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Abstract. In competing-risks analysis, the cause-specific cumulative incidence
function (CIF) is usually obtained in a modeling framework by either 1) transform-
ing on all cause-specific hazards or 2) transforming by using a direct relationship
with the subdistribution hazard function. We expand on current competing-risks
methodology from within the flexible parametric survival modeling framework and
focus on the second approach. This approach models all cause-specific CIFs si-
multaneously and is more useful for answering prognostic-related questions. We
propose the direct flexible parametric survival modeling approach for the cause-
specific CIF. This approach models the (log cumulative) baseline hazard without
requiring numerical integration, which leads to benefits in computational time. It
is also easy to make out-of-sample predictions to estimate more useful measures
and incorporate alternative link functions, for example, logit links. To implement
these methods, we introduce a new estimation command, stpm2cr, and demon-
strate useful predictions from the model through an illustrative melanoma dataset.

Keywords: st0482, stpm2cr, survival analysis, competing risks, flexible parametric
models, subdistribution hazard, cumulative incidence function

1 Introduction

In competing-risks analysis, researchers consider the cause-specific cumulative incidence
function (CIF), which is the probability of failure of an event in the presence of other
competing events. From within the modeling framework, the CIF is usually obtained
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by either 1) estimating all the cause-specific hazard (CSH) functions or 2) transform-
ing by using a direct relationship with the subdistribution hazard (SDH) function for
the cause of interest. Many tools in Stata allow us to estimate the cause-specific
CIF. We can obtain an empirical, nonparametric estimate of the cause-specific CIF us-
ing the user-written command stcompet, which applies the Aalen—Johansen approach
(Coviello and Boggess 2004).

Alternatively, we can fit regression models on either the CSH or SDH scale depending
on the research question (Sapir-Pichhadze et al. 2016; Noordzij et al. 2013; Koller et al.
2012). CSH regression models can be fit from within a semiparametric approach using
a typical Cox model or from within a flexible parametric modeling framework using
the user-written postestimation command stpm2cif. This command works with an
expanded dataset in which each patient has a row for each cause and is used after
fitting a cause-specific flexible parametric survival model (FPM) with stpm2 to model all
causes (Hinchliffe and Lambert 2013; Lambert and Royston 2009; Lambert et al. 2011;
Royston and Parmar 2002).

The preferred method for modeling covariate effects on the cause-specific CIF is the
Fine and Gray (1999) model, available through the stcrreg command. However, this
approach allows us to model only one event using the partial likelihood. We must fit
separate models for each competing event if we want to understand the overall impact
of a covariate on risk.

Competing-risks models can also be fit using the user-written command stcrprep,
which restructures the data and calculates appropriate weights (Lambert Forthcoming).
Standard Stata survival analysis commands can then be used to fit models more com-
putationally efficiently, for example, fitting the Fine and Gray model and parametric
models for the cause-specific CIF (Lambert, Wilkes, and Crowther Forthcoming).

We introduce parametric methods using the full likelihood because smooth esti-
mates can be obtained for the baseline cause-specific CIF or SDH for a particular cause
that can easily extend to incorporate nonproportional SDHs. Fitting parametric models
for the cause-specific CIF in this way is computationally quicker than fitting models
with stcrprep because no numerical integration or data restructure is required. An
additional advantage of these models is that we can model all cause-specific CIFs simul-
taneously and model covariate effects on all competing causes. Jeong and Fine (2006)
investigated a direct parametric inference approach and defined a likelihood that al-
lows us to model all the cause-specific CIFs simultaneously. We extend this approach
to FPMs, in which it is easy to model time-dependent effects and obtain useful out-of-
sample predictions.

Others have also proposed modeling the SDH under alternative link functions. For
example, Gerds, Scheike, and Andersen (2012) propose the proportional log-odds model
for the cause-specific CIF, which offers an alternative interpretation. However, the in-
terpretation is not as simple as modeling a single event and suffers from similar issues
in interpretation as the complementary log-log link function. Incorporating such al-
ternative link functions on the cause-specific CIF is also easy to implement using the
approach we outline in this article.
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This article continues as follows. In section 2, we introduce the methods for direct
inference on the cause-specific CIF under an FPM framework. In section 3, we outline
the syntax of stpm2cr, which fits the models introduced in section 2. In section 4, we
describe syntax for postestimation using predict after fitting models with stpm2cr.
In section 5, we provide illustrative examples. Finally, we conclude by discussing the
approach’s limitations and potential extensions.

2 Methods

Let T be the time to event for any K competing causes k = 1,..., K, and let D denote
the type of event, where D = 1,..., K. Here we consider the events to be death from
different causes, so the cause-specific CIF, Fy(t), is the probability of dying from a
particular cause D = k by time ¢ while also being at risk of dying from other causes
(Putter, Fiocco, and Geskus 2007):

Fp.(t)=P(T <t,D=k)
The all-cause CIF, F'(t), which is the probability of dying from any of the K causes

by time ¢, is the sum of all K cause-specific CIFs, Fj(t), and can also be expressed as
the complement of the overall survival function, S(¢):

K
F(t)=P(T <t)=Y Fj(t)=1-5()

2.1 Cause-specific hazard function

The cause-specific CIF, Fy(t), can be expressed as a function of either the CSH functions
for all K causes or the SDH for cause k. The CSH function, h¢*(t), gives the instantaneous
mortality rate from a particular cause k given that the patient is still alive at time ¢ in
the presence of all other causes of death.

