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Abstract. In this article, we present the user-written commands probitfe and
logitfe, which fit probit and logit panel-data models with individual and time
unobserved effects. Fixed-effects panel-data methods that estimate the unobserved
effects can be severely biased because of the incidental parameter problem (Ney-
man and Scott, 1948, Econometrica 16: 1–32). We tackle this problem using the
analytical and jackknife bias corrections derived in Fernández-Val and Weidner
(2016, Journal of Econometrics 192: 291–312) for panels where the two dimensions
(N and T ) are moderately large. We illustrate the commands with an empirical
application to international trade and a Monte Carlo simulation calibrated to this
application.
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1 Introduction

Panel data, which consist of multiple observations over time for a set of individuals, are
commonly used in empirical analysis to control for unobserved individual and time het-
erogeneity. Researchers often do this by adding individual and time effects to the model
and treating these unobserved effects as parameters to be estimated in the so-called
fixed-effects (FEs) approach. However, FEs estimators of nonlinear models such as bi-
nary response models suffer from the incidental parameter problem (Neyman and Scott
1948). A special case is the logit model with individual effects, where one can use the
conditional likelihood approach (Rasch 1960; Andersen, 1973; Chamberlain, 1984), im-
plemented in clogit and xtlogit (see [R] clogit and [XT] xtlogit). This approach
provides estimates of model coefficients, but it is not available for the probit model
and also does not produce estimates of average partial effects (APE) or marginal effects,
which are often the quantities of interest in binary response models. Moreover, clogit
and xtlogit do not work well when the panel is long and when the model also includes
time effects, because estimating the time effects introduces additional incidental param-
eter bias. Time effects are routinely used in empirical analysis to control for aggregate
common shocks and to parsimoniously account for cross-sectional dependence.

We deal with the incidental parameter problem using the bias corrections recently
developed by Fernández-Val and Weidner (2016) for nonlinear panel models with two-
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way FEs. These corrections apply to panel datasets or other pseudopanel data structures
where the two dimensions (N and T ) are moderately large; see Arellano and Hahn
(2007) and Fernández-Val and Weidner (2017) for a survey on bias correction methods
to deal with the incidental parameter problem. Examples of moderately long panel
datasets include traditional microeconomic panel surveys with a long history of data
such as the Panel Study of Income Dynamics and National Longitudinal Survey of
Youth, international cross-country panels such as the PennWorld Table, U.S. state-level
panels over time such as the Current Population Survey, and square pseudopanels of
trade flows across countries such as the Feenstra’s World Trade Flows and CEPII, where
the indices correspond to the same countries indexed as importers and exporters. The
probitfe and logitfe commands implement analytical and jackknife corrections for
FEs estimators of logit and probit models with individual and time effects. They produce
corrected estimates of the model coefficients and APE. To the best of our knowledge,
these are the first commands in Stata to implement bias correction methods for nonlinear
panel models.

The symbols →P and →d are used to denote convergence in probability and distri-
bution, respectively.

The rest of this article is organized as follows: Section 2 describes the probit and logit
panel models, the incidental parameter problem, and the bias corrections of Fernández-
Val and Weidner (2016). Section 3 presents probitfe, logitfe, and their features. Sec-
tion 4 provides an illustrative empirical application on international trade flows across
countries, together with the results of a Monte Carlo simulation calibrated to the appli-
cation. The expressions of the bias and variance, their estimators, and one-way models
are given in the Appendix. We refer interested readers to Fernández-Val and Weidner
(2016) for details on the assumptions, asymptotic theory, and proofs of all results pre-
sented in section 2.

2 Probit and logit models with two-way FEs

2.1 Models and estimators

We observe a binary response variable Yit ∈ {0, 1} together with a vector of covariates
Xit for individual i = 1, . . . , N at time t = 1, . . . , T . This definition of the indices i
and t applies to standard panel datasets. More generally, i and t can specify any group
structure in the data. For example, in the empirical application of section 4, i and t
index the same countries as importers and exporters, respectively. The logit and probit
models specify the probability of Yit = 1 conditional on current and past values of the
regressors Xt

i = (Xi1, . . . ,Xit), unobserved individual specific effects α = (α1, . . . , αN ),
and unobserved time specific effects γ = (γ1, . . . , γT ), namely,

Pr
(
Yit = 1 | Xt

i,α,γ,β
)
= F (X′

itβ + αi + γt)

where F : � → [0, 1] is a cumulative distribution function (the standard normal dis-
tribution in the probit model and the standard logistic distribution in the logit model)
and β is a vector of unknown model coefficients of the same dimension as Xit. The
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vector Xit contains predetermined variables with respect to Yit. In particular, Xit can
include lags of Yit to accommodate dynamic models. In some static models or in panels
where t does not index time, Xit can be treated as strictly exogenous with respect to
Yit by replacing Xt

i by Xi = (Xi1, . . . ,XiT ) in the conditioning set. The model does
not impose any restriction on the relation between the covariate vector and the un-
observed effects. In empirical applications, the conditioning on the unobserved effects
serves to control for endogeneity as the individual and time effects capture unobserved
heterogeneity that can be related to the covariates.

We adopt an FEs approach and treat the individual and time effects as parameters
to be estimated. We denote by β0, α0, and γ0 the true values of the parameters, that
is, the parameters that are assumed to generate the distribution of Yit according to the
model above. The (conditional) log-likelihood function of the observation (i, t) is

�it(β, αi, γt) :=Yit × log {F (X′
itβ + αi + γt)}

+ (1− Yit)× log {1− F (X′
itβ + αi + γt)}

and the FEs estimators for β, α, and γ are obtained by maximizing the log-likelihood
function of the sample,(

β̂, α̂, γ̂
)
∈ argmax(β,α,γ)∈�dimβ+N+T

∑
i,t

�it(β, αi, γt) (1)

This is a smooth concave maximization program for the logit and probit models. How-
ever, there is a perfect collinearity problem because the log-likelihood function is invari-
ant to the transformation αi �→ αi + c and γt �→ γt − c for any c ∈ �. If Xit includes
a constant term, we overcome this problem by dropping α1 and γ1, which normalizes
α1 = 0 and γ1 = 0. If Xit does not include a constant term, we need to drop only either
α1 or γ1. As in linear panel models, the covariates Xit, other than the constant term,
need to vary both across i and over t to avoid further perfect collinearity problems, that
is, to guarantee that the log-likelihood function is strictly concave.

The above FEs estimators can be implemented in Stata by using the existing logit

and probit (see [R] logit and [R] probit) commands including individual and time
binary indicators to account for αi and γt. However, as we will explain in the next
subsection, the FEs estimator β̂ can be severely biased, and the existing routines do not
incorporate any bias-correction method.

