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Abstract. Ordinal regression models are used to describe the relationship between
an ordered categorical response variable and one or more explanatory variables.
Several ordinal logistic models are available in Stata, such as the proportional
odds, adjacent-category, and constrained continuation-ratio models. In this article,
we present a command (ologitgof) that calculates four goodness-of-fit tests for
assessing the overall adequacy of these models. These tests include an ordinal
version of the Hosmer–Lemeshow test, the Pulkstenis–Robinson chi-squared and
deviance tests, and the Lipsitz likelihood-ratio test. Together, these tests can
detect several different types of lack of fit, including wrongly specified continuous
terms, omission of different types of interaction terms, and an unordered response
variable.
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1 Background

An ordinal variable is a categorical variable with a natural ordering to the categories,
such as level of pain, which is measured as none, mild, moderate, or severe. An ordinal
response regression model describes the relationship between an ordinal response vari-
able and one or more explanatory variables (covariates). Ordinal logistic models are of
particular interest because of their conceptual similarity to the commonly used binary
logistic regression model. One such model—the proportional odds (logistic regression)
model—can be fit in Stata with the ologit command. Two other logistic models are
available via a user-written package by Fagerland (2014): the adjacent-category model
(adjcatlogit) and the constrained continuation-ratio model (ccrlogit). The three
models differ in which response categories are compared and how. We choose a model
based on which comparisons between responses are most informative for the problem
at hand and an assessment of model fit.
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For a binary logistic regression model, the Hosmer–Lemeshow (HL) goodness-of-fit
test (Hosmer and Lemeshow 1980) can be calculated in Stata by the postestimation
command estat gof. A generalization of the HL test to multinomial logistic regres-
sion models was suggested by Fagerland, Hosmer, and Bofin (2008) and made available
through the mlogitgof command (Fagerland and Hosmer 2012). For ordinal response
models, however, no goodness-of-fit test is available in Stata. Recently, two articles
investigated goodness-of-fit tests for proportional odds models (Fagerland and Hos-
mer 2013) and adjacent-category and continuation-ratio models (Fagerland and Hosmer
2016). Both articles recommend combining three approaches: an ordinal version of the
multinomial HL test, the Pulkstenis and Robinson (2004) (PR) tests, and the Lipsitz
test (Lipsitz, Fitzmaurice, and Molenberghs 1996).

The purpose of this article is to describe the ologitgof command and show how
it can be used to test for goodness of fit in proportional odds, adjacent-category, and
constrained continuation-ratio models using the HL, PR, and Lipsitz tests.

2 Three ordinal logistic regression models

2.1 Notation

Let Y denote an ordinal response variable with c levels (1, . . . , c), and let

x = (x1, x2, . . . , xp)
′

be a vector of p explanatory variables (covariates). An ordinal logistic regression model
describes the relationship between Y and x via c− 1 logit equations (logits):

g1(x), g2(x), . . . , gc−1(x)

The logits relate a set of intercepts (αs) and regression coefficients (βs) to the prob-
ability of the response categories. Let βk be the regression coefficient of an arbitrary
explanatory variable xk. Then, exp(βk) can be interpreted as the odds ratio (OR) for
a one-unit increase in xk, comparing two response categories or two sets of response
categories, depending on the particular ordinal model used (see sections 2.2–2.4). We
write OR(2, 1) to denote the OR comparing response category 2 with response category
1 and OR(3 − 4, 1 − 2) to denote the OR comparing response categories 3 and 4 with
response categories 1 and 2.

A dataset consisting of n independent observations is denoted by (xi, yi), i =
1, . . . , n. Let πij = P (Y = j|xi), j = 1, . . . , c, denote the conditional probability of
a response equal to category j for observation i given the explanatory variables xi.
Following model fit, we denote the estimated probabilities by π̂ij .
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2.2 Proportional odds logistic regression

Each of the c − 1 logits of the proportional odds model compares the probabilities of
two sets of response categories: an equal or smaller response versus a larger response,

gj(x) = log

{
P (Y ≤ j|x)
P (Y > j|x)

}
= αj − β′x j = 1, . . . , c− 1

where β = (β1, β2, . . . , βp)
′ is a vector of p regression coefficients. The regression co-

efficients are constant across the logits. Thus a single coefficient or OR is sufficient to
describe the effect of an explanatory variable on the response. We include the negative
sign of β′x so that we may interpret a positive value of βk to mean that as xk increases,
the probability of higher values of Y also increases.