P(t<T<t+At,D=kT >t
P (1) = Jlim, S +At7 S
—

The cause-specific CIF can be expressed as a function of the CSHs for all K causes:
t t K
Fi(t) = / exp —/ Z h$*(u)du p | hi(u)du
0 0%
Jj=1

Note here that the leading term within the integral gives the overall survival function,

t K
S(t) = exp —/0 Zh;s(u)du
j=1
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2.2 Subdistribution hazard function

Gray (1988) introduces the SDH for cause k, hi?(t), which gives a direct relationship
with the cause-specific CIF. This has the mathematical formulation

P{t<T<t+At,D=FKkT>tU(T<tnD#k)}

R4 (t) = lim

At—0 At
_ &R0} din{1- Rt}
1— Fi(t) dt

and is interpreted as the instantaneous rate of failure at time ¢ from cause k among
those still alive or those who have died from any of the other K — 1 competing causes
excluding cause k. The SDH rate is not a conventional epidemiological rate because of
the risk set (Lau, Cole, and Gange 2009) and should not be interpreted as a standard
hazard rate.

The cause-specific CIF can be expressed directly in terms of the SDH function for
cause k using standard survival relationships along with the cumulative SDH for cause
k? H}id(t)7

Fo()=1—oxp {~Hiw)  and  Hpl(t) = /0 had () du

Using the SDH functions for all K causes, we can also obtain the CSH functions,
h§#(t), for all K causes (Latouche et al. 2007),

K
{ ;1 Fj(z)} — Fy(t)

RS (t) = h3A(t) |1+ =
1= > F;(t)
Jj=1

2.3 Regression modeling

The most common model for the SDH for cause k is the Fine and Gray (1999) model,
which is expressed in a similar way to the cause-specific Cox proportional hazards model
because it assumes proportionality of covariate effects on the SDH scale,

hi (tx) = hi (1) exp (xB57) (1)

where ,Bzd are log-SDH ratios for cause k. The SDH ratios, exp( Zd)7 are interpreted
as the association on the effect of a covariate on risk (refer to Wolbers et al. [2014]
for more details on interpretation). We focus on implementing and extending the SDH
regression model in (1) from within the FPM approach.
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2.4 Likelihood estimation

Jeong and Fine (2006) showed that we can simultaneously fit parametric models that
directly fit covariate effects on the cause-specific CIF for all k causes, F(t|xx) (k =
1,...,K), without requiring indirect specification through the CSHs. Hence, for an
observable failure time t;, with independent and noninformative right censoring, for
each individual ¢ = 1,..., N, the likelihood for direct inference on the cause-specific CIF
is

N K 5 K
L=1] H [h3? (talxg) {1 — F (1)} | S 1= Fy(tilx;) (2)
i=1 j=1 j=1

where the censoring indicator, d;, tells us whether an individual died from any cause
k (0; = 1), or not (6 = 0). Note that the cause-specific CIF, Fj(t), in (2) is not a
proper cumulative distribution function and is instead referred to as a subdistribution
function because lim;_, o Fi(t) < 1 (Andersen et al. 2012).

2.5 Flexible parametric regression on the cause-specific cumulative
incidence function

Using the likelihood in (2), we can fit a parametric survival model simultaneously for all
K cause-specific CIFs. We apply the likelihood to the FPM approach described by Roys-
ton and Parmar (2002) and extend it using restricted cubic splines, si(In(t);vg, mg),
with M — 1 degrees of freedom, where s is a restricted cubic spline function for cause
k on log-time and consists of a vector of M knots, m; a vector of M — 1 parameters, +;
and covariates, x (Durrleman and Simon 1989). The following model can be specified
through a general link function, g(-), for each of the k = 1,..., K cause-specific CIF
with covariates, xy,

g{Fk(txir)} = sk {In(t); vk, mg } + X1 Bk

= Yok + Mk21k + Y M—D)REM-1)k T XkBk (3)
where 21, ..., 2(r—1)r are the basis functions of the restricted cubic splines and are
defined as

z1r = In(t)

i = {In(t) = mj}S — b {In(t) — man}y — (1= dj) {In(t) — mari}y
j=2,.. M—-1

where

and

w, ifu<0
(U)+{ .
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Through the general link function g(-) for the cause-specific CIF, Fy(¢), in (3), we
can apply similar transformations described in Royston and Parmar (2002) for the sur-
vival function. Lambert, Wilkes, and Crowther (Forthcoming) offer more details on the
various link functions available for the cause-specific CIF, but here we introduce only
the complementary log-log (cloglog) and logit link functions (see table 1).

Table 1. Common transformations on the general link function for the cause-specific
CIF

Parameters Link function Link name

log-subdistribution hazard ratios In[—In{l — Fy(¢|xx)}] cloglog

log odds-ratios % logit

2.6 Time-dependent effects

To relax the proportionality assumption, we fit interactions between the associated
covariates and the spline function for log-time. This allows us to introduce a new set
of knots, m., that represent the eth time-dependent effect for cause k with associated
parameters, ak. If there are e = 1,..., F time-dependent effects, we can extend the
model in (3) to

E

nk(t) = sk {In(t); yr, Mox } + xkBr + Z sk {In(¢); oup, myg } s
=1

In this approach, the spline function for different time-dependent effects can be
different and usually requires fewer knots for the baseline spline function. This extends
the original approach proposed by Royston and Parmar (2002). As all K causes are
modeled, one can also specify different time-dependent effects for each of the k cause-
specific FPM regression models.

2.7 Delayed entry

stpm2cr can also model left-truncated data or data with delayed entry. This is when
subjects are considered to be at risk some time after ¢ = 0.

