

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

The Stata Journal (2017)
17, Number 2, pp. 462–489

A flexible parametric competing-risks model using a direct likelihood approach for the cause-specific cumulative incidence function

Sarwar Islam Mozumder

Department of Health Sciences
University of Leicester
Leicester, UK
si113@le.ac.uk

Mark J. Rutherford

Department of Health Sciences
University of Leicester
Leicester, UK
mark.rutherford@le.ac.uk

Paul C. Lambert

Department of Health Sciences
University of Leicester
Leicester, UK
and
Medical Epidemiology and Biostatistics
Karolinska Institutet
Stockholm, Sweden
paul.lambert@le.ac.uk

Abstract. In competing-risks analysis, the cause-specific cumulative incidence function (CIF) is usually obtained in a modeling framework by either 1) transforming on all cause-specific hazards or 2) transforming by using a direct relationship with the subdistribution hazard function. We expand on current competing-risks methodology from within the flexible parametric survival modeling framework and focus on the second approach. This approach models all cause-specific CIFs simultaneously and is more useful for answering prognostic-related questions. We propose the direct flexible parametric survival modeling approach for the cause-specific CIF. This approach models the (log cumulative) baseline hazard without requiring numerical integration, which leads to benefits in computational time. It is also easy to make out-of-sample predictions to estimate more useful measures and incorporate alternative link functions, for example, logit links. To implement these methods, we introduce a new estimation command, `stpm2cr`, and demonstrate useful predictions from the model through an illustrative melanoma dataset.

Keywords: `st0482`, `stpm2cr`, survival analysis, competing risks, flexible parametric models, subdistribution hazard, cumulative incidence function

1 Introduction

In competing-risks analysis, researchers consider the cause-specific cumulative incidence function (CIF), which is the probability of failure of an event in the presence of other competing events. From within the modeling framework, the CIF is usually obtained

by either 1) estimating all the cause-specific hazard (CSH) functions or 2) transforming by using a direct relationship with the subdistribution hazard (SDH) function for the cause of interest. Many tools in Stata allow us to estimate the cause-specific CIF. We can obtain an empirical, nonparametric estimate of the cause-specific CIF using the user-written command `stcompet`, which applies the Aalen–Johansen approach (Coviello and Boggess 2004).

Alternatively, we can fit regression models on either the CSH or SDH scale depending on the research question (Sapir-Pichhadze et al. 2016; Noordzij et al. 2013; Koller et al. 2012). CSH regression models can be fit from within a semiparametric approach using a typical Cox model or from within a flexible parametric modeling framework using the user-written postestimation command `stpm2cif`. This command works with an expanded dataset in which each patient has a row for each cause and is used after fitting a cause-specific flexible parametric survival model (FPM) with `stpm2` to model all causes (Hinchliffe and Lambert 2013; Lambert and Royston 2009; Lambert et al. 2011; Royston and Parmar 2002).

The preferred method for modeling covariate effects on the cause-specific CIF is the Fine and Gray (1999) model, available through the `stcrreg` command. However, this approach allows us to model only one event using the partial likelihood. We must fit separate models for each competing event if we want to understand the overall impact of a covariate on risk.

Competing-risks models can also be fit using the user-written command `stcrprep`, which restructures the data and calculates appropriate weights (Lambert Forthcoming). Standard Stata survival analysis commands can then be used to fit models more computationally efficiently, for example, fitting the Fine and Gray model and parametric models for the cause-specific CIF (Lambert, Wilkes, and Crowther Forthcoming).

We introduce parametric methods using the full likelihood because smooth estimates can be obtained for the baseline cause-specific CIF or SDH for a particular cause that can easily extend to incorporate nonproportional SDHs. Fitting parametric models for the cause-specific CIF in this way is computationally quicker than fitting models with `stcrprep` because no numerical integration or data restructure is required. An additional advantage of these models is that we can model all cause-specific CIFs simultaneously and model covariate effects on all competing causes. Jeong and Fine (2006) investigated a direct parametric inference approach and defined a likelihood that allows us to model all the cause-specific CIFs simultaneously. We extend this approach to FPMs, in which it is easy to model time-dependent effects and obtain useful out-of-sample predictions.

Others have also proposed modeling the SDH under alternative link functions. For example, Gerdts, Scheike, and Andersen (2012) propose the proportional log-odds model for the cause-specific CIF, which offers an alternative interpretation. However, the interpretation is not as simple as modeling a single event and suffers from similar issues in interpretation as the complementary log-log link function. Incorporating such alternative link functions on the cause-specific CIF is also easy to implement using the approach we outline in this article.

This article continues as follows. In section 2, we introduce the methods for direct inference on the cause-specific CIF under an FPM framework. In section 3, we outline the syntax of `stpm2cr`, which fits the models introduced in section 2. In section 4, we describe syntax for postestimation using `predict` after fitting models with `stpm2cr`. In section 5, we provide illustrative examples. Finally, we conclude by discussing the approach's limitations and potential extensions.