2.3 Adjacent-category logistic regression

The logits of the adjacent-category model compare the probability of each response
category (except the first) with the probability of the next larger response category:

gj(x) = log

{
P (Y = j + 1|x)
P (Y = j|x)

}
= αj + β′x j = 1, . . . , c− 1

As was the case with the proportional odds model, the regression coefficients are con-
stant across the logits, and the effect of a particular explanatory variable on the response
can be described by a single coefficient or OR.

2.4 Continuation-ratio logistic regression

The constrained continuation-ratio model compares the probability of each response
with the probability of all higher responses:

gj(x) = log

{
P (Y = j|x)
P (Y > j|x)

}
(1)

= αj − β′x j = 1, . . . , c− 1

Again we can describe the effect of each explanatory variable using one coefficient or
OR.

3 The goodness-of-fit tests

The null hypothesis for the goodness-of-fit tests is that the model fits the data well.
The alternative hypothesis is that there is some (unspecific) problem with the fit, which
we usually refer to as lack of fit. A small p-value is thus an indication that something
is wrong with the model.
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3.1 An ordinal version of the HL test

The ordinal HL test (Fagerland and Hosmer 2013, 2016) is based on the multinomial HL

test (Fagerland, Hosmer, and Bofin 2008; Fagerland and Hosmer 2012), which in turn
is based on the original (binary) HL test (Hosmer and Lemeshow 1980). In all three
cases, one groups the observations according to model-predicted response probabilities,
usually into g = 10 groups. Observed and estimated frequencies for each group in each
response category can be tabulated in a g × c contingency table. The goodness-of-fit
test is obtained by calculating the Pearson chi-squared statistic from the table. The
binary, multinomial, and ordinal tests differ in the particular grouping strategy used
and the number of degrees of freedom for the chi-squared reference distribution. Here
we give only the details of the ordinal test.

After fitting the model, calculate the estimated (model-predicted) probabilities π̂ij
derived from the fit ordinal model. Each observation can now be assigned an ordinal
score (OS) (Lipsitz, Fitzmaurice, and Molenberghs 1996):

OSi = π̂i1 + 2π̂i2 + · · ·+ cπ̂ic i = 1, . . . , n (2)

The OS is the predicted mean score or the “fit” score for each observation. In (2), we
have used equally spaced integer scores for the response categories, which is a commonly
recommended approach unless there is information about the categories that clearly
points to a different set of scores. Another justification for using equally spaced scores is
an argument based on the equivalence of a linear combination of cumulative probabilities
and (2). See Lipsitz, Fitzmaurice, and Molenberghs (1996) for details.

Sort the observations according to the OS, and create g groups so that group 1
contains the n/g observations with the lowest OSs, group 2 contains the n/g observations
with the next lowest score, and so on. Observations with tied OSs are further sorted
according to their observed responses (yi). The observations are allocated to each group
so that the group sizes are as similar as possible. Thus observations with equal OSs
and equal observed responses may be allocated to different groups if their ranks (after
sorting) are on separate sides of the optimal cutoff rank for dividing the groups into
similar sizes. Using g = 10 groups is recommended (Fagerland and Hosmer 2013, 2016),
although any number of groups can be used in principle. If the number of groups is
too low, say, below six, the power of the test may be poor because of the heterogeneity
within groups. If the number of groups is too big, the contingency table may be sparsely
populated, and the distribution of the test statistic may not adhere well to the reference
chi-squared distribution.

The ordinal HL test statistic is

Cg =

g∑
k=1

c∑
j=1

(
Okj − Êkj

)2
/Êkj
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where Okj and Êkj denote the sums of the observed and estimated frequencies in each
group for each response category, respectively,

Okj =
∑
l∈Ωk

ỹlj (3)

Êkj =
∑
l∈Ωk

π̂lj (4)

where ỹij is a binary indicator variable with ỹij = 1 when yi = j and ỹij = 0 otherwise,
and Ωk denotes the set of indices of the n/g observations in group k.