2.8 Cure models

Andersson et al. (2011) proposed a method to estimate the cure proportion in a relative
survival FPM framework. In the competing-risks scenario, this would occur in a situa-
tion where the cause-specific CIF is constant after a certain point in time ¢. Hence, by
adapting the approach described by Andersson et al. (2011), we can estimate the cure
proportion from within a flexible parametric model for the cause-specific CIF specified
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in section 2.5 by forcing the log cumulative SDH to plateau after the last knot. This
involves adjusting how spline variables are calculated, so the cause-specific CIF is forced
to plateau (see Andersson et al. [2011] for more details). Because we use the SDH func-
tion for cause k, on which we assume the cure must be evaluated while simultaneously
modeling all other causes, the final knot must be specified after the final observed time
of death, which has been set at the 110th percentile of log time. Applying the methods
in Andersson et al. (2011) and the above adjustment to a specific cause k = ¢, we can fit
a flexible parametric cure model with a complementary log-log link for a cause-specific
CIF such that

B
exp |:’72c.z2c+"'+'Y(1wfl)cz(]\/ffl)c+‘Z Sc{ln(t);aicvmic}xic}
Fultix) = 1— (1 - 1) by

1—m.=1—exp {_ €Xp (700 + Xcﬁc)}
Therefore, the parameters 9. and B, are used to estimate the cure proportion for

cause k = c. Here we also implement a constraint on the linear spline, 71., such that it
is equal to 0.

To fit a cure model, we need to observe a plateau in the “raw” data for the cause-
specific CIF on which we wish to model the cure. This is usually done for a single
relevant cause, particularly the event of interest.

3 Syntax

stpm2cr [equationl] [equationZ] ... [equationN] [zf} [m], events (varname)

[gause(numlist) censvalue(#) noorthog alleq eform level(#) lininit

mazrimize_options ]

where equationl, equation?2, ..., equationN are the equations for each competing event.
Note that at least two equations must be specified. The syntax of each equation is

causename: [varlist] , scale(scalename) [df(#) knots (numlist) tvc(varlist)
dftvc (df.list) knotstvc(knotslist) bknots(knotslist) bknotstvc (knotslist)

noconstant cure]
You must stset your data before using stpm2cr; see [ST] stset. All events must be
specified in the failure() option of stset.
3.1 Main options

Model

events (varname) specifies the varname that contains the indicators for each competing
event failure. events() is required.
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cause (numlist) specifies the indicator values for the competing events specified in
events(). The indicators specified in numlist must be listed in the same order
as the equations equationl, equation?2, ..., equationN.

censvalue (#) specifies the indicator values in events() for censored individuals. The
default is censvalue(0).

noorthog suppresses orthogonal transformation of spline variables.

Reporting

alleq reports all equations used by m1. The models are fit using various constraints for
parameters associated with the derivatives of the spline functions. These parameters
are generally not of interest and thus are not shown by default. Also, an extra
equation is used when fitting delayed-entry models and is also not shown by default.

eform reports the exponentiated coefficients. For models on the log cumulative-subdis-
tribution hazard scale, scale(hazard), this option gives the subdistribution haz-
ard ratios if the covariate is not time dependent. Similarly, for models on the log
cumulative-subdistribution odds scale, scale (odds), this option will give odds ratios
for nontime-dependent effects (see the scale() option).

level (#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level; see [U] 20.7 Specifying the width
of confidence intervals.

Max options

lininit obtains initial values by fitting only the first spline basis function (that is, a
linear function of log survival-time). This is useful when models fail to converge
using the initial values obtained in the usual way. However, this option is seldom
needed.

mazimize_options: difficult, technique (algorithm_spec), iterate (#), [@}liog,
trace, gradient, showstep, hessian, shownrtolerance, tolerance(#),
ltolerance(#), gtolerance(#), nrtolerance(#), nonrtolerance, and
from(init_specs); see [R] maximize. These options are seldom used, but the
difficult option may be useful if there are convergence problems when
fitting models that use the Aranda—Ordaz family of link functions.

3.2 Equation options

scale (scalename) specifies the scale on which to model the cause-specific CIF. scale ()
is required.

scale(hazard) fits a model on the log cumulative-subdistribution hazard scale, that
is, the scale of In[— In{1 — Fj(¢)}]. If no time-dependent effects are specified, the
resulting model assumes proportionality.
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scale(odds) fits a model on the log cumulative-odds scale, that is, the scale of
log {Fx(t)}/{1 — F(¢t)}. If no time-dependent effects are specified, the resulting
model assumes proportionality of the odds ratios over time.

df (#) specifies the degrees of freedom for the restricted cubic spline function used
for the baseline subdistribution hazard rate. Usually a value between 3 and 5 is
sufficient, and the choice of degrees of freedom is insensitive to parameter estimates.
Using df (1) is equivalent to fitting a Weibull model when using scale(hazard).
The internal knots are placed at the centiles of the distribution of the uncensored
log times with boundary knots placed at the Oth and 100th centiles. An example is
provided below for df (5):

Degrees of freedom Internal knots Centile positions (log time)

5 4 20th, 40th, 60th, 80th

knots (numlist) specifies knot locations for the baseline distribution function, as op-
posed to the default knot locations set by df (). The locations of the knots are
placed on the log-time scale. Default knot positions are determined by the df ()
option.

tve (varlist) specifies the names of time-dependent variables. Time-dependent effects
are fit using restricted cubic splines. The degrees of freedom are specified using the
dftvc () option.

dftvc (df.list) specifies the degrees of freedom for time-dependent effects. If the same
degree of freedom is used for all time-dependent effects, then the syntax is the same
as df (#). With one degree of freedom, a linear effect of log time is fit. If there is
more than one time-dependent effect and different degrees of freedom are required
for each time-dependent effect, then the following syntax can be used: dftvc(x1:3
x2:2 1), where x1 has three degrees of freedom, x2 has two degrees of freedom, and
any remaining time-dependent effects have one degree of freedom.

knotstvc (knotslist) defines numlist knotslist as the location of the interior knots for
time-dependent effects. If different knots are required for different time-dependent
effects, the option is specified, for example, as follows: knotstvc(x1 1 2 3 x2 1.5
3.5).

bknots (knotslist) is a two-element list giving the boundary knots. By default, these
are located at the minimum and maximum of the uncensored survival times for all
cause-specific events on the log scale.

bknotstvc (knotslist) gives the boundary knots for any time-dependent effects. By
default, these are the same as for the bknots() option. They are specified on the
scale defined by scale(). For example, bknotstvc(xl 0.01 10 x2 0.01 8).

noconstant; see [R] estimation options.
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cure is specified when fitting cure models for a particular cause. It forces the cause-

specific cumulative subdistribution hazard to be constant after the last knot. When
the df () option is used together with the cure option, the internal knots are placed
evenly according to centiles of the distribution of the uncensored log survival-times
except one, which is placed at the 95th centile, and the final knot is placed outside
the last uncensored cause-specific log survival-time (110th percentile by default).
Alternative knot locations can be selected using the knots() option. Cure models
can be used only when modeling on the log cumulative-subdistribution hazard scale
(scale(hazard)).