In many applications of the logit and probit models, the ultimate parameters of
interest are the APE of the covariates, which take the form

δ0 = �
{
Δ(β0,α0,γ0)

}
, Δ(β,α,γ) = (NT )−1

∑
i,t

Δ(Xit,β, αi, γt) (2)

where � denotes the expectation with respect to the joint distribution of the data and
the unobserved effects. The expression of the partial effect function Δ(Xit,β, αi, γt)
depends on the type of covariate. If Xit,k, the kth element of Xit, is binary, then its
partial effect on the conditional probability of Yit is calculated using

Δ(Xit,β, αi, γt) = F (βk +X′
it,−kβ−k + αi + γt)− F (X′

it,−kβ−k + αi + γt)
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where βk is the kth element of β and Xit,−k and β−k include all elements of Xit and
β except for the kth element. This partial effect measures the impact of changing Xit,k

from 0 to 1 on the conditional probability of Yit = 1 holding the rest of the covariates
fixed at their observed values Xit,−k. If Xit,k is not binary, then the partial effect of
Xit,k on the conditional probability of Yit is calculated using

Δ(Xit,β, αi, γt) = βk∂F (X
′
itβ + αi + γt)

where ∂F is the derivative of F . This partial effect measures the impact of a marginal
change in Xit,k on the probability of Yit = 1, conditional on the observed value of the
covariates Xit.

The FEs estimator of APE is obtained by plugging in estimators of the model pa-
rameters in the sample analog of (2); that is,

δ̃ = Δ
(
β̃, α̃, γ̃

)
where β̃ is an estimator for β, and

(α̃, γ̃) ∈ argmax(α,γ)∈�N+T

∑
i,t

�it

(
β̃, αi, γt

)
For example, if β̃ = β̂, then (α̃, γ̃) = (α̂, γ̂), where (β̂, α̂, γ̂) is the FEs estimator defined

in (1). Again, there are Stata routines to calculate δ̃, but they do not implement any
bias correction.

2.2 Incidental parameter problem

The FEs estimators β̂ and δ̃ suffer from the Neyman and Scott incidental parameter
problem. In particular, these estimators are inconsistent under asymptotic sequences
where T is fixed and N → ∞ when the model has individual effects. They are also
inconsistent when N is fixed and T → ∞ when the model has time effects. The source
of the problem is that there is only a fixed number of observations to estimate each
unobserved effect, T observations for each individual effect or N observations for each
time effect, rendering the corresponding estimators inconsistent. The nonlinearity of the
model propagates the inconsistency in the estimation of the individual or time effects
to all the model coefficients and APE.

A recent response to the incidental parameter problem is to consider an alternative
asymptotic approximation where N → ∞ and T → ∞ (for example, Arellano and Hahn
[2007]). The key insight of this so-called large-T panel-data literature is that, under
this approximation, the incidental parameter problem becomes a bias problem that
is easier to handle than the inconsistency problem under the traditional asymptotic
approximation. In particular, Fernández-Val and Weidner (2016) show that as N,T →
∞, with N/T → c > 0, the limit distribution of β̂ is described by

√
NT

(
β̂ − β0 −Bβ/T −Dβ/N

)
→d N (0,Vβ

)
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where Vβ is the asymptotic variance–covariance matrix, Bβ is an asymptotic bias term
coming from the estimation of the individual effects, and Dβ is an asymptotic bias term
coming from the estimation of the time effects.1 The finite sample prediction of this
result is that the FEs estimator can have significant bias relative to its dispersion even
if N and T are of the same order. Moreover, confidence intervals constructed around
the FEs estimator can severely undercover the true value of the parameter even in large
samples. We show that this large-N large-T version of the incidental parameters prob-
lem provides a good approximation to the finite sample behavior of the FEs estimator
through simulation examples in section 4.

For δ̃, the situation is different because the order of the standard deviation (SD)

of δ̃, 1/
√
N + 1/

√
T , is slower than the order of the SD of β̂, 1/

√
NT . In this case,

Fernández-Val and Weidner (2016) show that as N,T → ∞, with N/T → c > 0, the
limit distribution is√

min(N,T )
(
δ̃ − δ0 −Bδ/T −Dδ/N

)
→d N (0,Vδ

)
where Vδ is the asymptotic variance, Bδ is the asymptotic bias coming from the esti-
mation of the individual effects, and Dδ is the asymptotic bias term coming from the
estimation of the time effects.2 Here the SD dominates both of the bias terms, implying
that δ̃ is asymptotically first-order unbiased. The biases can nevertheless be significant
in small samples as we show in section 4 through simulation examples.

2.3 Analytical bias correction

The analytical bias correction consists of removing estimates of the leading terms of the
bias from the FEs estimator of β. Let B̂β and D̂β be consistent estimators of Bβ and
Dβ ; that is, B̂β →P Bβ and D̂β →P Dβ as N,T → ∞. The bias-corrected estimator
can be formed as

β̃
A
= β̂ − B̂β/T − D̂β/N

As N,T → ∞ with N/T → c > 0, the limit distribution of β̃
A
is

√
NT

(
β̃
A − β0

)
→d N (0,Vβ

)
The analytical correction therefore centers the asymptotic distribution at the true value
of the parameter without increasing asymptotic variance. This result predicts that in
large samples, the corrected estimator has small bias relative to dispersion, the correc-
tion does not increase dispersion, and the confidence intervals constructed around the
corrected estimator have coverage probabilities close to the nominal levels. We show
that these predictions provide a good approximation to the behavior of the corrections
in section 4.

1. The expressions of Vβ , Bβ , and Dβ for probit and logit models are given in the Appendix.
2. The expressions of Vδ , Bδ, and Dδ for probit and logit models are given in the Appendix.
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The bias-corrected APE can be constructed in the same fashion as

δ̃
A
= δ̃ − B̂δ/T − D̂δ/N

where B̂δ and D̂δ are consistent estimators of Bδ and Dδ; that is, B̂δ →P Bδ and

D̂δ →P Dδ as N,T → ∞. The limit distribution of δ̃
A
is√

min(N,T )
{
δ̃
A − δ0 + oP (T

−1 +N−1)
}
→d N (0,Vδ)

We give the details on how to compute B̂β , D̂β , B̂δ, and D̂δ in the Appendix.
The probitfe and logitfe commands compute these analytical bias corrections with
the analytical option. If the regressors Xit are predetermined, for example, when

lagged dependent variables are included, the calculation of B̂β and B̂δ, and thus of the
bias corrections, requires the specification of a trimming parameter L ∈ {1, 2, 3, . . .} to
estimate a spectral expectation. For the asymptotic theory, the requirement on L is that
L→ ∞ such that L/T → 0 because T → ∞. In practice, we do not recommend using L
larger than four, and we suggest computing the analytical bias corrections for different
values of L as a robustness check. When the regressors Xit are strictly exogenous, L
should be set to zero. The trimming parameter is set through the command options
lags(integer), as described below.

2.4 Jackknife bias correction

The probitfe and logitfe commands with the jackknife option allow for six different
types of jackknife corrections, denoted as ss1, ss2, js, sj, jj, and double. We will
briefly explain each correction and give some intuition about how they reduce bias. The
jackknife corrections do not require explicit estimation of the bias but are computa-
tionally more intensive because they involve solving multiple FEs estimation programs.
The methods are combinations of the leave-one-observation-out panel jackknife (PJ) of
Hahn and Newey (2004) and the split-panel jackknife (SPJ) of Dhaene and Jochmans
(2015) applied to the two dimensions of the panel.