As shown in Fagerland and Hosmer (2013, 2016), the distribution of Cg adheres well
to the chi-squared distribution with (g − 2)(c − 1) + (c − 2) degrees of freedom under
a correctly fit proportional odds, adjacent-category, or constrained continuation-ratio
model.

3.2 The PR tests

A simple method of assessing goodness of fit is to calculate the Pearson chi-squared
and deviance statistics on the cross-classification of covariate patterns with observed
and estimated response frequencies. This strategy works well if the number of covariate
patterns is small compared with the number of observations. When the number of
covariate patterns is large—for instance, when continuous covariates are present—the
estimated frequencies in the cross-classification will be too small for the chi-squared
asymptotics to hold. Pulkstenis and Robinson (2004) suggest an approach that starts
by grouping the observations according to the covariate patterns using the categorical
covariates only. To account for the continuous covariates, one must split each covariate
pattern in two based on the median OS (2) within each pattern. The PR test statistics
are the Pearson chi-squared and deviance statistics on the contingency table formed
from tabulating covariate patterns with response categories

PR(χ2) =

2∑
l=1

K∑
k=1

c∑
j=1

(
Olkj − Êlkj

)2
Êlkj

and

PR(D2) = 2
2∑

l=1

K∑
k=1

c∑
j=1

Olkj log
Olkj

Êlkj

where l indexes the two subgroups based on the OSs, K is the number of observed co-
variate patterns because of the categorical covariates, and c is the number of response
categories. The sums of the observed and expected frequencies, Olkj and Elkj , are
defined as in (3) and (4), only now with an additional partition because of the two
subgroups based on the OSs. The reference distribution for both PR(χ2) and PR(D2) is
the chi-squared distribution with (2K − 1)(c− 1)− pcat − 1 degrees of freedom, where
pcat denotes the number of dichotomous variables needed to model all the categori-
cal covariates (substitute dummy variables for categorical covariates with more than
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two categories). This reference distribution adheres well to the distribution of PR(χ2)
and PR(D2) under both the proportional odds model (Pulkstenis and Robinson 2004;
Fagerland and Hosmer 2013) and the adjacent-category and constrained continuation-
ratio models (Fagerland and Hosmer 2016).

3.3 The Lipsitz test

To calculate the Lipsitz test, we start by grouping the observations into g groups based
on the OS (2), as in section 3.1. Lipsitz, Fitzmaurice, and Molenberghs (1996) suggest
that the number of groups is chosen such that 6 ≤ g < n/5c. Next, we define g − 1
indicator variables

Iik =

{
1 if observation i is in group k
0 otherwise

for i = 1, . . . , n and k = 1, . . . , g−1. Define a new ordinal regression model that includes
the indicator variables:

gj(x) = αj ± β′x+ γ1I1 + · · ·+ γg−1Ig−1 j = 1, . . . , c− 1

The ± sign is used because we have defined the proportional odds and continuation-
ratio models with a minus sign (αj −β′x) and the adjacent-category model with a plus
sign (αj + β′x). If the original fit model is the correct model, γ1, . . . , γg−1 = 0. We
can test this proposition by fitting the new model and comparing the log likelihoods of
the models with (L0) and without (L1) the indicator variables using the likelihood-ratio
statistic −2(L1 − L0). The observed value of the test statistic can be compared with
the chi-squared distribution with g − 1 degrees of freedom. This approximation to the
distribution of the likelihood-ratio statistic holds for both the proportional odds model
(Fagerland and Hosmer 2013) and the adjacent-category and constrained continuation-
ratio models (Fagerland and Hosmer 2016).

4 The ologitgof command

4.1 Syntax

ologitgof
[
varlist

] [
if
] [

in
] [

, group(#) all outsample osvar(newvar)

groupvar(newvar) patternvar(newvar) tableHL tablePR
]

4.2 Description

ologitgof is a postestimation command that calculates the ordinal HL, PR, and Lipsitz
goodness-of-fit tests. The command can be used after proportional odds logistic re-
gression (ologit), adjacent-category logistic regression (adjcatlogit), or constrained
continuation-ratio logistic regression (ccrlogit). The PR tests will be calculated only
if the categorical covariates from the estimation command are specified in varlist .
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4.3 Options

group(#) specifies the number of quantiles to be used to group the observations (HL

and Lipsitz tests). The default is group(10).