2 Methods

Let T be the time to event for any K competing causes $k = 1, \dots, K$, and let D denote the type of event, where $D = 1, \dots, K$. Here we consider the events to be death from different causes, so the cause-specific CIF, $F_k(t)$, is the probability of dying from a particular cause $D = k$ by time t while also being at risk of dying from other causes (Putter, Fiocco, and Geskus 2007):

$$F_k(t) = P(T \leq t, D = k)$$

The all-cause CIF, $F(t)$, which is the probability of dying from any of the K causes by time t , is the sum of all K cause-specific CIFs, $F_k(t)$, and can also be expressed as the complement of the overall survival function, $S(t)$:

$$F(t) = P(T \leq t) = \sum_{j=1}^K F_j(t) = 1 - S(t)$$

2.1 Cause-specific hazard function

The cause-specific CIF, $F_k(t)$, can be expressed as a function of either the CSH functions for all K causes or the SDH for cause k . The CSH function, $h_k^{cs}(t)$, gives the instantaneous mortality rate from a particular cause k given that the patient is still alive at time t in the presence of all other causes of death.

$$h_k^{cs}(t) = \lim_{\Delta t \rightarrow 0} \frac{P(t < T \leq t + \Delta t, D = k | T > t)}{\Delta t}$$

The cause-specific CIF can be expressed as a function of the CSHs for all K causes:

$$F_k(t) = \int_0^t \left[\exp \left\{ - \int_0^t \sum_{j=1}^K h_j^{cs}(u) du \right\} \right] h_k^{cs}(u) du$$

Note here that the leading term within the integral gives the overall survival function,

$$S(t) = \exp \left\{ - \int_0^t \sum_{j=1}^K h_j^{cs}(u) du \right\}$$

2.2 Subdistribution hazard function

Gray (1988) introduces the SDH for cause k , $h_k^{sd}(t)$, which gives a direct relationship with the cause-specific CIF. This has the mathematical formulation

$$\begin{aligned} h_k^{sd}(t) &= \lim_{\Delta t \rightarrow 0} \frac{P\{t < T \leq t + \Delta t, D = k | T > t \cup (T \leq t \cap D \neq k)\}}{\Delta t} \\ &= \frac{\frac{d}{dt}\{F_k(t)\}}{1 - F_k(t)} = -\frac{d[\ln\{1 - F_k(t)\}]}{dt} \end{aligned}$$

and is interpreted as the instantaneous rate of failure at time t from cause k among those still alive or those who have died from any of the other $K - 1$ competing causes excluding cause k . The SDH rate is not a conventional epidemiological rate because of the risk set (Lau, Cole, and Gange 2009) and should not be interpreted as a standard hazard rate.

The cause-specific CIF can be expressed directly in terms of the SDH function for cause k using standard survival relationships along with the cumulative SDH for cause k , $H_k^{sd}(t)$,

$$F_k(t) = 1 - \exp\{-H_k^{sd}(u)\} \quad \text{and} \quad H_k^{sd}(t) = \int_0^t h_k^{sd}(u)du$$

Using the SDH functions for all K causes, we can also obtain the CSH functions, $h_k^{cs}(t)$, for all K causes (Latouche et al. 2007),

$$h_k^{cs}(t) = h_k^{sd}(t) \left[1 + \frac{\left\{ \sum_{j=1}^K F_j(z) \right\} - F_k(t)}{1 - \sum_{j=1}^K F_j(t)} \right]$$

2.3 Regression modeling

The most common model for the SDH for cause k is the Fine and Gray (1999) model, which is expressed in a similar way to the cause-specific Cox proportional hazards model because it assumes proportionality of covariate effects on the SDH scale,

$$h_k^{sd}(t|\mathbf{x}) = h_{0,k}^{sd}(t) \exp(\mathbf{x}\boldsymbol{\beta}_k^{sd}) \quad (1)$$

where $\boldsymbol{\beta}_k^{sd}$ are log-SDH ratios for cause k . The SDH ratios, $\exp(\boldsymbol{\beta}_k^{sd})$, are interpreted as the association on the effect of a covariate on risk (refer to Wolbers et al. [2014] for more details on interpretation). We focus on implementing and extending the SDH regression model in (1) from within the FPM approach.

2.4 Likelihood estimation

Jeong and Fine (2006) showed that we can simultaneously fit parametric models that directly fit covariate effects on the cause-specific CIF for all k causes, $F_k(t|\mathbf{x}_k)$ ($k = 1, \dots, K$), without requiring indirect specification through the CSHs. Hence, for an observable failure time t_i , with independent and noninformative right censoring, for each individual $i = 1, \dots, N$, the likelihood for direct inference on the cause-specific CIF is

$$L = \prod_{i=1}^N \left[\left(\prod_{j=1}^K \left[h_j^{sd}(t_i|\mathbf{x}_j) \{1 - F_j(t_i)\} \right]^{\delta_{ij}} \right) \left\{ 1 - \sum_{j=1}^K F_j(t_i|\mathbf{x}_j) \right\}^{1 - \sum_{j=1}^K \delta_{ij}} \right] \quad (2)$$

where the censoring indicator, δ_{ik} , tells us whether an individual died from any cause k ($\delta_{ik} = 1$), or not ($\delta_{ik} = 0$). Note that the cause-specific CIF, $F_k(t)$, in (2) is not a proper cumulative distribution function and is instead referred to as a subdistribution function because $\lim_{t \rightarrow \infty} F_k(t) < 1$ (Andersen et al. 2012).

2.5 Flexible parametric regression on the cause-specific cumulative incidence function

Using the likelihood in (2), we can fit a parametric survival model simultaneously for all K cause-specific CIFs. We apply the likelihood to the FPM approach described by Royston and Parmar (2002) and extend it using restricted cubic splines, $s_k(\ln(t); \boldsymbol{\gamma}_k, \mathbf{m}_k)$, with $M - 1$ degrees of freedom, where s_k is a restricted cubic spline function for cause k on log-time and consists of a vector of M knots, \mathbf{m} ; a vector of $M - 1$ parameters, $\boldsymbol{\gamma}$; and covariates, \mathbf{x}_k (Durrleman and Simon 1989). The following model can be specified through a general link function, $g(\cdot)$, for each of the $k = 1, \dots, K$ cause-specific CIF with covariates, \mathbf{x}_k ,

$$\begin{aligned} g\{F_k(t|\mathbf{x}_{ik})\} &= s_k\{\ln(t); \boldsymbol{\gamma}_k, \mathbf{m}_k\} + \mathbf{x}_k \boldsymbol{\beta}_k \\ &= \gamma_{0k} + \gamma_{1k} z_{1k} + \dots + \gamma_{(M-1)k} z_{(M-1)k} + \mathbf{x}_k \boldsymbol{\beta}_k \end{aligned} \quad (3)$$