Let N = {1, . . . , N} and T = {1, . . . , T}. Define the FEs estimator of β in the
subpanel with cross-sectional indices A ⊆ N and time-series indices B ⊆ T as

β̂A ,B ∈ argmaxβ∈�dimβ max
α(A )∈�|A |

max
γ(B)∈�|B|

∑
i∈A ,t∈B

�it(β, αi, γt)

where α(A ) = {αi : i ∈ A } and γ(B) = {γt : t ∈ B}. Notice that the original FEs

estimator β̂ defined above is equal to β̂N ,T . Using this notation, we can now describe
the six jackknife corrections:
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• The correction ss1 applies SPJ simultaneously to both dimensions of the panel.
Let β̃N/2,T/2 be the average of the four split jackknife estimators that leave out
half the individuals and half the time periods; that is,

β̃N/2,T/2 =
1

4

(
β̂{i : i≤�N/2�},{t : t≤�T/2�} + β̂{i : i≥	N/2+1
},{t : t≤�T/2�}

+ β̂{i : i≤�N/2�},{t : t≥	T/2+1
} + β̂{i : i≥	N/2+
},{t : t≥	T/2+1
}

)
where �.	 and 
.� denote the floor and ceiling function, respectively. The ss1

corrected estimator is
β̃
ss1

= 2β̂ − β̃N/2,T/2

• The correction ss2 applies SPJ separately to both dimensions of the panel. Let
β̃N,T/2 be the average of the two split jackknife estimators that leave out the first

and second halves of the time periods, and let β̃N/2,T be the average of the two
split jackknife estimators that leave out half the individuals; that is,

β̃N,T/2 =
1

2

(
β̂N ,{t : t≤�T/2�} + β̂N ,{t : t≥	T/2+1
}

)
β̃N/2,T =

1

2

(
β̂{i : i≤�N/2�},T + β̂{i : i≥	N/2+1
},T

)
The ss2 corrected estimator is

β̃
ss2

= 3β̂ − β̃N,T/2 − β̃N/2,T

• The correction js applies PJ to the individual dimension and SPJ to the time

dimension. Let β̃N,T/2 be defined as above, and let β̃N−1,T be the average of the
N jackknife estimators that leave out one individual; that is,

β̃N−1,T =
1

N

N∑
i=1

β̂N \{i},T

The js corrected estimator is

β̃
js

= (N + 1)β̂ − (N − 1)β̃N−1,T − β̃N,T/2

• The correction sj applies SPJ to the individual dimension and PJ to the time

dimension. Let β̃N/2,T be defined as above, and let β̃N,T−1 be the average of the
T jackknife estimators that leave out one time period; that is,

β̃N,T−1 =
1

T

T∑
t=1

β̂N ,T \{t}

The sj corrected estimator is

β̃
sj

= (T + 1)β̂ − β̃N/2,T − (T − 1)β̃N,T−1
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• The correction jj applies PJ to both the individual and the time dimension. Let

β̃N−1,T and β̃N,T−1 be defined as above. The jj corrected estimator is

β̃
jj

= (N + T − 1)β̂ − (N − 1)β̃N−1,T − (T − 1)β̃N,T−1

• The correction double uses PJ for observations with the same cross-section and
time-series indices. This type of correction makes sense only for panels where i
and t index the same entities. For example, in country trade data, the cross-
section dimension represents each country as an importer, and the “time-series
dimension” represents each country as an exporter. Thus let N = T , and define
β̃N−1,N−1 as the average of the N jackknife estimators that leave one entity out;
that is,

β̃N−1,N−1 =
1

N

N∑
i=1

β̂N \{i},N \{i}

The corrected estimator is

β̃
double

= N β̂ − (N − 1)β̃N−1,N−1

To give some intuition on how these corrections reduce bias, we use a first-order
approximation to the bias,

bias
(
β̂A ,B

)
≈ Bβ/|A |+Dβ/|B|

where |A | denotes the cardinality of the set A . Consider, for example, the ss1 option.
Using the previous approximation, we see that

bias
(
β̃
ss1
)
≈ 2× bias

(
β̂N ,T

)
− bias

(
β̃N/2,T/2

)
= 0

because the leading bias of β̃N/2,T/2 is twice the leading bias in β̂N ,T because the

subpanels used to construct β̃N/2,T/2 contain half the individuals and time periods. In

other words, subtracting (β̃N/2,T/2−β̂N ,T ) from β̂ removes a nonparametric estimator

of the leading bias. Similarly, we can show that the leading bias of β̂ is removed by the
other corrections because they use appropriate choices of the size of the subpanels and
corresponding coefficients in the linear combinations of the subpanel estimators.

There are panels for which there is no natural ordering of the observations along some
of the dimensions, for example, the individuals in the Panel Study of Income Dynamics.
In this case, there are multiple ways to select the subpanels to implement the ss1 and
ss2 corrections. To avoid any arbitrariness in the choice of subpanels, probitfe and

logitfe include the possibility of constructing β̃N/2,T/2 and β̃N/2,T as the average of
the estimators obtained from multiple orderings of the panels by randomly permuting
the indices of the dimension that has no natural ordering of the observations. The
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multiple() option allows the user to specify the number of different permutations of
the panel to use.

Fernández-Val and Weidner (2016) show that the correction ss2 removes the bias
without increasing dispersion in large samples. In particular, they show that the limit

distribution of β̃
ss2

as N,T → ∞ with N/T → c > 0 is
√
NT

(
β̃
ss2 − β0

)
→d N (0,Vβ)

the same as the limit distribution of the analytical correction. The assumptions required
for this result include homogeneity conditions along the two dimensions of the panel to
guarantee that the bias terms Bβ and Dβ are the same in all the subpanels. The
analytical corrections described above do not require these type of conditions and are
therefore more widely applicable.

Jackknife corrections for the APE are formed analogously. We compute estimates
δ̃A ,B from subpanels with cross-sectional indices A ⊆ N and time-series indices B ⊆
T and use the corrections described above replacing β by δ everywhere.

2.5 One-way FEs

So far, we have focused on two-way FEs models with individual and time effects because
they are the most commonly used in empirical applications. For completeness, the
probitfe and logitfe commands also provide functionality for one-way FEs models
that include only either individual effects or time effects (using the ieffects() and
teffects() options, respectively), as well as the flexibility to choose whether the bias
corrections should account only for either individual effects or time effects (using the
ibias() and tbias() options, respectively). FEs estimators of these models also suffer
from the incidental parameter problem. The commands implement the analytical and
jackknife corrections of Hahn and Newey (2004) and Fernández-Val (2009) and the split-
panel correction of Dhaene and Jochmans (2015). We do not describe these corrections
in detail, because they are very similar to the ones described above for two-way models.