all requests that the goodness-of-fit test be computed for all observations in the dataset,
ignoring any if or in qualifier specified with the estimation command.

outsample adjusts the degrees of freedom for the chi-squared reference distribution for
samples outside the estimation sample (HL test).

osvar(newvar) generates newvar containing the OS.

groupvar(newvar) generates newvar containing a group identifier.

patternvar(newvar) generates newvar containing a covariate pattern identifier.

tableHL displays a contingency table for the HL test, where the groups form the rows
and the columns consist of the cutoff values of the OS, observed and estimated
frequencies, and totals for each group.

tablePR displays a contingency table for the PR tests, where the covariate patterns
form the rows and the columns consist of the observed and estimated frequencies
and totals for each pattern.

4.4 Stored results

ologitgof stores the following in r():

Scalars
r(N) number of observations
e(k cat) number of categories
r(g) number of groups
r(numpatterns) number of covariate patterns
r(chi2 HL) chi-squared statistic; HL test
r(df HL) degrees of freedom; HL test
r(P HL) probability > chi-squared; HL test
r(chi2 PR) chi-squared statistic; PR test
r(D2) deviance statistic; PR test
r(df PR) degrees of freedom; PR tests
r(P chi2) probability > chi-squared; PR test
r(P D2) probability > chi-squared; PR test
r(chi2 L) chi-squared statistic; Lipsitz test
r(df L) degrees of freedom; Lipsitz test
r(P L) probability > chi-squared; Lipsitz test

Macros
r(cmd) ologitgof

r(cmdline) command as typed
r(title) title in estimation output
r(ecmd) ologit, adjcatlogit, or ccrlogit; estimation command

Matrices
r(cat) category values
r(HLtable) entire HL contingency table
r(HLtableOE) observed and estimated frequencies from the HL contingency table
r(PRtable) observed and estimated frequencies from the PR contingency table
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5 Example

5.1 The Low Birth Weight study

We use the Low Birth Weight study (Hosmer, Lemeshow, and Sturdivant 2013, 24) to
illustrate how to fit the models and assess their goodness of fit. The following Stata
commands will load and describe the dataset:

. webuse lbw
(Hosmer & Lemeshow data)

. describe

(output omitted )

The dataset contains the birthweight of 189 children born at the Baystate Medical
Center in Springfield, Massachusetts. Also included in the dataset are 8 potential risk
factors for low birthweight—defined as birthweight less than 2,500 grams—including age,
mother’s weight, and smoking status during pregnancy. Low birthweight is associated
with increased risk of infant mortality and birth defects.

We may regard an ordinal variable to be of one of two distinct types: “grouped
continuous”, that is, explicitly derived from the categorization of a continuous variable;
and “assessed”, such as symptoms of disease (none, some, severe), which may be related
to an underlying continuous variable but measured only on a categorical scale (Anderson
1984). Here we use the continuous variable bwt (birthweight, measured in grams) to
form a 4-category ordinal variable bwt4 using the cutpoints 2,500 grams, 3,000 grams,
and 3,500 grams:

. gen bwt4 = .
(189 missing values generated)

. replace bwt4 = 1 if bwt > 3500 & bwt != .
(46 real changes made)

. replace bwt4 = 2 if bwt <= 3500 & bwt > 3000 & bwt != .
(46 real changes made)

. replace bwt4 = 3 if bwt <= 3000 & bwt > 2500 & bwt != .
(38 real changes made)

. replace bwt4 = 4 if bwt <= 2500 & bwt != .
(59 real changes made)

. tabulate bwt4

bwt4 Freq. Percent Cum.

1 46 24.34 24.34
2 46 24.34 48.68
3 38 20.11 68.78
4 59 31.22 100.00

Total 189 100.00

We choose this coding so that the heaviest births are the reference category (bwt4 = 1)
and higher responses represent increased risk of an unfavorable outcome. As explanatory
variables, we use the following:
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• smoke: smoking status during pregnancy; 0 = no, 1 = yes

• lwt: weight (in pounds) of mother at last menstrual period

• race: 1 = white, 2 = black, 3 = other

• ptl: history of premature labor; number

The example models in this article should be interpreted as illustrations and not
taken as fully developed models for the subject matter problem. For details and model-
building strategies for ordinal regression models, we refer the reader to Agresti (2010)
and Hosmer, Lemeshow, and Sturdivant (2013).