where $z_{1k}, \dots, z_{(M-1)k}$ are the basis functions of the restricted cubic splines and are defined as

$$\begin{aligned} z_{1k} &= \ln(t) \\ z_{jk} &= \{\ln(t) - m_{jk}\}_+^3 - \phi_{jk} \{\ln(t) - m_{1k}\}_+^3 - (1 - \phi_{jk}) \{\ln(t) - m_{Mk}\}_+^3 \\ j &= 2, \dots, M - 1 \end{aligned}$$

where

$$\phi_{jk} = \frac{m_{Mk} - m_{jk}}{m_{Mk} - m_{1k}}$$

and

$$(u)_+ = \begin{cases} u, & \text{if } u < 0 \\ 0, & \text{otherwise} \end{cases}$$

Through the general link function $g(\cdot)$ for the cause-specific CIF, $F_k(t)$, in (3), we can apply similar transformations described in [Royston and Parmar \(2002\)](#) for the survival function. [Lambert, Wilkes, and Crowther \(Forthcoming\)](#) offer more details on the various link functions available for the cause-specific CIF, but here we introduce only the complementary log-log (**cloglog**) and logit link functions (see table 1).

Table 1. Common transformations on the general link function for the cause-specific CIF

Parameters	Link function	Link name
log-subdistribution hazard ratios	$\ln[-\ln\{1 - F_k(t \mathbf{x}_k)\}]$	cloglog
log odds-ratios	$\frac{F_k(t \mathbf{x}_k)}{1 - F_k(t \mathbf{x}_k)}$	logit

2.6 Time-dependent effects

To relax the proportionality assumption, we fit interactions between the associated covariates and the spline function for log-time. This allows us to introduce a new set of knots, \mathbf{m}_{ek} , that represent the e th time-dependent effect for cause k with associated parameters, $\boldsymbol{\alpha}_{ek}$. If there are $e = 1, \dots, E$ time-dependent effects, we can extend the model in (3) to

$$\eta_k(t) = s_k \{\ln(t); \boldsymbol{\gamma}_k, \mathbf{m}_{0k}\} + \mathbf{x}_k \boldsymbol{\beta}_k + \sum_{l=1}^E s_k \{\ln(t); \boldsymbol{\alpha}_{lk}, \mathbf{m}_{lk}\} x_{lk}$$

In this approach, the spline function for different time-dependent effects can be different and usually requires fewer knots for the baseline spline function. This extends the original approach proposed by [Royston and Parmar \(2002\)](#). As all K causes are modeled, one can also specify different time-dependent effects for each of the k cause-specific FPM regression models.

2.7 Delayed entry

`stpm2cr` can also model left-truncated data or data with delayed entry. This is when subjects are considered to be at risk some time after $t = 0$.

2.8 Cure models

[Andersson et al. \(2011\)](#) proposed a method to estimate the cure proportion in a relative survival FPM framework. In the competing-risks scenario, this would occur in a situation where the cause-specific CIF is constant after a certain point in time t . Hence, by adapting the approach described by [Andersson et al. \(2011\)](#), we can estimate the cure proportion from within a flexible parametric model for the cause-specific CIF specified

in section 2.5 by forcing the log cumulative SDH to plateau after the last knot. This involves adjusting how spline variables are calculated, so the cause-specific CIF is forced to plateau (see Andersson et al. [2011] for more details). Because we use the SDH function for cause k , on which we assume the cure must be evaluated while simultaneously modeling all other causes, the final knot must be specified after the final observed time of death, which has been set at the 110th percentile of log time. Applying the methods in Andersson et al. (2011) and the above adjustment to a specific cause $k = c$, we can fit a flexible parametric cure model with a complementary log-log link for a cause-specific CIF such that

$$F_c(t|\mathbf{x}_c) = 1 - (1 - \pi_c) \exp \left[\gamma_{2c} z_{2c} + \cdots + \gamma_{(M-1)c} z_{(M-1)c} + \sum_{i=1}^E s_c \{ \ln(t); \boldsymbol{\alpha}_{ic}, \mathbf{m}_{ic} \} \mathbf{x}_{ic} \right]$$

$$1 - \pi_c = 1 - \exp \{ -\exp(\gamma_{0c} + \mathbf{x}_c \boldsymbol{\beta}_c) \}$$

Therefore, the parameters γ_{0c} and $\boldsymbol{\beta}_c$ are used to estimate the cure proportion for cause $k = c$. Here we also implement a constraint on the linear spline, γ_{1c} , such that it is equal to 0.

To fit a cure model, we need to observe a plateau in the “raw” data for the cause-specific CIF on which we wish to model the cure. This is usually done for a single relevant cause, particularly the event of interest.

3 Syntax

```
stpm2cr [equation1] [equation2] ... [equationN] [if] [in], events(varname)
[cause(numlist) censvalue(#) noorthog alleq eform level(#) lininit
maximize_options]
```

where $equation1$, $equation2$, ..., $equationN$ are the equations for each competing event. Note that at least two equations must be specified. The syntax of each equation is

```
causename: [varlist], scale(scalename) [df(#) knots(numlist) tvc(varlist)
dftvc(df.list) knotstvc(knotslist) bknots(knotslist) bknotstvc(knotslist)
noconstant cure]
```

You must `stset` your data before using `stpm2cr`; see [ST] `stset`. All events must be specified in the `failure()` option of `stset`.

3.1 Main options

Model

`events(varname)` specifies the *varname* that contains the indicators for each competing event failure. `events()` is required.