For example, the analytical correction for β has the same form as β̃
A
after making one

of the estimated bias terms equal to zero: D̂β = 0 for models without time effects or
B̂β = 0 for models without individual effects. We give the expressions of Bβ and Dβ

and describe the jackknife corrections for one-way FEs models in the Appendix.

2.6 Unbalanced panel data

In the description of the incidental parameter problem and bias corrections, we implicitly
assumed that the panel was balanced; that is, we observe each individual, i = 1, . . . , N ,
at each time period, t = 1, . . . , T . Nevertheless, unbalanced panel datasets are common
in empirical applications. Unbalancedness does not introduce special theoretical com-
plications provided that the source of the missing observations is random. It does not
introduce complications in the computation either, because probitfe and logitfe use
Stata’s time-series operators that account for missing observations, provided the data
are declared to be time series.
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Suppose, for example, that we have the following dataset:

. tsset
panel variable: id (weakly balanced)
time variable: time, 1 to 7, but with gaps

delta: 1 unit

. list id time

id time

1. 1 1
2. 1 2
3. 1 4
4. 1 5
5. 1 7

6. 2 2
7. 2 3
8. 2 5
9. 2 6
10. 2 7

This includes two individuals and seven time periods, but there are no observations for
every time period for each individual. Time-series operators are important when the
analytical correction is applied and the trimming parameter is higher than zero. If the
trimming parameter is equal to 1, for example, probitfe and logitfe will correctly
produce a missing value for t = {1, 4, 7} for the first individual and produce a missing
value for t = {2, 5} for the second individual.

In the jackknife corrections, probitfe and logitfe identify the appropriate subset of
observations for each individual because they use time as index instead of the observation
number. If we apply, for example, the jackknife bias correction ss1, where the subpanels
include half the time periods for each individual, the commands will correctly use t =
{1, 2, 4} for the first individual and t = {2, 3} for the second individual.

3 The probitfe and logitfe commands

3.1 Syntax

Both probitfe and logitfe share the same syntax and options. Here we use the syntax
for probitfe. One needs only to replace probitfe with logitfe if one wishes to fit a
logit model.

Uncorrected estimator

probitfe depvar indepvars
[
if
] [

in
]
, nocorrection

[
ieffects(string)

teffects(string) population(integer)
]
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Analytical-corrected estimator

probitfe depvar indepvars
[
if
] [

in
] [

, analytical lags(integer)

ieffects(string) teffects(string) ibias(string) tbias(string)

population(integer)
]

Jackknife-corrected estimator

probitfe depvar indepvars
[
if
] [

in
]
, jackknife

[
ss1

[
multiple(integer)

individuals time
]
ss2

[
multiple(integer) individuals time

]
js sj jj

double ieffects(string) teffects(string) ibias(string) tbias(string)

population(integer)
]

Both a panel variable and a time variable must be specified. indepvars may contain
factor variables. depvar and indepvars may contain time-series operators.

3.2 Options for uncorrected estimator

nocorrection computes the probit FEs estimator without correcting for the bias be-
cause of the incidental parameter problem.

If the nocorrection option is specified without the type of included effects, the
model will include both individual and time effects. ieffects(no) and teffects(no)

cannot be combined.

ieffects(string) specifies whether the uncorrected estimator includes individual ef-
fects.

ieffects(yes), the default, includes individual FEs.

ieffects(no) omits the individual FEs.

teffects(string) specifies whether the uncorrected estimator includes time effects.

teffects(yes), the default, includes time FEs.

teffects(no) omits the time FEs.

population(integer) adjusts the estimation of the variance of the APE by a finite pop-
ulation correction (FPC). Let m be the number of original observations included in
probitfe, and let M ≥ m be the number of observations for the entire population
declared by the user. The computation of the variance of the APE is corrected by the
factor FPC = (M−m)/(M−1). The default is population(1), corresponding to an
infinite population. Notice that M makes reference to the total number of observa-
tions and not the total number of individuals. If, for example, the population has 100
individuals followed over 10 time periods, the user must specify population(1000)

instead of population(100).
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3.3 Options for analytical-corrected estimator

analytical, the default, computes the probit FEs estimator using the analytical bias
correction derived in Fernández-Val and Weidner (2016).

lags(integer) specifies the value of the trimming parameter to estimate spectral expec-
tations. See the discussion in section 2.3 for details. The default is lags(0); that is,
the trimming parameter to estimate spectral expectations is set to zero. This option
should be used when the model is static with strictly exogenous regressors.

The trimming parameter can be set to any value between 0 and (T −1). A trimming
parameter higher than 0 should be used when the model is dynamic or some of the
regressors are weakly exogenous or predetermined. As mentioned in section 2.3, we
do not recommend setting the value of the trimming parameter to a value higher
than 4, unless T is very large.

If the analytical option is specified without the type of included effects, the model
will include both individual and time effects. ieffects(no) and teffects(no) cannot
be combined.

ieffects(string) specifies whether the model includes individual FEs.

ieffects(yes), the default, includes individual FEs.

ieffects(no) omits the individual FEs.

teffects(string) specifies whether the model includes time FEs.

teffects(yes), the default, includes time FEs.

teffects(no) omits the time FEs.

If the analytical option is specified without the type of correction, the model will
include analytical bias correction for both individual and time effects. ibias(no) and
tbias(no) cannot be combined.

ibias(string) specifies whether the analytical correction accounts for individual effects.

ibias(yes), the default, corrects for the bias coming from the individual FEs.

ibias(no) omits the individual FEs analytical bias correction.

tbias(string) specifies whether the analytical correction accounts for time effects.

tbias(yes), the default, corrects for the bias coming from the time FEs.

tbias(no) omits the time FEs analytical bias correction.

population(integer) adjusts the estimation of the variance of the APE by an FPC. Let
m be the number of original observations included in probitfe, and let M ≥ m
be the number of observations for the entire population declared by the user. The
computation of the variance of the APE is corrected by the factor FPC = (M −
m)/(M−1). The default is population(1), corresponding to an infinite population.
Notice that M makes reference to the total number of observations and not the
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total number of individuals. If, for example, the population has 100 individuals
followed over 10 time periods, the user must specify population(1000) instead of
population(100).

3.4 Options for jackknife-corrected estimator

jackknife computes the probit FEs estimator using the jackknife bias corrections de-
scribed in Fernández-Val and Weidner (2016).

ss1
[
multiple(integer) individuals time

]
specifies SPJ in four nonoverlapping sub-

panels; in each subpanel half the individuals and half the time periods are left out.
See previous section for the details.

multiple(integer) is an ss1 suboption that allows for different multiple partitions,
each one made on a randomization of the observations in the panel; the default
is multiple(0); that is, the partitions are made on the original order in the
dataset. If multiple(10) is specified, for example, the ss1 estimator is computed
10 times on 10 different randomizations of the observations in the panel; the
resulting estimator is the mean of these 10 SPJ corrections. This option can be
used if there is a dimension of the panel where there is no natural ordering of
the observations.