5.2 The proportional odds model

Fitting the model with ologit

The proportional odds model is available in official Stata through the ologit command.
Consider the following model:

. ologit bwt4 smoke lwt i.race ptl, nolog

Ordered logistic regression Number of obs = 189
LR chi2(5) = 35.52
Prob > chi2 = 0.0000

Log likelihood = -241.89265 Pseudo R2 = 0.0684

bwt4 Coef. Std. Err. z P>|z| [95% Conf. Interval]

smoke 1.038034 .3096776 3.35 0.001 .4310766 1.644991
lwt -.0124006 .0045665 -2.72 0.007 -.0213508 -.0034505

race
black 1.496324 .4220844 3.55 0.000 .6690534 2.323594
other .9485401 .3273635 2.90 0.004 .3069195 1.590161

ptl .4500006 .3121285 1.44 0.149 -.16176 1.061761

/cut1 -1.861848 .6781887 -3.191073 -.5326227
/cut2 -.6196977 .662932 -1.919021 .6796251
/cut3 .3332177 .6596246 -.9596229 1.626058

The coefficient for smoke is positive, which indicates that smoking during pregnancy
is associated with increased risk of low birthweight, as are being black or other race.
Mother’s weight (lwt), on the other hand, has a negative coefficient, which means
that heavier mothers tend to give birth to heavier children. A history of premature
labor might increase the risk of low birthweight, although the coefficient for ptl is not
significantly different from zero.
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By giving the or option, ologit reports ORs instead of coefficients:

. ologit, or

Ordered logistic regression Number of obs = 189
LR chi2(5) = 35.52
Prob > chi2 = 0.0000

Log likelihood = -241.89265 Pseudo R2 = 0.0684

bwt4 Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

smoke 2.823659 .8744241 3.35 0.001 1.538913 5.180961
lwt .987676 .0045102 -2.72 0.007 .9788756 .9965555

race
black 4.465243 1.884709 3.55 0.000 1.952388 10.21231
other 2.581938 .845232 2.90 0.004 1.359232 4.904537

ptl 1.568313 .4895152 1.44 0.149 .8506454 2.891459

/cut1 -1.861848 .6781887 -3.191073 -.5326227
/cut2 -.6196977 .662932 -1.919021 .6796251
/cut3 .3332177 .6596246 -.9596229 1.626058

For smoking during pregnancy, the following interpretations apply:

ÔR(2–4, 1) = ÔR(3–4, 1–2) = ÔR(4, 1–3) = 2.82

Pregnant smokers have 2.82 times the odds of nonsmokers of giving birth to babies
with birthweight below versus above 3,500 grams. The OR is the same for comparing
birthweight below versus above 3,000 grams and for comparing birthweight below versus
above 2,500 grams.

Testing goodness of fit

We calculate the HL, PR, and Lipsitz tests with a single ologitgof command. We may
specify the number of groups (for the HL and Lipsitz tests) with the group(#) option
or use the default g = 10. The options tableHL and tablePR draw up the contingency
tables of observed and estimated frequencies for the HL and PR tests, respectively. To
calculate the PR tests, ologitgof requires that we specify a list of the categorical
covariates from the estimation command.
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. ologitgof smoke race, tableHL tablePR

Goodness-of-fit tests for ordinal logistic regression models

Table: observed and estimated frequencies for the HL test

Group Ordinal score Obs_1 Est_1 Obs_2 Est_2 Obs_3 Est_3

1 1.9236 8 10.15 6 4.98 4 2.15
2 2.0556 13 8.09 4 5.58 1 2.84
3 2.3723 7 6.49 4 5.68 3 3.44
4 2.5440 6 4.65 5 5.39 3 4.09
5 2.6120 5 4.07 5 5.16 5 4.26

6 2.7121 2 3.73 5 4.97 5 4.34
7 2.7957 2 3.28 2 4.69 6 4.42
8 2.9549 1 2.78 6 4.29 4 4.43
9 3.2344 1 2.10 4 3.60 6 4.28