`cause(numlist)` specifies the indicator values for the competing events specified in `events()`. The indicators specified in *numlist* must be listed in the same order as the equations *equation1*, *equation2*, ..., *equationN*.

`censvalue(#)` specifies the indicator values in `events()` for censored individuals. The default is `censvalue(0)`.

`noorthog` suppresses orthogonal transformation of spline variables.

Reporting

`alleq` reports all equations used by `ml`. The models are fit using various constraints for parameters associated with the derivatives of the spline functions. These parameters are generally not of interest and thus are not shown by default. Also, an extra equation is used when fitting delayed-entry models and is also not shown by default.

`eform` reports the exponentiated coefficients. For models on the log cumulative-subdistribution hazard scale, `scale(hazard)`, this option gives the subdistribution hazard ratios if the covariate is not time dependent. Similarly, for models on the log cumulative-subdistribution odds scale, `scale(odds)`, this option will give odds ratios for nontime-dependent effects (see the `scale()` option).

`level(#)` specifies the confidence level, as a percentage, for confidence intervals. The default is `level(95)` or as set by `set level`; see [U] **20.7 Specifying the width of confidence intervals**.

Max options

`lininit` obtains initial values by fitting only the first spline basis function (that is, a linear function of log survival-time). This is useful when models fail to converge using the initial values obtained in the usual way. However, this option is seldom needed.

`maximize_options`: `difficult`, `technique(algorithm_spec)`, `iterate(#)`, [`no`] `log`, `trace`, `gradient`, `showstep`, `hessian`, `shownrtolerance`, `tolerance(#)`, `ltolerance(#)`, `gtolerance(#)`, `nrtolerance(#)`, `nonrtolerance`, and `from(init_specs)`; see [R] **maximize**. These options are seldom used, but the `difficult` option may be useful if there are convergence problems when fitting models that use the Aranda–Ordaz family of link functions.

3.2 Equation options

`scale(scalename)` specifies the scale on which to model the cause-specific CIF. `scale()` is required.

`scale(hazard)` fits a model on the log cumulative-subdistribution hazard scale, that is, the scale of $\ln[-\ln\{1 - F_k(t)\}]$. If no time-dependent effects are specified, the resulting model assumes proportionality.

`scale(odds)` fits a model on the log cumulative-odds scale, that is, the scale of $\log \{F_k(t)\}/\{1 - F_k(t)\}$. If no time-dependent effects are specified, the resulting model assumes proportionality of the odds ratios over time.

`df(#)` specifies the degrees of freedom for the restricted cubic spline function used for the baseline subdistribution hazard rate. Usually a value between 3 and 5 is sufficient, and the choice of degrees of freedom is insensitive to parameter estimates. Using `df(1)` is equivalent to fitting a Weibull model when using `scale(hazard)`. The internal knots are placed at the centiles of the distribution of the uncensored log times with boundary knots placed at the 0th and 100th centiles. An example is provided below for `df(5)`:

Degrees of freedom	Internal knots	Centile positions (log time)
5	4	20th, 40th, 60th, 80th

`knots(numlist)` specifies knot locations for the baseline distribution function, as opposed to the default knot locations set by `df()`. The locations of the knots are placed on the log-time scale. Default knot positions are determined by the `df()` option.

`tvc(varlist)` specifies the names of time-dependent variables. Time-dependent effects are fit using restricted cubic splines. The degrees of freedom are specified using the `dftvc()` option.

`dftvc(df.list)` specifies the degrees of freedom for time-dependent effects. If the same degree of freedom is used for all time-dependent effects, then the syntax is the same as `df(#)`. With one degree of freedom, a linear effect of log time is fit. If there is more than one time-dependent effect and different degrees of freedom are required for each time-dependent effect, then the following syntax can be used: `dftvc(x1:3 x2:2 1)`, where `x1` has three degrees of freedom, `x2` has two degrees of freedom, and any remaining time-dependent effects have one degree of freedom.

`knotstvc(knotslist)` defines `numlist` `knotslist` as the location of the interior knots for time-dependent effects. If different knots are required for different time-dependent effects, the option is specified, for example, as follows: `knotstvc(x1 1 2 3 x2 1.5 3.5)`.

`bknots(knotslist)` is a two-element list giving the boundary knots. By default, these are located at the minimum and maximum of the uncensored survival times for all cause-specific events on the log scale.

`bknotstvc(knotslist)` gives the boundary knots for any time-dependent effects. By default, these are the same as for the `bknots()` option. They are specified on the scale defined by `scale()`. For example, `bknotstvc(x1 0.01 10 x2 0.01 8)`.

`noconstant`; see [R] estimation options.

`cure` is specified when fitting cure models for a particular cause. It forces the cause-specific cumulative subdistribution hazard to be constant after the last knot. When the `df()` option is used together with the `cure` option, the internal knots are placed evenly according to centiles of the distribution of the uncensored log survival-times except one, which is placed at the 95th centile, and the final knot is placed outside the last uncensored cause-specific log survival-time (110th percentile by default). Alternative knot locations can be selected using the `knots()` option. Cure models can be used only when modeling on the log cumulative-subdistribution hazard scale (`scale(hazard)`).

4 Postestimation

`stpm2cr` is an estimation command and shares most features of standard Stata estimation commands; see [U] 20 Estimation and postestimation commands. The predictions available after fitting a model using `stpm2cr` are briefly described below.

4.1 Syntax

```
predict newvar [if] [in] [, at(varname # [varname #]) cause(numlist)
    chrdenominator(varname # [varname # ...])
    shrdenominator(varname # [varname # ...])
    chrnumerator(varname # [varname # ...])
    shrnumerator(varname # [varname # ...]) ci cif
    cifdiff1(varname # [varname # ...])
    cifdiff2(varname # [varname # ...]) cifratio csh cumodds
    cumsubhazard cured subdensity subhazard timevar(varname) uncured xb
    zeros dxb level(#)]
```

Main

`at(varname # [varname #])` requests that the covariates specified by *varname* be set to `#`. This is a useful way to obtain out-of-sample predictions. If `at()` is used together with `zeros`, then all covariates not listed in `at()` are set to zero. If `at()` is used without `zeros`, then all covariates not listed in `at()` are set to their sample values.