4 Postestimation

stpm2cr is an estimation command and shares most features of standard Stata esti-

mation commands; see [U] 20 Estimation and postestimation commands. The
predictions available after fitting a model using stpm2cr are briefly described below.

4.1 Syntax

predict newvar [zf] [m] [, at (varname # [vamame #}) cause (numlist)

chrdenominator (varname # [vamame # })
shrdenominator (varname # [vamame # })

chrnumerator (varname # [varname # ])

shrnumerator (varname # [varname # ]) ci cif
cifdiffi(varname # [vamame # ])

cifdiff2(varname # [Uarname # ]) cifratio csh cumodds

cumsubhazard cured subdensity subhazard timevar (varname) uncured xb

zeros dxb level(#)]

Main

at (varname # [vamame #}) requests that the covariates specified by varname be

set to #. This is a useful way to obtain out-of-sample predictions. If at() is used
together with zeros, then all covariates not listed in at() are set to zero. If at()
is used without zeros, then all covariates not listed in at () are set to their sample
values.

cause (numlist) specifies the causes on which to make the predictions for and that are

stored in newvar_c#. If cause() is not specified, then predictions are made for all
causes included in the model and stored in newvar_c#.
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chrdenominator (varname # [vamame # ... ]) and shrdenominator (varname #
[vamame # oL, ]) specify the denominator of the cause-specific hazard ratio or
subdistribution hazard ratio for a specific cause. By default, all covariates not spec-
ified using this option are set to zero. See the cautionary note in chrnumerator ()
and shrnumerator () below. If # is set to missing (.), then the covariate has the
values defined in the dataset.

chrnumerator (varname # [vamame # o, ]) and shrnumerator (varname #

[va’mame # ... ]) specify the numerator of the (time-dependent) cause-specific
hazard ratio or subdistribution hazard ratio for a specific cause. By default, all
covariates not specified using this option are set to zero. Setting the remaining
values of the covariates to zero may not always be sensible, particularly on models
other than those on the cumulative subdistribution hazard scale or when more than
one variable has a time-dependent effect. If # is set to missing (. ), then the covariate
has the values defined in the dataset.

ci calculates a confidence interval for the requested statistic and stores the confidence
limits in newvar_lci and mewvar_uci.

cif predicts the cause-specific cumulative incidence function.

cifdiffi(varname # [vamame # ... }) and cifdiff2(varname # [vamame #
e }) predict the difference in cause-specific cumulative incidence functions, with
the first cause-specific cumulative incidence function defined by the covariate values
listed for cifdiff1() and the second by those listed for cifdiff2(). By default,
covariates not specified using either option are set to zero. Setting the remaining
values of the covariates to zero may not always be sensible. If # is set to missing
(.), then varname has the values defined in the dataset.

Example: cifdiffl(stage 1) (without specifying cifdiff2()) computes the dif-
ference in predicted cause-specific cumulative incidence functions at stage = 1 com-
pared with stage = 0 with all other covariates set to 0.

Example: cifdiffl(stage 2) cifdiff2(stage 1) computes the difference in pre-
dicted cause-specific cumulative incidence functions at stage = 2 compared with
stage = 1.

Example: cifdiffi(stage 2 age 50) cifdiff2(stage 1 age 70) computes the
difference in predicted hazard functions at stage = 2 and age = 50 compared with
stage = 1 and age = 70 with all other covariates set to 0.

cifratio predicts the relative contribution of failing from an event to the overall cu-
mulative incidence function. For example, if the event of interest is cancer, this
is the relative contribution of dying from cancer to the total mortality. cifratio
must be used along with the cause () option to specify the cause-specific cumulative
incidence function on the numerator of the ratio.

csh predicts the cause-specific hazard function.

cumodds predicts the cumulative odds-of-failure function.
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cumsubhazard predicts the cumulative subdistribution hazard function.
cured predicts the cause-specific cure proportion after fitting a cure model.
subdensity predicts the subdensity function.

subhazard predicts the subdistribution hazard function.

timevar (varname) defines the variable used as time in the predictions. The default is
timevar(_t). timevar() is useful for large datasets where, for plotting purposes,
predictions are needed only for 200 observations, for example. Be cautious when
using this option because predictions may be made at whatever covariate values are
in the first 200 rows of data. This can be avoided using the at () option or the zeros
option to define the covariate patterns for which you require the predictions.

uncured can be used after fitting a cure model for a specific cause. It can be used with
the subhazard and cif options to base predictions for the uncured group.

xb predicts the linear predictor, including the spline function.

zeros sets all covariates to zero (baseline prediction). For example, predict cif,
cause (1) cif zeros calculates the baseline cause-specific cumulative incidence func-
tion for cause = 1.

Subsidiary

dxb calculates the derivatives of the linear predictors.

level (#) specifies the confidence level, as a percentage, for confidence intervals. The
default is 1evel (95) or as set by set level.