If neither individuals nor time options are specified, the multiple partitions are
made on both the cross-sectional and the time dimensions.

individuals specifies the multiple partitions to be made only on the cross-sectional
dimension.

time specifies the multiple partitions to be made only on the time dimension.

ss2
[
multiple(integer) individuals time

]
, the default, specifies SPJ in both dimen-

sions. As in ss1, there are four subpanels: in two of them, half the individuals are
left out, but all time periods are included; in the other two, half the time periods
are left out, but all the individuals are included. See previous section for the details.

multiple(integer) is an ss2 suboption that allows for different multiple partitions,
each one made on a randomization of the observations in the panel; the default is
multiple(0); that is, the partitions are made on the original order in the dataset.
If multiple(10) is specified, for example, then the ss2 estimator is computed
10 times on 10 different randomizations of the observations in the panel; the
resulting estimator is the mean of these 10 SPJ corrections. This option can be
used if there is a dimension of the panel where there is no natural ordering of
the observations.

If neither individuals nor time options are specified, the multiple partitions are
made on both the cross-sectional and the time dimensions.

individuals specifies the multiple partitions to be made only on the cross-sectional
dimension.
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time specifies the multiple partitions to be made only on the time dimension.

js uses delete-one PJ in the cross-section and SPJ in the time series. See the previous
section for details.

sj uses SPJ in the cross-section and delete-one PJ in the time series. See the previous
section for details.

jj uses delete-one PJ in both the cross-section and the time series. See the previous
section for details.

double uses delete-one jackknife for observations with the same cross-section and the
time-series indices. See the previous section for details.

If the jackknife option is specified without the type of included effects, the model
will include both individual and time effects. ieffects(no) and teffects(no) cannot
be combined.

ieffects(string) specifies whether the model includes individual FEs.

ieffects(yes), the default, includes individual FEs.

ieffects(no) omits the individual FEs.

teffects(string) specifies whether the model includes time FEs.

teffects(yes), the default, includes time FEs.

teffects(no) omits the time FEs.

If the jackknife option is specified without the type of correction, the model
will include jackknife correction for both individual and time effects. ibias(no) and
tbias(no) cannot be combined.

ibias(string) specifies whether the jackknife correction accounts for the individual
effects.

ibias(yes), the default, corrects for the bias coming from the individual FEs.

ibias(no) omits the individual FEs jackknife correction. If this option and multiple
partitions only in the time dimension are specified together (for the jackknife
ss1 or ss2 corrections), the resulting estimator is equivalent to the one without
multiple partitions.

tbias(string) specifies whether the jackknife correction accounts for the time effects.

tbias(yes), the default, corrects for the bias coming from the time FEs.

tbias(no) omits the time FEs jackknife correction. If this option and multiple
partitions only in the cross-section are specified together (for the jackknife ss1

or ss2 corrections), the resulting estimator is equivalent to the one without
multiple partitions.

population(integer) adjusts the estimation of the variance of the APE by an FPC. Let
m be the number of original observations included in probitfe, and let M ≥ m
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be the number of observations for the entire population declared by the user. The
computation of the variance of the APE is corrected by the factor FPC = (M −
m)/(M−1). The default is population(1), corresponding to an infinite population.
Notice that M references the total number of observations and not the total number
of individuals. If, for example, the population has 100 individuals followed over 10
time periods, the user must specify population(1000) instead of population(100).

3.5 Stored results

probitfe and logitfe store the following in e():

Scalars
e(N) number of observations
e(N drop) number of observations dropped because of all positive or all zero outcomes
e(N group drop) number of groups dropped because of all positive or all zero outcomes
e(N time drop) number of time periods dropped because of all positive or all zero outcomes
e(N group) number of groups
e(k) number of parameters excluding individual or time effects
e(df m) model degrees of freedom
e(r2 p) pseudo-R-squared
e(ll) log likelihood
e(ll 0) log likelihood, constant-only model
e(chi2) likelihood-ratio χ2 model test
e(p) significance of model test
e(rankV) rank of e(V)
e(rankV2) rank of e(V2)
e(fpc) FPC factor
e(T min) smallest group size
e(T avg) average group size
e(T max) largest group size

Macros
e(cmd) probitfe or logitfe
e(cmdline) command as typed
e(depvar) name of dependent variable
e(title) title in estimation output
e(title1) type of included effects
e(title2) type of correction
e(title3) lags for trimming parameter or number of multiple partitions
e(chi2type) LR; type of model χ2 test
e(properties) b V

e(id) name of cross-section variable
e(time) name of time variable

Matrices
e(b) coefficient vector
e(b2) APE
e(V) variance–covariance matrix of coefficient vector
e(V2) variance–covariance matrix of APE

Functions
e(sample) marks estimation sample
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4 Bilateral trade flows between countries

4.1 Empirical example

To illustrate the use of the bias corrections described in sections 2.4 and 2.5, we present
an empirical application to bilateral trade flows between countries using data from
Helpman, Melitz, and Rubinstein (2008). The dataset includes trade flows for 158
countries over the period from 1970 to 1997, as well as country-level data on geography,
institutions, and culture (the variables used in the analysis are described below). We
fit probit and logit models for the probability of positive trade between country pairs in
1986. The data structure is a pseudopanel where the two dimensions index countries,
with id as importers and jd as exporters. There are 157×156 = 24649 possible country
pairs.3

For each country pair, the outcome variable tradeij is an indicator equal to one if
country i imports from country j and equal to zero otherwise. We use j instead of t
to emphasize that the second dimension does not index time. The model specification
is based on the gravity equation of Anderson and van Wincoop (2003) with various
measures of trade barriers and enhancers as key determinants of international trade
flows. We also include the presence of bilateral trade in 1985 to account for possible
state dependence in trade decisions. Importer and exporter country FEs control for
unobserved country heterogeneity such as size, natural resources, or trade openness.
The probability that country i imports from country j, conditional on the observed
variables, Xij , the unobserved importer FE, αi, and the unobserved exporter FE, γj , is
modeled as

Pr(tradeij = 1 | Xij , αi, γj) = F (X ′
ijβ + αi + γj)

where F (·) is the standard normal cumulative distribution function for the probit model,
or the logistic distribution for the logit model.

The set of explanatory variables, Xij , includes the following:

1. ltradeij is a binary variable equal to one if country i imported from country j in
1985 and equal to zero otherwise.

2. ldistij specifies the logarithm of the distance (in kilometer) between country i
and country j capitals.

3. borderij is a binary variable equal to one if country i and country j share a
common physical boundary and equal to zero otherwise.

4. legalij is a binary variable equal to one if country i and country j share the same
legal origin (including civil law, common law, customary law, mixed or pluralistic
law, and religious law) and equal to zero otherwise.

5. languageij is a binary variable equal to one if country i and country j share the
same official language and equal to zero otherwise.

3. The original dataset included 158 countries, but we dropped Congo because it did not export to
any country in 1986.
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6. colonyij is a binary variable equal to one if country i ever colonized country j or
vice versa and equal to zero otherwise.

7. currencyij is a binary variable equal to one if country i and country j use the
same currency or if pair money was interchangeable within the country at a 1:1
exchange rate for an extended period of time and equal to zero otherwise.