`cause(numlist)` specifies the causes on which to make the predictions for and that are stored in `newvar_c#`. If `cause()` is not specified, then predictions are made for all causes included in the model and stored in `newvar_c#`.

`chrdenominator(varname # [varname # ...])` and `shrdenumerator(varname # [varname # ...])` specify the denominator of the cause-specific hazard ratio or subdistribution hazard ratio for a specific cause. By default, all covariates not specified using this option are set to zero. See the cautionary note in `chrnumerator()` and `shrnnumerator()` below. If `#` is set to missing (.), then the covariate has the values defined in the dataset.

`chrnumerator(varname # [varname # ...])` and `shrnnumerator(varname # [varname # ...])` specify the numerator of the (time-dependent) cause-specific hazard ratio or subdistribution hazard ratio for a specific cause. By default, all covariates not specified using this option are set to zero. Setting the remaining values of the covariates to zero may not always be sensible, particularly on models other than those on the cumulative subdistribution hazard scale or when more than one variable has a time-dependent effect. If `#` is set to missing (.), then the covariate has the values defined in the dataset.

`ci` calculates a confidence interval for the requested statistic and stores the confidence limits in `newvar_lci` and `newvar_uci`.

`cif` predicts the cause-specific cumulative incidence function.

`cifdiff1(varname # [varname # ...])` and `cifdiff2(varname # [varname # ...])` predict the difference in cause-specific cumulative incidence functions, with the first cause-specific cumulative incidence function defined by the covariate values listed for `cifdiff1()` and the second by those listed for `cifdiff2()`. By default, covariates not specified using either option are set to zero. Setting the remaining values of the covariates to zero may not always be sensible. If `#` is set to missing (.), then `varname` has the values defined in the dataset.

Example: `cifdiff1(stage 1)` (without specifying `cifdiff2()`) computes the difference in predicted cause-specific cumulative incidence functions at `stage = 1` compared with `stage = 0` with all other covariates set to 0.

Example: `cifdiff1(stage 2) cifdiff2(stage 1)` computes the difference in predicted cause-specific cumulative incidence functions at `stage = 2` compared with `stage = 1`.

Example: `cifdiff1(stage 2 age 50) cifdiff2(stage 1 age 70)` computes the difference in predicted hazard functions at `stage = 2` and `age = 50` compared with `stage = 1` and `age = 70` with all other covariates set to 0.

`cifratio` predicts the relative contribution of failing from an event to the overall cumulative incidence function. For example, if the event of interest is cancer, this is the relative contribution of dying from cancer to the total mortality. `cifratio` must be used along with the `cause()` option to specify the cause-specific cumulative incidence function on the numerator of the ratio.

`csh` predicts the cause-specific hazard function.

`cumodds` predicts the cumulative odds-of-failure function.

`cumsubhazard` predicts the cumulative subdistribution hazard function.

`cured` predicts the cause-specific cure proportion after fitting a cure model.

`subdensity` predicts the subdensity function.

`subhazard` predicts the subdistribution hazard function.

`timevar(varname)` defines the variable used as time in the predictions. The default is `timevar(_t)`. `timevar()` is useful for large datasets where, for plotting purposes, predictions are needed only for 200 observations, for example. Be cautious when using this option because predictions may be made at whatever covariate values are in the first 200 rows of data. This can be avoided using the `at()` option or the `zeros` option to define the covariate patterns for which you require the predictions.

`uncured` can be used after fitting a cure model for a specific cause. It can be used with the `subhazard` and `cif` options to base predictions for the uncured group.

`xb` predicts the linear predictor, including the spline function.

`zeros` sets all covariates to zero (baseline prediction). For example, `predict cif, cause(1) cif zeros` calculates the baseline cause-specific cumulative incidence function for cause = 1.

Subsidiary

`dxb` calculates the derivatives of the linear predictors.

`level(#)` specifies the confidence level, as a percentage, for confidence intervals. The default is `level(95)` or as set by `set level`.

5 Examples

5.1 Northern European Cancer Registry Data (1975–1994)

In this section, we illustrate the methods outlined in this article using the Northern European cancer registry data, which were previously used to illustrate the use of `strs` for relative survival models (Dickman and Covello 2015). We use a subset of these data that contains observations on 4,204 patients who were between 40 and 79 years old and diagnosed with melanoma between 1975 and 1994. The covariates of interest are patient age at diagnosis and stage of cancer, which is categorized into localized or regional stage cancer at diagnosis. We excluded patients with distant stage cancer because of their very high mortality rate, leaving a few patients at risk toward the end of follow-up time. Most of these deaths are due to cancer, which means the effect of competing causes of death is small and thus less interesting practically. Survival time is measured in months since diagnosis to death because of cancer or other causes. Follow-up time is restricted to 15 years from diagnosis.

5.2 Nonparametric estimates for the cause-specific cumulative incidence function

Estimated cause-specific CIFs have been predicted using the `stcompet` command, which implements the Aalen–Johansen method (Coviello and Boggess 2004). Figure 1 shows cause-specific CIFs estimated by stage at diagnosis for death from cancer and death from other causes and shows that those with a more distant stage cancer at diagnosis have an increased risk of dying from cancer and a lower risk of dying from other causes. The sum of the cancer-specific CIF and CIF for other causes gives the overall, or all-cause probability of death.