10 3.6576 1 0.99 5 2.00 1 3.09

Group Obs_4 Est_4 Total

1 1 1.71 19
2 1 2.49 19
3 5 3.40 19
4 5 4.88 19
5 4 5.51 19

6 7 5.96 19
7 9 6.61 19
8 8 7.50 19
9 8 9.01 19

10 11 11.92 18

Table: observed and estimated frequencies for the PR tests

Covariate pattern Obs_1 Est_1 Obs_2 Est_2 Obs_3 Est_3

1 <= median OS 10 11.44 7 5.87 4 2.60
1 > median OS 13 8.72 4 6.52 2 3.53

2 <= median OS 2 2.01 2 2.15 1 1.66
2 > median OS 0 0.98 2 1.62 4 1.84

3 <= median OS 7 6.58 8 7.80 7 6.10
3 > median OS 3 5.12 9 7.26 4 6.87

4 <= median OS 9 6.61 3 7.19 7 5.47
4 > median OS 1 3.72 6 5.68 7 5.89

5 <= median OS 0 0.47 1 0.85 1 1.07
5 > median OS 0 0.21 1 0.45 1 0.75

6 <= median OS 1 0.75 4 1.09 0 1.23
6 > median OS 0 0.32 2 0.66 0 1.03
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Covariate pattern Obs_4 Est_4 Total

1 <= median OS 1 2.10 22
1 > median OS 3 3.23 22

2 <= median OS 3 2.17 8
2 > median OS 2 3.56 8

3 <= median OS 6 7.52 25
3 > median OS 14 10.75 30

4 <= median OS 7 6.73 26
4 > median OS 12 10.72 26

5 <= median OS 3 2.61 5
5 > median OS 3 3.59 5

6 <= median OS 1 2.93 6
6 > median OS 4 3.99 6

OS = ordinal score
covpatternlabel:

1 nonsmoker white
2 nonsmoker black
3 nonsmoker other
4 smoker white
5 smoker black
6 smoker other

Model: proportional odds (ologit)
Dependent variable: bwt4 = [1, 2, 3, 4]

Number of observations = 189

Number of
Tests groups/patterns Statistic df P-value

Ordinal HL 10 24.714 26 0.5352
PR(chi2) 6 36.528 30 0.1913
PR(deviance) 6 38.026 30 0.1491
Lipsitz 10 13.833 9 0.1284

(HL = Hosmer-Lemeshow; PR = Pulkstenis-Robinson)

The bottom table provides us with the p-values for the tests. None of the tests give any
evidence of lack of fit. The observed and estimated frequencies in the HL contingency
table agree fairly well except for one big discrepancy in group 2 for response bwt4 = 1.
There are somewhat bigger discrepancies between observed and estimated frequencies
in the PR table, although not enough to produce p-values below 0.1. The difference in
the total number of observations in the nonsmoker other category (PR table) for OSs
below and above the median is due to several observations with equal OS. Note that the
actual covariate values corresponding to each covariate pattern are defined below the PR

table following the header covpatternlabel. If labels are not defined for a categorical
covariate, the numerical values for that covariate are shown instead of the labels.
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A note on the size of the estimated frequencies

As a general rule, it is often stated that for the chi-squared approximation to hold,
all estimated frequencies should be greater than 1 and at least 80% should be greater
than 5; see, for instance, Lipsitz, Fitzmaurice, and Molenberghs (1996). In the HL table

above, 1 of the Êkj ’s is less than 1 and only 33% are greater than 5. Similarly, in the

PR table, 9 of the Êkjl’s are less than 1 and only 40% are greater than 5. We believe
this rule is too strict. The results of the simulation studies in Fagerland and Hosmer
(2013, 2016) indicate that the test statistics in this article are well approximated by
the proposed chi-squared reference distributions even for small sample sizes such as
n = 100 and n = 200. A better rule might be to make sure that at least 80% of the
estimated frequencies are greater than 1, although we hasten to point out that our
recommendation is based on a limited number of simulations.