5 Examples

5.1 Northern European Cancer Registry Data (1975-1994)

In this section, we illustrate the methods outlined in this article using the Northern
European cancer registry data, which were previously used to illustrate the use of strs
for relative survival models (Dickman and Coviello 2015). We use a subset of these data
that contains observations on 4,204 patients who were between 40 and 79 years old and
diagnosed with melanoma between 1975 and 1994. The covariates of interest are patient
age at diagnosis and stage of cancer, which is categorized into localized or regional stage
cancer at diagnosis. We excluded patients with distant stage cancer because of their
very high mortality rate, leaving a few patients at risk toward the end of follow-up time.
Most of these deaths are due to cancer, which means the effect of competing causes of
death is small and thus less interesting practically. Survival time is measured in months
since diagnosis to death because of cancer or other causes. Follow-up time is restricted
to 15 years from diagnosis.
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5.2 Nonparametric estimates for the cause-specific cumulative inci-
dence function

Estimated cause-specific CIFs have been predicted using the stcompet command, which
implements the Aalen—Johansen method (Coviello and Boggess 2004). Figure 1 shows
cause-specific CIFs estimated by stage at diagnosis for death from cancer and death from
other causes and shows that those with a more distant stage cancer at diagnosis have
an increased risk of dying from cancer and a lower risk of dying from other causes. The
sum of the cancer-specific CIF and CIF for other causes gives the overall, or all-cause
probability of death.

Localized Regional

0.8 0.8+

o
o
1

o
~
1
Cumulative Incidence

Cumulative Incidence

0.2+

0.0

Years since diagnosis Years since diagnosis

Cancer ————- Other causes

Figure 1. Predicted cause-specific cumulative incidence functions for death from cancer
or death from other causes using the Aalen—Johansen method by stage at diagnosis for
patients 40 to 80 years old.

5.3 Fine and Gray (1999) model

We initially fit direct regression models on the cause-specific CIF using the Fine and
Gray approach, the most commonly implemented method for modeling covariate effects
on the cause-specific cumulative incidence function. Fine and Gray models are fit only
with stage at diagnosis as a covariate for each of the cause-specific CIFs.

We generated a new indicator variable, status2, to overcome a small reporting error
with the stcrreg command when using the exit () option in stset at the time of sub-
mission. When one uses the usual censoring indicator variable in stset for one cause
before fitting a Fine and Gray model, the number of actual competing events is under-
reported because the competing events and censored events are no longer distinguished
and those who die before the exit time are instead treated as censored. Although this
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does not directly affect the parameter estimates, the total number of overall failures
reported for each cause-specific model is inconsistent. Therefore, we go on to fit Fine
and Gray models using the new variable, which is generated as follows:

stset surv_mm, failure(status == 1, 2) scale(12) id(id) exit(time 180)
(output omitted )
. generate status2 = cond(_d==0,0,status)

*Cancer
stset surv_mm, failure(status2 == 1) scale(12) id(id) exit(time 180)

(output omitted )

stcrreg i.stage, compete(status2 == 2)
failure _d: status2 ==
analysis time _t: surv_mm/12
exit on or before: time 180
id: id
Iteration O: log pseudolikelihood = -7389.917
Iteration 1: log pseudolikelihood = -7389.4747
Iteration 2: log pseudolikelihood = -7389.4745
Competing-risks regression No. of obs 4,204
No. of subjects = 4,204
Failure event status2 == 1 No. failed = 937
Competing event: status2 == 2 No. competing = 583
No. censored = 2,684
Wald chi2(1) = 287.75
Log pseudolikelihood = -7389.4745 Prob > chi2 = 0.0000

(Std. Err. adjusted for 4,204 clusters in id)

Robust
_t SHR  Std. Err. z P>|z| [95% Conf. Intervall
stage
Regional 4.783974 .4414379 16.96 0.000 3.992499 5.732352

stset surv_mm, failure(status2 == 2) scale(12) id(id) exit(time 180)

(output omitted )

stcrreg i.stage, compete(status2 == 1)
failure _d: status2 ==
analysis time _t: surv_mm/12
exit on or before: time 180
id: id

Iteration O: log pseudolikelihood = -4565.6556
Iteration 1: log pseudolikelihood = -4556.6879
Iteration 2: log pseudolikelihood = -4556.6578
Iteration 3: log pseudolikelihood = -4556.6578
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Competing-risks regression No. of obs = 4,204
No. of subjects = 4,204
Failure event : status2 == 2 No. failed = 583
Competing event: status2 == 1 No. competing = 937
No. censored = 2,684
Wald chi2(1) = 0.31
Log pseudolikelihood = -4556.6578 Prob > chi2 = 0.5790

(Std. Err. adjusted for 4,204 clusters in id)

Robust
_t SHR  Std. Err. z P>|z]| [95% Conf. Intervall]
stage
Regional .9080851 . 16577827 -0.55 0.579 .6459927 1.276514

The subdistribution hazard ratio for cancer gives the association between stage at
diagnosis and the cancer-specific CIF. A subdistribution hazard ratio of 4.78 indicates
that those with a more severe stage at diagnosis are associated with an increased risk
of dying from cancer. However, because of the awkward definition in the risk set,
it is difficult to make inferences on quantitative effects. Although insignificant, the
subdistribution hazard ratio from the Fine and Gray model for other causes shows that
those with a more severe stage at diagnosis are associated with a decreased risk of dying
from other causes. This is because patients at an earlier stage at diagnosis are healthier
and therefore more likely to live longer and die from other causes before their cancer.
On the other hand, patients at a later stage are unlikely to live as long and die from
other causes.

After fitting each cause-specific Fine and Gray model, we can use stcurve to predict
and store the cause-specific CIFs.