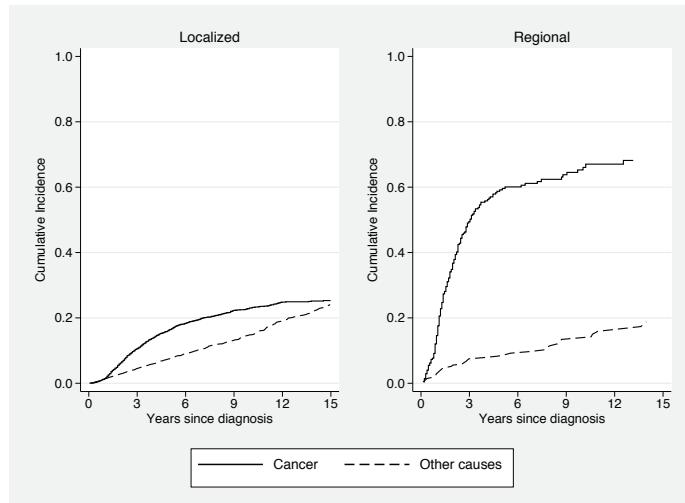


Figure 1. Predicted cause-specific cumulative incidence functions for death from cancer or death from other causes using the Aalen–Johansen method by stage at diagnosis for patients 40 to 80 years old.

5.3 Fine and Gray (1999) model

We initially fit direct regression models on the cause-specific CIF using the Fine and Gray approach, the most commonly implemented method for modeling covariate effects on the cause-specific cumulative incidence function. Fine and Gray models are fit only with stage at diagnosis as a covariate for each of the cause-specific CIFs.

We generated a new indicator variable, `status2`, to overcome a small reporting error with the `stcrreg` command when using the `exit()` option in `stset` at the time of submission. When one uses the usual censoring indicator variable in `stset` for one cause before fitting a Fine and Gray model, the number of actual competing events is under-reported because the competing events and censored events are no longer distinguished and those who die before the exit time are instead treated as censored. Although this

does not directly affect the parameter estimates, the total number of overall failures reported for each cause-specific model is inconsistent. Therefore, we go on to fit Fine and Gray models using the new variable, which is generated as follows:

```

. stset surv_mm, failure(status == 1, 2) scale(12) id(id) exit(time 180)
  (output omitted)
. generate status2 = cond(_d==0,0,status)
. *Cancer
. stset surv_mm, failure(status2 == 1) scale(12) id(id) exit(time 180)
  (output omitted)
. stcrreg i.stage, compete(status2 == 2)
  failure _d: status2 == 1
  analysis time _t: surv_mm/12
  exit on or before: time 180
  id: id
Iteration 0:  log pseudolikelihood = -7389.917
Iteration 1:  log pseudolikelihood = -7389.4747
Iteration 2:  log pseudolikelihood = -7389.4745
Competing-risks regression
  No. of obs      =      4,204
  No. of subjects =      4,204
Failure event : status2 == 1
  No. failed      =       937
Competing event: status2 == 2
  No. competing   =       583
  No. censored    =     2,684
  Wald chi2(1)    =      287.75
  Prob > chi2    =     0.0000
Log pseudolikelihood = -7389.4745
  (Std. Err. adjusted for 4,204 clusters in id)

```

_t	Robust				
	SHR	Std. Err.	z	P> z	[95% Conf. Interval]
stage					
Regional	4.783974	.4414379	16.96	0.000	3.992499 5.732352

```

. stset surv_mm, failure(status2 == 2) scale(12) id(id) exit(time 180)
  (output omitted)
. stcrreg i.stage, compete(status2 == 1)
  failure _d: status2 == 2
  analysis time _t: surv_mm/12
  exit on or before: time 180
  id: id
Iteration 0:  log pseudolikelihood = -4565.6556
Iteration 1:  log pseudolikelihood = -4556.6879
Iteration 2:  log pseudolikelihood = -4556.6578
Iteration 3:  log pseudolikelihood = -4556.6578

```

Competing-risks regression	No. of obs	=	4,204		
Failure event : status2 == 2	No. of subjects	=	4,204		
Competing event: status2 == 1	No. failed	=	583		
	No. competing	=	937		
	No. censored	=	2,684		
	Wald chi2(1)	=	0.31		
Log pseudolikelihood = -4556.6578	Prob > chi2	=	0.5790		
(Std. Err. adjusted for 4,204 clusters in id)					
_t	Robust SHR	Std. Err.	z	P> z	[95% Conf. Interval]
stage Regional	.9080851	.1577827	-0.55	0.579	.6459927 1.276514

The subdistribution hazard ratio for cancer gives the association between stage at diagnosis and the cancer-specific CIF. A subdistribution hazard ratio of 4.78 indicates that those with a more severe stage at diagnosis are associated with an increased risk of dying from cancer. However, because of the awkward definition in the risk set, it is difficult to make inferences on quantitative effects. Although insignificant, the subdistribution hazard ratio from the Fine and Gray model for other causes shows that those with a more severe stage at diagnosis are associated with a decreased risk of dying from other causes. This is because patients at an earlier stage at diagnosis are healthier and therefore more likely to live longer and die from other causes before their cancer. On the other hand, patients at a later stage are unlikely to live as long and die from other causes.

After fitting each cause-specific Fine and Gray model, we can use `stcurve` to predict and store the cause-specific CIFs.