8. ftaij is a binary variable equal to one if country i and country j belong to a
common regional trade agreement and equal to zero otherwise.

9. islandsij is a binary variable equal to one if both country i and country j are
islands and equal to zero otherwise.

10. religionij specifies the sum of (percent Protestants in country i × percent
Protestants in country j) + (percent Catholics in country i× percent Catholics in
country j) + (percent Muslims in country i× percent Muslims in country j).

11. landlockij is a binary variable equal to one if both country i and country j have
no coastline or direct access to sea and equal to zero otherwise.

The specification of Xij is the same as in table I of Helpman, Melitz, and Rubinstein
(2008), except that we include ltradeij . Despite the inclusion of the lag dependent
variable, Xij can be treated as strictly exogenous because none of the two dimensions
of the panel indexes time.

Tables 1 and 2 show the results of the logit model and probit model, respectively. In
both tables, column (1) reports uncorrected FEs estimates, column (2) reports estimates
of the analytical correction setting the trimming parameter equal to zero (AN-0), and
columns (3) to (5) show estimates of the ss2, jj, and double jackknife corrections. The
double correction makes sense because both dimensions of the panel index the same set
of countries. Each table shows estimates of index coefficients and APE. The latter are
reported in brackets. We also include standard errors (SEs) for the index coefficients in
column (6) and SEs for the APE in columns (6) and (7). In the case of the APE, the
SEs in column (7) are adjusted by the FPC parameter described in section 3.2, using
a population equal to the sample size (24,492). There is only one set of SEs because
the SEs for the uncorrected estimator are consistent for the corrected estimators (see
Fernández-Val and Weidner [2016]).
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Table 1. FEs logit model

(1) (2) (3) (4) (5) (6) (7)
FE AN-0 JK-SS2 JK-JJ Double Std. error

ltrade 2.838 2.741 2.786 2.743 2.745 (0.058)
[0.325] [0.323] [0.349] [0.325] [0.326] (0.014) (0.008)

ldist −0.839 −0.819 −0.742 −0.812 −0.812 (0.044)
[−0.055] [−0.055] [−0.049] [−0.055] [−0.055] (0.004) (0.003)

border −0.571 −0.557 −0.493 −0.564 −0.573 (0.195)
[−0.037] [−0.037] [−0.036] [−0.037] [−0.038] (0.012) (0.012)

legal 0.115 0.113 0.017 0.112 0.112 (0.062)
[0.008] [0.008] [0.003] [0.008] [0.008] (0.004) (0.004)

language 0.368 0.358 0.385 0.354 0.352 (0.080)
[0.025] [0.025] [0.026] [0.024] [0.024] (0.005) (0.005)

colony 0.492 0.435 −0.023 0.344 0.129 (0.633)
[0.034] [0.030] [0.002] [0.021] [0.004] (0.045) (0.045)

currency 0.984 0.961 2.464 1.009 1.079 (0.252)
[0.070] [0.070] [0.164] [0.071] [0.073] (0.020) (0.019)

fta 2.244 2.171 3.347 1.827 1.571 (0.657)
[0.178] [0.177] [0.285] [0.142] [0.118] (0.062) (0.061)

islands 0.406 0.395 0.393 0.396 0.396 (0.156)
[0.027] [0.027] [0.028] [0.027] [0.027] (0.011) (0.011)

religion 0.244 0.239 0.238 0.240 0.245 (0.123)
[0.016] [0.016] [0.017] [0.016] [0.017] (0.008) (0.008)

landlock 0.143 0.139 0.153 0.156 0.170 (0.221)
[0.010] [0.010] [0.014] [0.010] [0.011] (0.015) (0.015)

Obs. 24492 24492 24492 24492 24492

Notes: APE in brackets. FE denotes uncorrected FEs estimator; AN-0 denotes ana-
lytical correction with 0 lags; JK-SS2 denotes SPJ in both dimensions; JK-JJ denotes
delete-one jackknife in both dimensions; Double denotes delete-one jackknife for obser-
vations with the same index in the cross-section and the time series. For the APE,
the SEs reported in column (7) are adjusted by the FPC parameter using a population
equal to the number of observations (24,492).
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Table 2. FEs probit model

(1) (2) (3) (4) (5) (6) (7)
FE AN-0 JK-SS2 JK-JJ Double Std. error

ltrade 1.631 1.586 1.625 1.587 1.588 (0.031)
[0.343] [0.345] [0.371] [0.346] [0.347] (0.014) (0.009)

ldist −0.438 −0.426 −0.377 −0.423 −0.422 (0.023)
[−0.054] [−0.054] [−0.046] [−0.054] [−0.054] (0.004) (0.003)

border −0.273 −0.265 −0.208 −0.268 −0.273 (0.107)
[−0.033] [−0.033] [−0.029] [−0.033] [−0.034] (0.013) (0.012)

legal 0.059 0.057 0.011 0.056 0.056 (0.033)
[0.007] [0.007] [0.003] [0.007] [0.007] (0.004) (0.004)

language 0.203 0.198 0.215 0.196 0.196 (0.042)
[0.025] [0.025] [0.027] [0.025] [0.025] (0.005) (0.005)

colony 0.287 0.253 0.005 0.207 0.099 (0.356)
[0.037] [0.033] [0.006] [0.025] [0.008] (0.047) (0.047)

currency 0.529 0.515 1.340 0.537 0.568 (0.139)
[0.069] [0.070] [0.166] [0.070] [0.072] (0.020) (0.019)

fta 1.235 1.192 1.807 1.067 0.991 (0.340)
[0.180] [0.178] [0.281] [0.155] [0.143] (0.057) (0.057)

islands 0.194 0.187 0.203 0.188 0.188 (0.084)
[0.024] [0.024] [0.026] [0.024] [0.024] (0.011) (0.011)

religion 0.134 0.132 0.133 0.133 0.135 (0.066)
[0.017] [0.017] [0.018] [0.017] [0.017] (0.008) (0.008)

landlock 0.041 0.041 0.033 0.044 0.049 (0.119)
[0.005] [0.005] [0.008] [0.005] [0.006] (0.015) (0.015)

Obs. 24492 24492 24492 24492 24492

Notes: APE in brackets. FE denotes uncorrected FEs estimator; AN-0 denotes ana-
lytical correction with 0 lags; JK-SS2 denotes SPJ in both dimensions; JK-JJ denotes
delete-one jackknife in both dimensions; Double denotes delete-one jackknife for obser-
vations with the same index in the cross-section and the time series. For the APE,
the SEs reported in column (7) are adjusted by the FPC parameter using a population
equal to the number of observations (24,492).