An example of lack of fit

We present an (artificial) example of a poorly fit model. Consider a proportional odds
model with bwt4 as the response variable and smoke, age, age2, and their interactions
as covariates:

. ologit bwt4 smoke##c.age##c.age, nolog

Ordered logistic regression Number of obs = 189
LR chi2(5) = 14.26
Prob > chi2 = 0.0141

Log likelihood = -252.52312 Pseudo R2 = 0.0275

bwt4 Coef. Std. Err. z P>|z| [95% Conf. Interval]

smoke
smoker -2.726678 5.589375 -0.49 0.626 -13.68165 8.228296

age .0959844 .22932 0.42 0.676 -.3534744 .5454433

smoke#c.age
smoker .2099504 .4668952 0.45 0.653 -.7051475 1.125048

c.age#c.age -.0033024 .0045721 -0.72 0.470 -.0122635 .0056587

smoke#c.age#
c.age

smoker -.0024751 .0094211 -0.26 0.793 -.02094 .0159899

/cut1 -.5351304 2.794063 -6.011393 4.941133
/cut2 .6035787 2.791269 -4.867208 6.074365
/cut3 1.481455 2.790778 -3.988369 6.951278
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. ologitgof smoke

Goodness-of-fit tests for ordinal logistic regression models

Model: proportional odds (ologit)
Dependent variable: bwt4 = [1, 2, 3, 4]

Number of observations = 189

Number of
Tests groups/patterns Statistic df P-value

Ordinal HL 10 42.237 26 0.0232
PR(chi2) 2 5.030 7 0.6563
PR(deviance) 2 5.362 7 0.6159
Lipsitz 10 17.766 9 0.0380

(HL = Hosmer-Lemeshow; PR = Pulkstenis-Robinson)

The HL and Lipsitz tests indicate lack of fit, whereas the PR tests do not. This is not
surprising, because there are only two categorical covariate patterns (defined by smoke)
and the model is dominated by continuous terms. The PR tests work best when lack of
fit is associated with categorical variables, whereas the HL and Lipsitz tests work best
when continuous covariates drive lack of fit (Fagerland and Hosmer 2013, 2016).

5.3 The adjacent-category model

Fitting the model with adjcatlogit

There is no specific command in official Stata that fits adjacent-category models. How-
ever, a user-written command adjcatlogit was provided by Fagerland (2014). It may
be installed by typing

. search adjcatlogit

and following the on-screen instructions. (This action will also install ccrlogit, which
is used in section 5.4.) Once adjcatlogit is installed, we fit the adjacent-category
model of bwt4 on smoke, lwt, race, and ptl by typing
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. adjcatlogit bwt4 smoke lwt i.race ptl, or

Adjacent-category logistic regression Number of obs = 189
LR chi2( 5) = 36.23
Prob < chi2 = 0.0000

Log likelihood = -241.53716 Pseudo R2 = 0.0698

bwt4 Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

bwt4
smoke 1.702946 .2778756 3.26 0.001 1.236823 2.344739

lwt .9929517 .0024911 -2.82 0.005 .9880812 .9978462

race
black 2.289208 .5397237 3.51 0.000 1.44211 3.633891
other 1.582235 .267944 2.71 0.007 1.135335 2.205047

ptl 1.189998 .1818554 1.14 0.255 .8819943 1.605561

_anc
cons1 1.76541 .7428428 1.35 0.177 .7738912 4.027273
cons2 1.247386 .7670759 0.36 0.719 .3737293 4.163365
cons3 2.005744 1.532941 0.91 0.362 .4484592 8.970734

The effect of smoke is contained in one coefficient or OR:

ÔR(2, 1) = ÔR(3, 2) = ÔR(4, 3) = 1.70

Pregnant women who smoke have 1.70 times the odds of nonsmokers of having a baby
with birthweight in the next lower weight category.

Testing goodness of fit

As in section 5.2, we calculate the goodness-of-fit tests using a single ologitgof com-
mand. For brevity, we omit the contingency tables for the HL and PR tests, though we
recommend that these always be displayed in real-life applications.

. ologitgof smoke race

Goodness-of-fit tests for ordinal logistic regression models

Model: adjacent-category (adjcatlogit)
Dependent variable: bwt4 = [1, 2, 3, 4]

Number of observations = 189

Number of
Tests groups/patterns Statistic df P-value

Ordinal HL 10 24.707 26 0.5356
PR(chi2) 6 33.827 30 0.2878
PR(deviance) 6 35.608 30 0.2212
Lipsitz 10 12.632 9 0.1800

(HL = Hosmer-Lemeshow; PR = Pulkstenis-Robinson)

We find no evidence of lack of fit for this model.
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5.4 The continuation-ratio model