5.4 Log-cumulative subdistribution hazard models

Using the full likelihood in (2), we can fit direct flexible parametric regression models for the cause-specific CIF. Rather than fitting a model to each cause-specific CIF separately, we can instead model all cause-specific CIFs simultaneously. This is shown below with the assumption of proportionality for all causes:

		Number of obs = 4,204			
	exp(b)	Std. Err.	z	P> z	[95% Conf. Interval]
cancer					
stage2	4.673522	.3973545	18.14	0.000	3.956153 5.520973
_rcs_c1_1	2.371601	.0642335	31.88	0.000	2.248989 2.500897
_rcs_c1_2	1.40679	.0445023	10.79	0.000	1.322216 1.496774
_rcs_c1_3	1.061522	.0237518	2.67	0.008	1.015975 1.109111
_rcs_c1_4	.9889806	.0103402	-1.06	0.289	.9689204 1.009456
_rcs_c1_5	1.002836	.005948	0.48	0.633	.9912455 1.014562
_cons	.1390518	.0053603	-51.18	0.000	.1289329 .1499648
other					
stage2	.6867003	.115223	-2.24	0.025	.4942449 .9540964
_rcs_c2_1	2.564841	.0949475	25.44	0.000	2.385338 2.757852
_rcs_c2_2	1.058082	.0298144	2.00	0.045	1.001231 1.118161
_rcs_c2_3	.9541731	.0196412	-2.28	0.023	.9164434 .9934562
_rcs_c2_4	.9843678	.0125716	-1.23	0.217	.9600337 1.009319
_rcs_c2_5	.9917352	.0082375	-1.00	0.318	.9757208 1.008012
_cons	.0800586	.0040859	-49.47	0.000	.0724379 .088481

An equation is specified for each cause within the square brackets along with their respective options. These are similar to those used for `stpm2` where `df(5)` implies four internal knots at default locations. The estimated subdistribution hazard ratios are displayed for each cause and their 95% confidence intervals. From the subdistribution hazard ratios for both causes, we can infer that patients with regional stage cancer at diagnosis have an increased risk of dying from cancer and a decreased risk of dying from other causes compared with those with localized stage cancer at diagnosis. The advantage of using the parametric approach is that it is easy to obtain other useful predictions to aid interpretation, because, as mentioned previously, it is difficult to interpret the subdistribution hazard ratios in terms of quantitative effects. The following code obtains the cause-specific CIFs, subdistribution hazard functions for each cause, and cause-specific hazard functions. Confidence intervals are obtained using the `ci` option.

```

. range temptime 0 15 1000
(3,204 missing values generated)
. predict cif1, cif at(stage1 1 stage2 0) timevar(temptime)
Calculating predictions for the following causes: 1 2
. predict cif2, cif at(stage1 0 stage2 1) timevar(temptime)
Calculating predictions for the following causes: 1 2
. predict sdh1, subhazard at(stage1 1 stage2 0) timevar(temptime)
Calculating predictions for the following causes: 1 2
. predict sdh2, subhazard at(stage1 0 stage2 1) timevar(temptime)
Calculating predictions for the following causes: 1 2

```

```

. predict csh1, csh at(stage1 1 stage2 0) timevar(temptime)
Calculating predictions for the following causes: 1 2
. predict csh2, csh at(stage1 0 stage2 1) timevar(temptime)
Calculating predictions for the following causes: 1 2

```

The top row in figure 2 plots the predicted subdistribution hazard function for each cause, and the bottom row illustrates the predicted cause-specific hazard function by stage at diagnosis. The subdistribution hazard gives the association on the effect of stage at diagnosis on risk, and the cause-specific hazard is the association on the effect of stage at diagnosis on the hazard rate.

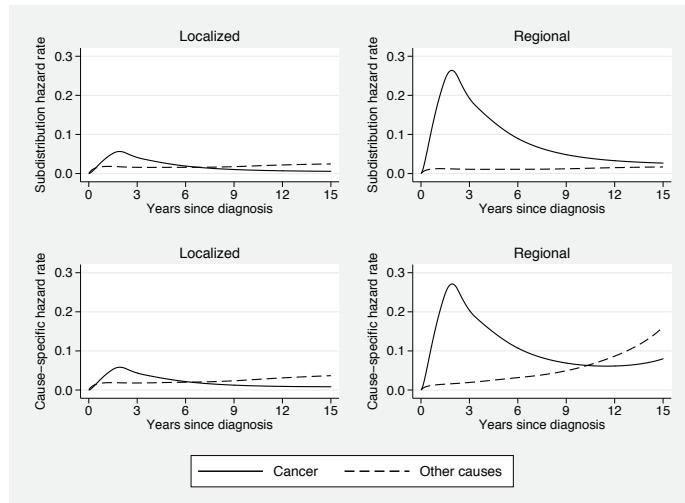


Figure 2. Subdistribution hazards predicted for each cause and cause-specific hazard predictions by stage at diagnosis for patients 40 to 80 years old from a log cumulative-proportional subdistribution hazard model for melanoma data.

Figure 3 compares the cause-specific CIFs obtained from the Fine and Gray models for each cause fit in section 5.3 with those obtained from the log cumulative-proportional subdistribution hazards model and shows sensible agreement between the two (see Mozumder, Rutherford, and Lambert [2016] for more details on the disagreement in the cause-specific CIF for death from other causes).

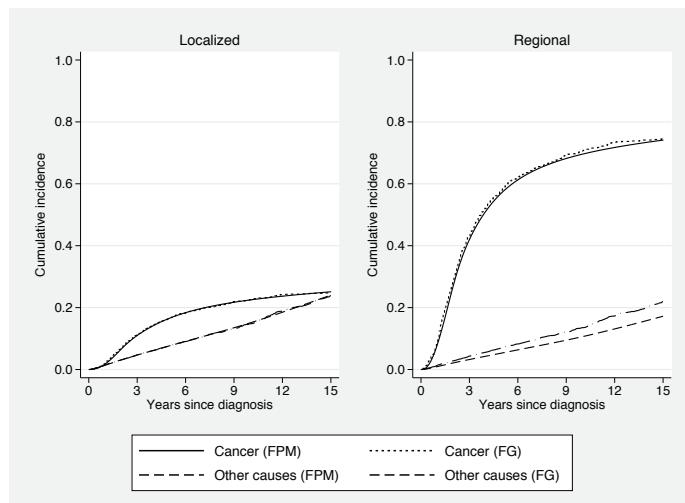


Figure 3. A comparison of cause-specific cumulative incidence functions for death from cancer or death from other causes predicted simultaneously from a log cumulative-subdistribution hazard model and from separate Fine and Gray models for each cause by stage at diagnosis for patients 40 to 80 years old.