5.4 Log-cumulative subdistribution hazard models

Using the full likelihood in (2), we can fit direct flexible parametric regression models for
the cause-specific CIF. Rather than fitting a model to each cause-specific CIF separately,
we can instead model all cause-specific CIFs simultaneously. This is shown below with
the assumption of proportionality for all causes:
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. stset surv_mm, failure(status==1, 2) scale(12) id(id) noshow exit(time 180)
(output omitted )

. stpm2cr [cancer: stage2, scale(hazard) df(5)]
> [other: stage2, scale(hazard) df(5)],
> events(status) cause(l 2) cens(0) eform nolog

(output omitted )

Log likelihood = -4901.0253 Number of obs 4,204
exp(b)  Std. Err. z P>|z| [95% Conf. Interval]

cancer
stage2 4.673522 .3973545 18.14  0.000 3.956153 5.520973
_rcs_cl_1 2.371601 .0642335 31.88 0.000 2.248989 2.500897
_rcs_cl_2 1.40679 .0445023 10.79 0.000 1.322216 1.496774
_rcs_cl_3 1.061522 .0237518 2.67 0.008 1.015975 1.109111
_rcs_cl_4 .9889806 .0103402 -1.06 0.289 .9689204 1.009456
_rcs_cl_5 1.002836 .005948 0.48 0.633 .9912455 1.014562
_cons .1390518 .0063603 -51.18  0.000 .1289329 .1499648

other
stage2 .6867003 .115223 -2.24 0.025 .4942449 .9540964
_rcs_c2_1 2.564841 .0949475 25.44  0.000 2.385338 2.757852
_rcs_c2_2 1.058082 .0298144 2.00 0.045 1.001231 1.118161
_rcs_c2_3 .9541731 .0196412 -2.28 0.023 .9164434 .9934562
_rcs_c2_4 .9843678 .0125716 -1.23 0.217 .9600337 1.009319
_rcs_c2_5 .9917352 .0082375 -1.00 0.318 .9757208 1.008012
_cons .0800586 .0040859  -49.47  0.000 .0724379 .088481

An equation is specified for each cause within the square brackets along with their
respective options. These are similar to those used for stpm2 where df (5) implies four
internal knots at default locations. The estimated subdistribution hazard ratios are
displayed for each cause and their 95% confidence intervals. From the subdistribution
hazard ratios for both causes, we can infer that patients with regional stage cancer at
diagnosis have an increased risk of dying from cancer and a decreased risk of dying
from other causes compared with those with localized stage cancer at diagnosis. The
advantage of using the parametric approach is that it is easy to obtain other useful
predictions to aid interpretation, because, as mentioned previously, it is difficult to
interpret the subdistribution hazard ratios in terms of quantitative effects. The following
code obtains the cause-specific CIFs, subdistribution hazard functions for each cause,
and cause-specific hazard functions. Confidence intervals are obtained using the ci
option.

. range temptime O 15 1000
(3,204 missing values generated)

. predict cifl, cif at(stagel 1 stage2 0) timevar(temptime)
Calculating predictions for the following causes: 1 2
. predict cif2, cif at(stagel O stage2 1) timevar(temptime)
Calculating predictions for the following causes: 1 2

. predict sdhl, subhazard at(stagel 1 stage2 0) timevar(temptime)
Calculating predictions for the following causes: 1 2

. predict sdh2, subhazard at(stagel O stage2 1) timevar(temptime)
Calculating predictions for the following causes: 1 2
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. predict cshi, csh at(stagel 1 stage2 0) timevar(temptime)
Calculating predictions for the following causes: 1 2

. predict csh2, csh at(stagel O stage2 1) timevar(temptime)
Calculating predictions for the following causes: 1 2

The top row in figure 2 plots the predicted subdistribution hazard function for each
cause, and the bottom row illustrates the predicted cause-specific hazard function by
stage at diagnosis. The subdistribution hazard gives the association on the effect of
stage at diagnosis on risk, and the cause-specific hazard is the association on the effect
of stage at diagnosis on the hazard rate.
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Figure 2. Subdistribution hazards predicted for each cause and cause-specific hazard
predictions by stage at diagnosis for patients 40 to 80 years old from a log cumulative-
proportional subdistribution hazard model for melanoma data.
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Figure 3 compares the cause-specific CIFs obtained from the Fine and Gray models
for each cause fit in section 5.3 with those obtained from the log cumulative-proportional
subdistribution hazards model and shows sensible agreement between the two (see
Mozumder, Rutherford, and Lambert [2016] for more details on the disagreement in
the cause-specific CIF for death from other causes).
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Figure 3. A comparison of cause-specific cumulative incidence functions for death from
cancer or death from other causes predicted simultaneously from a log cumulative-
subdistribution hazard model and from separate Fine and Gray models for each cause
by stage at diagnosis for patients 40 to 80 years old.
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In figure 4, the Aalen—Johansen estimates are compared with the cause-specific
CIFs obtained from the log cumulative-proportional subdistribution hazard model. The
estimates are reasonably similar. However, we can achieve a better fit by relaxing the

assumption of proportionality through including time-dependent effects using restricted
cubic splines.

Localized (PSDH) Regional (PSDH)

0.8

0.6+

0.4+

Cumulative incidence
Cumulative incidence

Years since diagnosis Years since diagnosis
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Figure 4. A comparison of cause-specific cumulative incidence functions for death from
cancer or death from other causes predicted simultaneously from a log cumulative-
subdistribution hazard model assuming proportionality and using the Aalen—Johansen
empirical estimates for each cause by stage at diagnosis for patients 40 to 80 years old.
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5.5 Time-dependent effects

481

Time-dependent effects can be easily incorporated by specifying the dftve () and tve ()
equation-specific options as shown in the following code:

. stpm2cr [cancer: stage2, scale(hazard) df(5) tvc(stage2) dftvc(3)]

> [other: stage2, scale(hazard) df(5) tvc(stage2) dftvc(3)],

> events(status) cause(l 2) cens(0) eform nolog

(output omitted )