We focus on the results for the logit model. The conclusions from the probit model
are analogous, especially in terms of APE, which, unlike index coefficients, are compara-
ble across models. As shown in column (1), the probability that country i imports from
country j is higher if country i already imported from country j in the previous year
(ltrade), if the two countries are closer to each other (ldist), if they share the same
language (language), if they share the same currency (currency), if they belong to the
same regional free trade agreement (fta), if they are not islands (islands), or if they
share the same religion (religion). As in Helpman, Melitz, and Rubinstein (2008), the
probability that country i imports from country j decreases if both countries have a
common land border (border), which they attribute to the effect of territorial border
conflicts that suppress trade between neighbors. These effects go in the same direction
regardless of the type of correction used. However, there are some differences in the
magnitudes of the effects produced by the different estimators.
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Comparing across columns, we see that AN-0, JK-JJ, and double produce very similar
estimates of index coefficients and APE that are all within one SE of each other. The split-
panel correction estimates of the index coefficients and APE of ldist, legal, currency,
and fta in column (3) are two or more SEs away from the rest of the estimates in the
same rows. We show in the next section that JK-SS2 is less accurate than AN-0 and
double through a Monte Carlo simulation calibrated to this application. Relative to
the uncorrected estimates in column (1), the corrected estimates of the index coefficient
of ltrade are more than one SE lower. We attribute the similarity in the rest of the
index coefficients and APE between uncorrected and bias-corrected estimates partly to
the large sample size (except for JK-SS2). Thus we find more significant differences in
the next section when we consider subpanels with less than 157 countries.

4.2 Calibrated Monte Carlo simulations

To evaluate the performance of the bias corrections, we conduct a Monte Carlo simula-
tion that mimics the empirical example described above. We focus on the logit model,
but we find similar results for the probit model that are not reported here. All the pa-
rameters are calibrated to the data used in the previous section, and their values are set
to the uncorrected FEs estimates from column (1) in table 1. To speed up computation,
we consider only two explanatory variables in Xij : the presence of trade in the previous
year (ltrade) and the log distance between country pairs (ldist).

For all possible country pairs, we first construct the index

indexij = β̂1ltradeij + β̂2ldistij + α̂i + γ̂j

where β̂1 = 2.838, β̂2 = −0.839, and α̂i and γ̂j are the uncorrected estimates of the
importer and exporter FEs (not reported in table 1). Next, we generate a new trade
indicator for each country pair as

trade∗ij = 1×
{
indexij > ln

(
1

runiform(1, 1)
− 1

)
︸ ︷︷ ︸

(∗)

}

where ln denotes the natural logarithm and runiform(1, 1) generates a random number
from the uniform distribution in (0, 1), such that (∗) corresponds to a random draw
from the standard logistic distribution.

We use the generated trade indicators to estimate the equation

Pr(trade∗ij = 1 | ltradeij , ldistij , αi, γj) = F (β∗
1ltradeij + β∗

2ldistij + α∗
i + γ∗j )

where F (·) is the logistic distribution and ltrade and dist are the variables from the
original dataset. We repeat this procedure in 500 simulations for 5 different sample
sizes: N = 25, N = 50, N = 75, N = 100, and N = 157 (full sample). For each sample
size and simulation, we draw a random sample of N countries both as importers and
exporters without replacement, so that the number of observations is N × (N − 1).
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Table 3 reports the result for the uncorrected estimator (FE), analytical correction
setting the trimming parameter equal to zero (AN-0), jackknife correction ss2 (JK-

SS2), and jackknife correction double (Double). We analyze the performance of these
estimators in terms of bias and inference accuracy of their asymptotic distribution for
both index coefficients and APE. In particular, we compute the biases (Bias), SDs (Std.
dev.), and root mean squared errors (RMSE) of the estimators together with the ratio
of average SEs to the simulation SDs (SE/SD) and the empirical coverages of confidence
intervals with 95% nominal level (p; 0.95). The variance of the APE is adjusted by the
population(integer) option, with the population being equal to the original sample size
(24,492 observations). All the results are reported in percentage of the true parameter
value.
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For the uncorrected estimators in panel A, we observe in column (1) that there is
significant bias in the index coefficients. This bias decreases with the sample size, but it
is still larger than the SD for the coefficient of ltrade in the full sample. Moreover, col-
umn (5) shows that confidence intervals constructed around the uncorrected estimates
suffer from severe undercoverage for all sample sizes. As in Fernández-Val and Weidner
(2016), we find very little bias in the APE, despite the large bias in the index coefficients.
In panel B, we see that the analytical correction substantially reduces the bias in the
index coefficients, producing confidence intervals with coverage close to their nominal
level for every sample size. This correction reduces SD, resulting in a reduction of more
than 50% in RMSE for several sample sizes. The jackknife corrections also reduce bias
and generally improve coverage but increase dispersion in small samples and require
larger sample sizes than the analytical corrections to improve RMSE over the uncor-
rected estimator. The jackknife correction double performs similarly to the analytical
correction, except for the smallest sample size. The jackknife correction ss2 of the in-
dex coefficient of ldist has higher RMSE than the uncorrected estimator even for the
full sample size. Overall, the SEs provide a good approximation to the SDs of all the
estimators of both the index coefficients and APE.

To summarize, table 3 shows that the analytical correction substantially reduces the
bias of the uncorrected estimator, producing more accurate point and interval estimators
for all the sample sizes considered. The jackknife correction double performs similarly
to the analytical correction, except for the smallest sample size N = 25. The split-panel
correction ss2 reduces bias but at the cost of increasing dispersion for most sample
sizes. In this application, ss2 is dominated by the other corrections uniformly across
all the sample sizes in terms of RMSE. These results are consistent with the empirical
evidence in table 1, where the uncorrected estimates of the index coefficient of ltrade
were more than one SE below the corrected estimates, the estimates of the APE were very
similar for the uncorrected and corrected estimators except for ss2, and the jackknife
correction ss2 produced estimates for ldist at odds with the other estimators.

5 Concluding remarks

The probitfe and logitfe commands implement the analytical and jackknife bias cor-
rections of Fernández-Val and Weidner (2016) for logit and probit models with two-way
FEs. The commands compute estimators of both index coefficients and APE, which
are often the parameters of interest in these models. We also provide functionality
for models with one-way FEs, offering an alternative to the clogit and xtlogit com-
mands, which do not produce corrected estimates of APE. Logit and probit models are
commonly used in empirical work, making the new commands a valuable addition to
the applied econometrician’s toolkit. Similar corrections can be implemented for other
nonlinear panel models such as tobit models for censored outcome variables. We leave
this extension to future research.
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Appendix

A.1. Expressions of the asymptotic bias and variance

Fernández-Val and Weidner (2016) show that the asymptotic bias and variance for β
can be expressed as

Bβ = W−1B, Dβ = W−1D, Vβ = W−1

where

B = �

⎛⎝− 1

2N

N∑
i=1

∑T
t=1

{
Hit∂

2FitX̃it + 2
∑T

τ=t+1Hit(Yit − Fit)ωiτ X̃iτ

}
∑T

t=1 ωit

⎞⎠
D = �

(
− 1

2T
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t=1

∑N
i=1Hit∂

2FitX̃it∑N
i=1 ωit

)

W = �

(
1

NT

N∑
i=1

T∑
t=1

ωitX̃itX̃
′
it

)

� := plimN,T→∞, ωit = Hit∂Fit, Hit = ∂Fit/{Fit(1− Fit)},
∂jGit := ∂jG(Z)|Z=X′

itβ
0+α0

i+γ0
t
for any function G and j = 0, 1, 2, and X̃it is the

residual of the population projection of Xit on the space spanned by αi and γt under a
metric weighted by ωit.