Fitting the model with ccrlogit

To fit a constrained continuation-ratio model in Stata, we use the ccrlogit command,
which is available with the same package as adjcatlogit (Fagerland 2014). If the
adjcatlogit command is already installed, the ccrlogit command was installed with
it. If not, type

. search ccrlogit

and follow the on-screen instructions to install both the adjcatlogit and ccrlogit

commands. We fit the constrained continuation-ratio model in the usual manner:

. ccrlogit bwt4 smoke lwt i.race ptl, or

Constrained continuation-ratio logistic regression Number of obs = 189
LR chi2( 5) = 35.69
Prob < chi2 = 0.0000

Log likelihood = -241.80470 Pseudo R2 = 0.0687

bwt4 Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

bwt4
smoke 2.281733 .5644419 3.33 0.001 1.405075 3.705357

lwt .9893324 .0038353 -2.77 0.006 .9818439 .996878

race
black 3.943965 1.402531 3.86 0.000 1.964417 7.918311
other 2.072409 .5353397 2.82 0.005 1.249094 3.438395

ptl 1.240664 .2755414 0.97 0.332 .8028031 1.917339

_anc
cons1 2.284023 1.370738 1.38 0.169 .7044638 7.405293
cons2 .7863597 .4506991 -0.42 0.675 .2557162 2.418156
cons3 .7496437 .4189136 -0.52 0.606 .25072 2.241407

Women who smoke during pregnancy have 2.28 times the odds of nonsmokers of having
birthweight in any of the next lower weight categories:

ÔR(2–4, 1) = ÔR(3–4, 2) = ÔR(4, 3) = 2.28
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Testing goodness of fit

As in sections 5.2 and 5.3, we calculate the goodness-of-fit tests using a single ologitgof
command:

. ologitgof smoke race

Goodness-of-fit tests for ordinal logistic regression models

Model: constrained continuation-ratio (ccrlogit)
Dependent variable: bwt4 = [1, 2, 3, 4]

Number of observations = 189

Number of
Tests groups/patterns Statistic df P-value

Ordinal HL 10 26.647 26 0.4280
PR(chi2) 6 33.421 30 0.3046
PR(deviance) 6 35.571 30 0.2225
Lipsitz 10 16.728 9 0.0531

(HL = Hosmer-Lemeshow; PR = Pulkstenis-Robinson)

The Lipsitz test—unlike the HL and PR tests—suggests there might be problems with
the fit for this model. At this point, we should examine the model content as well as
the possibility that one of the other ordinal models might better fit the data.

6 Discussion

Evaluating goodness of fit is an important step in the assessment of the adequacy of
a regression model. The ologitgof command presented in this article can be used
to test the goodness of fit of three ordinal logistic regression models: the proportional
odds, adjacent-category, and constrained continuation-ratio models. Two of the tests
provided with ologitgof, the ordinal HL and Lipsitz tests, are best suited to detect
lack of fit associated with continuous covariates, whereas the two PR tests work best
when lack of fit is related to categorical covariates. Together, the four tests have good
power with moderate to large sample sizes to detect several types of lack of fit, including
omission of a quadratic term in a continuous covariate, omission of different types of
interaction terms, wrong functional form of a continuous covariate, and detection of an
unordered response variable (Fagerland and Hosmer 2013, 2016).

Goodness-of-fit tests are tools to detect lack of fit. They are not designed to provide
proof that a model is well fit to the data. In that perspective, we recommend that a
p < 0.10 with any of the tests should lead to further investigation into the nature of the
lack of fit, except for large sample sizes, say, n > 400, where a 5% significance level can
be used. Ideally, tests for goodness of fit should be augmented by casewise diagnostic
tools. Unfortunately, casewise diagnostics for ordinal models are not widely available.

This article has considered only constrained ordinal models, in which the regression
coefficients are constant across the logit equations for each response category. When this
assumption is not realistic—or if none of the constrained models fit the data well—an
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unconstrained continuation-ratio model may be fit (ucrlogit by Fagerland [2014]). This
model is equal to the constrained continuation-ratio model in (1) with the exception
that we substitute βj for β. This model has c − 1 regression coefficients for each
explanatory variable and thus allows for more flexible models. No goodness-of-fit test
for the unconstrained continuation-ratio model currently exists.

A review of ordinal response regression models that go beyond the models considered
in this article is given in Ananth and Kleinbaum (1997).
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