Log likelihood = -4877.5917 Number of obs = 4,204
exp(b)  Std. Err. z P>|z| [957% Conf. Intervall

cancer
stage2 5.225629  .4543429 19.02  0.000 4.406875 6.196499
_rcs_cl_1 2.570244 .089602 27.08 0.000 2.400493 2.752
_rcs_cl_2 1.440213 .0605618 8.68 0.000 1.326274 1.56394
_rcs_cl_3 1.076737  .0280174 2.84 0.004 1.023201 1.133074
_rcs_cl_4 .9907888  .0106845 -0.86 0.391 .9700674 1.011953
_rcs_cl_5 .9997375 .0058897 -0.04 0.964 .9882603 1.011348
_rcs_stag-~1_1 .7353858  .0413674 -5.46  0.000 .658617 .8211029
_rcs_stag~1_2 .9750149  .0568817 -0.43 0.664 .8696665 1.093125
_rcs_stag-~1_3 .9458115 .0303569 -1.74 0.083 .8881458 1.007221
_cons .1328929  .0053238 -50.38  0.000 .1228576 .143748

other

stage2 1.18831 .2267027 0.90 0.366 .8175976 1.727109
_rcs_c2_1 2.658485 .1059802 24.53 0.000 2.458675 2.874533
_rcs_c2_2 1.062388  .0328778 1.96 0.051 .999864 1.128822
_rcs_c2_3 .9584928  .0206057 -1.97  0.049 .9189454 .9997422
_rcs_c2_4 .9841378 .0124521 -1.26  0.206 .9600322 1.008849
_rcs_c2_5 .9926364  .0081918 -0.90 0.370 .9767099 1.008823
_rcs_stag-~2_1 .68066  .0697333 -3.75  0.000 .5568331 .8320231
_rcs_stag~2_2 1.007956 .0739275 0.11  0.914 .8729933 1.163783
_rcs_stag-~2_3 .9515855  .0501094 -0.94 0.346 .8582712 1.055045
_cons .0775996  .0040571  -48.89  0.000 .0700417 .0859732

The tvc(stage2) and dftvc(3) options state that the stage?2 variable is to be time
dependent using restricted cubic splines with two internal knots (that is, three degrees
of freedom). Overall, 10 parameters are estimated for each cause in the model. For
example, for cancer, there are five derived variables for the baseline log cumulative-
subdistribution hazard (-rcs_c1_1-_rcs_c1.5) and three derived splines for the time-
dependent effect stage2 (_rcs_stage2.cl_1-_rcs_stage2.c1.3).

In a time-dependent model, parameter estimates become more complex and less
useful when interpreted on their own. Instead, it is better to obtain predictions between
groups for specific covariate patterns as relative or absolute differences over time using
predict. Note that the coding is the same to generate the same predictions:
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. range temptime O 15 1000
(3,204 missing values generated)

. predict cif_tvcl, cif at(stagel 1 stage2 0) ci timevar(temptime)
Calculating predictions for the following causes: 1 2

. predict cif_tvc2, cif at(stagel O stage2 1) ci timevar(temptime)
Calculating predictions for the following causes: 1 2

. predict cifdiff, cifdiffil(stagel O stage2 1) cifdiff2(stagel 1 stage2 0) ci
> timevar(temptime)
Calculating predictions for the following causes: 1 2

. predict shr, shrn(stagel O stage2 1) shrd(stagel 1 stage2 0) ci
> timevar (temptime)
Calculating predictions for the following causes: 1 2

. predict chr, chrn(stagel O stage2 1) chrd(stagel 1 stage2 0) ci
> timevar (temptime)
Calculating predictions for the following causes: 1 2

Figure 5 now shows a better fit of the model-estimated cause-specific CIFs, partic-
ularly with regional stage patients, compared with the nonparametric Aalen—Johansen
estimates with very good agreement.
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Figure 5. A comparison of cause-specific cumulative incidence functions for death from
cancer or death from other causes predicted simultaneously from a log cumulative-
nonproportional subdistribution hazard model and using the Aalen—Johansen empirical
estimates for each cause by stage at diagnosis for patients 40 to 80 years old.

We can obtain absolute differences with 95% confidence intervals between the re-
gional and localized stage groups over time for each cause-specific CIF. Differences are
calculated using the cifdiff1() and cifdiff2() options. The obtained predictions
are illustrated in figure 6, which shows us that those with a more severe stage of cancer
at diagnosis are more likely to die from cancer. The difference is smaller for other causes
for the first six years since diagnosis. In the later years, the cause-specific CIF for other
causes is larger for localized stage patients.
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Figure 6. Predicted absolute differences (Regional — Localized) in cause-specific cu-
mulative incidence functions with 95% confidence intervals from a log cumulative-
nonproportional subdistribution hazard model.

Time-dependent subdistribution and cause-specific hazard ratios are obtained us-
ing the options shrnumerator() and shrdenominator(), and chrnumerator() and
chrdenominator (), respectively. Using these options, we can obtain ratios for any
two covariate patterns. Figure 7 shows the time-dependent subdistribution and cause-
specific hazard ratios and compares regional stage patients with localized stage patients
at diagnosis. At the start of follow-up, for both cancer-specific hazard ratios, regional
stage patients have a mortality rate 17 times that of localized stage patients that de-
creases over follow-up time. The mortality rate of other causes on both scales for
regional stage patients at the start of follow-up time is approximately 4.5 times that of
localized stage patients. Beyond two years since diagnosis, the subdistribution hazard
rate of other causes for regional stage patients is lower than the localized stage patients
because the ratio is less than 1. This is expected because those at a later stage will
die earlier from the cancer before they die from other causes. The cause-specific hazard
ratios give us the association of stage at diagnosis on the rate and show a different effect
on death from other causes, because patients at a later stage tend to be more sick and
generally are at a higher risk of dying. This translates to a positive association between
more distant stage patients and mortality rate for other causes.
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Figure 7. Predicted subdistribution and cause-specific hazard ratios for each cause
from a log cumulative-nonproportional subdistribution hazard model. Ratios compare
regional stage with localized stage patients at diagnosis. Dotted line is a reference line
when the rate is equal to 1, that is, no difference.