The expressions of the asymptotic bias terms for the APE are different depending on
whether the APE are obtained from uncorrected or bias-corrected estimators of β. The
probitfe and logitfe commands implement the corrections on APE obtained from

bias-corrected estimators of the parameters; that is, δ̃ is obtained using β̃ equal to the

bias-corrected estimator β̃
A

defined below. The expressions for the leading bias terms
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of δ̃ then read

Bδ = �

⎛⎝ 1

2N

N∑
i=1

∑T
t=1

{
2
∑T

τ=t+1Hit(Yit − Fit)ωiτΨ̃iτ + ∂α2
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⎞⎠
where Ψit and Ψ̃it are the fitted value and residual of the population regression of
−∂πΔit/ωit on the space spanned by αi and γt under the metric given by ωit. If all the
components of Xit are strictly exogenous, the first term of Bδ is zero. The asymptotic
variance of the estimators of δ is

Vδ = �
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N2T 2
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where rNT =
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)

A.2. Analytical correction

The analytical corrections are implemented using plugin estimators of the bias terms
that replace expectations by sample averages and true parameter values by FEs estima-
tors. Thus, for any function of the data, unobserved effects and parameters git(β, αi, γt),

let ĝit = git(β̂, α̂i, γ̂t) denote the FEs estimator of git = git(β
0, α0

i , γ
0
t ); for example,

F̂it = F (X′
itβ̂ + α̂i + γ̂t) denotes the FEs estimator of Fit = F (X′

itβ
0 + α0

i + γ0t ). The
probitfe and logitfe commands with the analytical option compute the correction
for β

β̃
A
= β̂ − Ŵ−1B̂/T − Ŵ−1D̂/N

where

B̂ = − 1
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Ŵ =
1

NT

N∑
i=1

T∑
t=1

ω̂it
̂̃
Xit
̂̃
X

′
it



544 Bias corrections for probit and logit models

ω̂it = Ĥit∂F̂it,
̂̃
Xit is the residual of the least-squares projection of Xit on the space

spanned by the incidental parameters under a metric weighted by ω̂it, and L is a trim-
ming parameter for estimation of spectral expectations such that L→ ∞ and L/T → 0.
The factor T/(T − j) is a degrees of freedom adjustment that rescales the time-series

averages T−1
∑T

t=j+1 by the number of observations instead of by T .

Similarly, the analytical correction for δ is computed as

δ̃
A
= δ̃ − B̂δ/T − D̂δ/N

where

δ̃ = Δ
(
β̃
A
, α̃A, γ̃A

)
(
α̃A, γ̃A

)
∈ argmax(α,γ)∈�N+T

∑
i,t

�it

(
β̃
A
, αi, γt

)
B̂δ = 1

2N

N∑
i=1

2
∑L

j=1{T/(T−j)}∑T
t=j+1 Ĥi,t−j(Yi,t−j−F̂i,t−j)ω̂it

̂̃
Ψit+

∑T
t=1

(
∂
α2
i
Δ̂it−Ψ̂itĤit∂

2F̂it

)
∑T

t=1 ω̂it

D̂δ =
1

2T

T∑
t=1

∑N
i=1

(
∂α2

i
Δ̂it − Ψ̂itĤit∂

2F̂it

)
∑N

i=1 ω̂it

A.3. SEs

The SEs for all the estimators (uncorrected or corrected) of the kth component of β are
computed as √

Ŵ−1
kk /(NT ), k = {1, . . . ,dimβ}

where Ŵ−1
kk is the (k, k) element of the matrix Ŵ−1 defined above, which is based on

the uncorrected FE estimator β̂. The SEs for all the estimators of the APE are computed
as

1

NT

⎧⎨⎩
N∑
i=1

⎛⎝aNT

T∑
t,τ=1

̂̃
Δit

̂̃
Δ

′
iτ + aNT

T∑
t=1

∑
j �=i

̂̃
Δit

̂̃
Δ

′
jt +

T∑
t=1

Γ̂itΓ̂
′
it

⎞⎠⎫⎬⎭
1/2

where
̂̃
Δit = Δ̂it − δ̃, Γ̂it = (DβΔ̂)′Ŵ−1Ĥit(Yit − F̂it)

̂̃
Xit − Ψ̂itĤit(Yit − F̂it) and

DβΔ̂ =
1

NT

N∑
i=1

T∑
t=1

∂αiΔ̂it
̂̃
Xit

The factor aNT is an FPC term,

aNT = (N0T0 −NT )/(N0T0 − 1)

where N0 and T0 are the population sizes of the two dimensions of the panel. For
example, aNT = 1 if at least one of the dimensions has infinite size in the population,
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and aNT = 0 if we observe the entire population. The correction affects only the first
two terms of the variance because they come from using a sample mean to estimate a
population mean, whereas the third term is due to parameter estimation.

A.4. One-way FEs models

In models that include only individual effects, all the expressions of the asymptotic bias
and variance are the same as for the two-way FEs models except for

Dβ = 0, Dδ = 0, ∂jGit := ∂jG(Z)|Z=X′
itβ

0+α0
i

and X̃it is the residual of the population projection of Xit on the space spanned by αi

under a metric weighted by ωit. Symmetrically, in models that include only time effects,
all the expressions of the asymptotic bias and variance are the same as for the two-way
FEs models except for

Bβ = 0, Bδ = 0, ∂jGit := ∂jG(Z)|Z=X′
itβ

0+γ0
t

and X̃it is the residual of the population projection of Xit on the space spanned by γt
under a metric weighted by ωit.

We do not provide explicit expressions for the analytical bias corrections and SEs
because they are analogous to the expressions given in sections A.2 and A.3. For the
jackknife, in models that include only individual effects, the following apply:

• The corrections ss1, ss2, and sj implement the SPJ of Dhaene and Jochmans
(2015), which applies SPJ to the individual dimension; that is,

β̃
ss1

= β̃
ss2

= β̃
sj

= 2β̂ − β̃N,T/2

• The corrections js, jj, and double implement the jackknife correction of Hahn
and Newey (2004), which applies PJ to the individual dimension; that is,

β̃
js

= β̃
jj

= β̃
double

= N β̂ − (N − 1)β̃N−1,T

Similarly, in models that include only time effects, the following apply:

• The corrections ss1, ss2, and js implement the SPJ of Dhaene and Jochmans
(2015), which applies SPJ to the time dimension; that is,

β̃
ss1

= β̃
ss2

= β̃
js

= 2β̂ − β̃N/2,T

• The corrections sj, jj, and double implement the jackknife correction of Hahn
and Newey (2004), which applies PJ to the time dimension; that is,

β̃
sj

= β̃
jj

= β̃
double

= T β̂ − (T − 1)β̃N,T−1


