, ritest can now be instructed to save both
estimates from each permutation. This file can be read to plot and study the joint
distribution of estimates as in figure 4:

tempfile tmp
ritest t e(first) e(second), saving(`tmp´) r(10000) seed(0): two_estimates, ///

command1(regress y1 t) command2(regress y2 t) estimate(_b[t])
use `tmp´, clear
histogram _pm_1
histogram _pm_2
scatter _pm_1 _pm_2

5 Conclusion and summary

In this article, I illustrated the usefulness of randomization inference for TE analysis.
Using examples with real and simulated data, I presented and discussed various cases
in which randomization inference facilitates consistent analysis or provides additional
insights. The examples covered a range of data-generating processes commonly encoun-
tered in experimental setups.

All the analyses are carried out using the ritest command, which is available in
the supplementary materials to this article. ritest provides a battery of options to
compute p-values suitable for different tests and different randomization procedures.

6 References
Angrist, J. D., and J.-S. Pischke. 2009. Mostly Harmless Econometrics: An Empiricist’s
Companion. Princeton, NJ: Princeton University Press.

Aronow, P. M., and C. Samii. 2012. ri: R package for performing randomization-
based inference for experiments. R package version 0.9. https://cran.r-project.org/
package=ri.

Bloom, E., E. King, I. Bhushan, M. Kremer, D. Clingingsmith, B. Loevinsohn, R. Hong,
and J. B. Schwartz. 2006. Contracting for health: Evidence from Cambodia. Re-
port, The Brookings Institution. https://www.brookings.edu/wp-content/uploads/
2016/06/20060720cambodia.pdf.

Bowers, J., M. Fredrickson, and B. Hansen. 2016. RItools: Randomization inference
tools. R package version 0.1-15. https://cran.r-project.org/package=RItools.

https://cran.r-project.org/package=ri
https://cran.r-project.org/package=ri
https://www.brookings.edu/wp-content/uploads/2016/06/20060720cambodia.pdf
https://www.brookings.edu/wp-content/uploads/2016/06/20060720cambodia.pdf
https://cran.r-project.org/package=RItools

650 Randomization inference with Stata: A guide and software

Bruhn, M., and D. McKenzie. 2009. In pursuit of balance: Randomization in practice
in development field experiments. American Economic Journal: Applied Economics
1: 200–232.

Bugni, F. A., I. A. Canay, and A. M. Shaikh. 2016. Inference under covariate-adaptive
randomization. Working paper, Northwestern University.

Cameron, A. C., and D. L. Miller. 2015. A practitioner’s guide to cluster–robust infer-
ence. Journal of Human Resources 50: 317–372.

Cattaneo, M. D., B. R. Frandsen, and R. Titiunik. 2015. Randomization inference
in the regression discontinuity design: An application to party advantages in the
U.S. Senate. Journal of Causal Inference 3: 1–24.

Cattaneo, M. D., R. Titiunik, and G. Vazquez-Bare. 2016. Inference in regression
discontinuity designs under local randomization. Stata Journal 16: 331–367.

. Forthcoming. Comparing inference approaches for RD designs: A reexamina-
tion of the effect of head start on child mortality. Journal of Policy Analysis and
Management.

Cohen, J., and P. Dupas. 2010. Free distribution or cost-sharing? Evidence from a
randomized Malaria prevention experiment. Quarterly Journal of Economics 125:
1–45.

Duflo, E., R. Glennerster, and M. Kremer. 2008. Using randomization in development
economics research: A toolkit. In Handbook of Development Economics, ed. T. P.
Schultz and J. A. Strauss, vol. 4, 3895–3962. Amsterdam: Elsevier.

Fisher, R. A. 1935. The Design of Experiments. Edinburgh: Oliver & Boyd.

Fujiwara, T., and L. Wantchekon. 2013. Can informed public deliberation overcome
clientelism? Experimental evidence from Benin. American Economic Journal: Ap-
plied Economics 5: 241–255.

Ganong, P., and S. Jäger. 2015. A permutation test for the regression kink design.
Working paper, Harvard University.

Ichino, N., and M. Schündeln. 2012. Deterring or displacing electoral irregularities?
Spillover effects of observers in a randomized field experiment in Ghana. Journal of
Politics 74: 292–307.

Imbens, G. W., and D. B. Rubin. 2015. Causal Inference for Statistics, Social, and
Biomedical Sciences: An Introduction. New York: Cambridge University Press.

Leamer, E. E. 2010. Tantalus on the road to asymptopia. Journal of Economic Per-
spectives 24: 31–46.

MacKinnon, J. G., and M. D. Webb. 2016. Randomization inference for difference-in-
differences with few treated clusters. Queen’s University, Department of Economics,
Working Paper No. 1355. https:// ideas.repec.org/p/qed/wpaper/1355.html.

https://ideas.repec.org/p/qed/wpaper/1355.html

S. Heß 651

. 2017. Wild bootstrap inference for wildly different cluster sizes. Journal of
Applied Econometrics 32: 233–254.

Romano, J. P., and M. Wolf. 2005. Exact and approximate stepdown methods for
multiple hypothesis testing. Journal of the American Statistical Association 100:
94–108.

Rosenbaum, P. R. 2002. Observational Studies. 2nd ed. New York: Springer.

. 2010. Design of Observational Studies. New York: Springer.

Rosenberger, W. F., and J. M. Lachin. 2016. Randomization in Clinical Trials: Theory
and Practice. 2nd ed. Hoboken, NJ: Wiley.

Young, A. 2016. Channeling Fisher: Randomization tests and the statistical insignifi-
cance of seemingly significant experimental results. Working paper, MIT.

About the author

Simon Heß is a PhD student in economics at Goethe University Frankfurt, Germany. His
primary research interests are causal inference in the context of development economics and
social network analysis. Before starting on his PhD, he studied and worked in Egypt, Ghana,
and the UK. His research focuses on Africa and the Middle East.