5.6 Cure model

Cure models for any cause can be fit by adding the equation option cure. However, we
highly recommend that this be done only for one cause, usually the event of interest.
Predictions can be made after fitting a cure model with predict using the cured and
uncured options. Specifying the cured option will calculate the cure proportion for the
cause that cured was specified for and a variable with the suffix _btd that partitions
those that are still alive into two groups: patients bound to die from cancer and not
bound to die from cancer. The code for fitting a cure model and predictions is shown
below:
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. stpm2cr [cancer: , scale(hazard) df(5) cure]
> [other: , scale(hazard) df(5)],

> events(status) cause(l 2) cens(0) eform nolog

(output omitted )

Log likelihood = -1742.7601 Number of obs = 1,692
exp(b)  Std. Err. z P>|z| [95% Conf. Intervall

cancer
_rcs_cl_1 2.168448 .0851865 19.70 0.000 2.007752 2.342007
_rcs_cl_2 .9134977 .0245224 -3.37 0.001 .8666772 .9628475
_rcs_cl_3 .9989706 .0182824 -0.06 0.955 .9637729 1.035454
_rcs_cl_4 .9775022 .0134488 -1.65 0.098 .9514954 1.00422

_rcs_cl_5 1 (omitted)

_cons .348136 .0181445 -20.25 0.000 .3143294 .3855784

other
_rcs_c2_1 2.645041 .3083898 8.34 0.000 2.104696 3.324111
_rcs_c2_2 .9981758 .0919501 -0.02 0.984 .8332895 1.195689
_rcs_c2_3 .9368575 .0517331 -1.18 0.238 .8407566 1.043943
_rcs_c2_4 1.013603 .037129 0.37 0.712 .9433826 1.089051
_rcs_c2_5 .9643029 .0211338 -1.66 0.097 .9237584 1.006627
_cons .0220712 .0032665 -25.77 0.000 .0165139 .0294985

. range temptime O 15 1000
(692 missing values generated)

. predict cif, cif timevar(temptime)
Calculating predictions for the following causes: 1 2

. predict cure, cured timevar(temptime)
Calculating predictions for the following causes: 1 2

. generate cif_tot = cif_cl + cif_c2
(693 missing values generated)

In section 2.8, we showed that to fit cure models, we constrained the last knot to
be zero to force a plateau. This is shown in the output above, where the parameter
for _rcs_c1.5 is equal to one. Analysis is restricted to localized stage patients 40 to
54 years old, where a cure is found to be reasonable. To check this, we note that the
plot to the left in figure 8 compares the estimated cancer-specific CIF from the model
with the Aalen—Johansen estimate and shows extremely good agreement with the cure
proportion estimated at approximately 30% after 12 years since diagnosis where the
cancer-specific CIF plateaus. On the right-hand side of figure 8, the cause-specific CIFs
are stacked, and the dashed line is the partitioning of alive patients that are bound to
or not bound to die into two groups. This estimate is provided as part of the cured
option with the suffix _btd. Eloranta et al. (2014) introduce this quantity to aid better
risk communication, and it is calculated as follows,

Palive,can(t) =7.— I (t)
Palivepth(t) =1- F2(t) - FK(t) — Te
where 7, is the proportion of those bound to die from cancer on which a cure is assumed.

For k = 1, Pajive,can(t) represents patients who will ultimately die from their cancer, and
Pijive,oth (t) represents those who will die from competing causes where k = 2,..., K.
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In our example, from the stacked probabilities in figure 8, at 6 years after diagnosis,
approximately 25% have died, 6% are alive yet bound to die from cancer, and 69% are

alive and not bound to die from cancer.
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Figure 8. Left: Comparison of predicted cancer-specific CIFs obtained from the log
cumulative-subdistribution hazard cure model and using the Aalen—Johansen method
for localized stage patients 40 to 54 years old. Right: Stacked cause-specific CIFs ob-
tained from a log cumulative-subdistribution hazard cure model. Dashed-line partitions
living patients into those bound to die from cancer and not bound to die from cancer.

5.7 Conclusions

Competing-risks models are being widely applied in research, and fitting regression
models on the subdistribution hazard scale is encouraged for researchers to make infer-
ences on prognosis and understand the association of a covariate on risk. Analysis from
within the flexible parametric modeling framework using the direct likelihood approach
for the cause-specific CIF has several advantages. For example, the method saves com-
putational time because numerical integration is not required to model the baseline log
cumulative-subdistribution hazard function. All causes are modeled simultaneously, so
there is no need to fit separate models for each cause. This is implemented in the new
stpm2cr command, an adaptation of the stpm2 command. Other useful predictions
can be obtained using predict after fitting a model using stpm2cr. This complements
flexible parametric regression models for competing risks on the cause-specific hazard
scale and allows researchers to gain a more complete understanding on the impact of
the event of interest on outcome. However, a well-known problem of direct regression
models for the cause-specific CIF is that the sum of all probabilities may exceed 1 for
certain covariate patterns. This is particularly problematic in the oldest age groups,
where patients are at a higher risk of dying from competing events, which leads to
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very high overall probability of death. This is also the case in our approach, and it
is sometimes avoided if models are not misspecified, for example, by adjusting for all
appropriate covariates with any potential interactions and by including time-dependent
effects. In some situations, models may fail to converge when specified correctly, but
this will depend on the use of better initial values for the optimizer so that it is not
searching in the wrong direction. Therefore, future work may involve implementing an
appropriate constraint on the models to avoid issues in convergence.
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