In figure 4, the Aalen–Johansen estimates are compared with the cause-specific CIFs obtained from the log cumulative-proportional subdistribution hazard model. The estimates are reasonably similar. However, we can achieve a better fit by relaxing the assumption of proportionality through including time-dependent effects using restricted cubic splines.

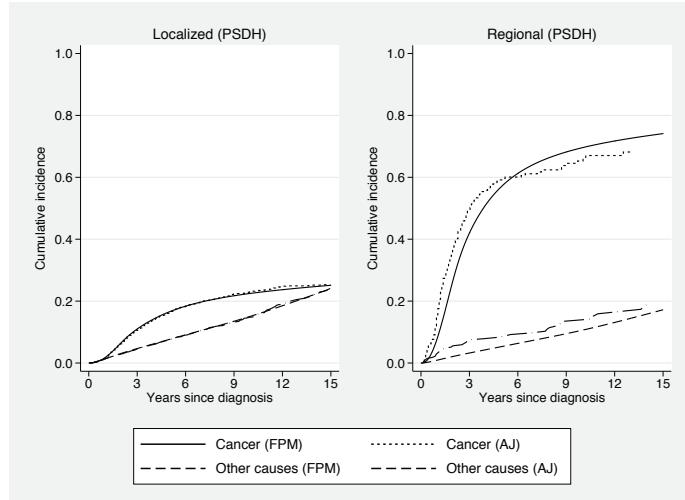


Figure 4. A comparison of cause-specific cumulative incidence functions for death from cancer or death from other causes predicted simultaneously from a log cumulative-subdistribution hazard model assuming proportionality and using the Aalen–Johansen empirical estimates for each cause by stage at diagnosis for patients 40 to 80 years old.

5.5 Time-dependent effects

Time-dependent effects can be easily incorporated by specifying the `dftvc()` and `tvc()` equation-specific options as shown in the following code:

		Number of obs = 4,204			
	exp(b)	Std. Err.	z	P> z	[95% Conf. Interval]
cancer					
stage2	5.225629	.4543429	19.02	0.000	4.406875 6.196499
_rcs_c1_1	2.570244	.089602	27.08	0.000	2.400493 2.752
_rcs_c1_2	1.440213	.0605618	8.68	0.000	1.326274 1.56394
_rcs_c1_3	1.076737	.0280174	2.84	0.004	1.023201 1.133074
_rcs_c1_4	.9907888	.0106845	-0.86	0.391	.9700674 1.011953
_rcs_c1_5	.9997375	.0058897	-0.04	0.964	.9882603 1.011348
_rcs_stag~1_1	.7353858	.0413674	-5.46	0.000	.658617 .8211029
_rcs_stag~1_2	.9750149	.0568817	-0.43	0.664	.8696665 1.093125
_rcs_stag~1_3	.9458115	.0303569	-1.74	0.083	.8881458 1.007221
_cons	.1328929	.0053238	-50.38	0.000	.1228576 .143748
other					
stage2	1.18831	.2267027	0.90	0.366	.8175976 1.727109
_rcs_c2_1	2.658485	.1059802	24.53	0.000	2.458675 2.874533
_rcs_c2_2	1.062388	.0328778	1.96	0.051	.999864 1.128822
_rcs_c2_3	.9584928	.0206057	-1.97	0.049	.9189454 .9997422
_rcs_c2_4	.9841378	.0124521	-1.26	0.206	.9600322 1.008849
_rcs_c2_5	.9926364	.0081918	-0.90	0.370	.9767099 1.008823
_rcs_stag~2_1	.68066	.0697333	-3.75	0.000	.5568331 .8320231
_rcs_stag~2_2	1.007956	.0739275	0.11	0.914	.8729933 1.163783
_rcs_stag~2_3	.9515855	.0501094	-0.94	0.346	.8582712 1.055045
_cons	.0775996	.0040571	-48.89	0.000	.0700417 .0859732

The `tvc(stage2)` and `dftvc(3)` options state that the `stage2` variable is to be time dependent using restricted cubic splines with two internal knots (that is, three degrees of freedom). Overall, 10 parameters are estimated for each cause in the model. For example, for cancer, there are five derived variables for the baseline log cumulative-subdistribution hazard (`_rcs_c1_1`-`_rcs_c1_5`) and three derived splines for the time-dependent effect `stage2` (`_rcs_stag~1_1`-`_rcs_stag~1_3`).

In a time-dependent model, parameter estimates become more complex and less useful when interpreted on their own. Instead, it is better to obtain predictions between groups for specific covariate patterns as relative or absolute differences over time using `predict`. Note that the coding is the same to generate the same predictions:

```

. range temptime 0 15 1000
(3,204 missing values generated)
. predict cif_tvc1, cif at(stage1 1 stage2 0) ci timevar(temptime)
Calculating predictions for the following causes: 1 2
. predict cif_tvc2, cif at(stage1 0 stage2 1) ci timevar(temptime)
Calculating predictions for the following causes: 1 2
. predict cifdiff, cifdiff1(stage1 0 stage2 1) cifdiff2(stage1 1 stage2 0) ci
> timevar(temptime)
Calculating predictions for the following causes: 1 2
. predict shr, shrn(stage1 0 stage2 1) shrd(stage1 1 stage2 0) ci
> timevar(temptime)
Calculating predictions for the following causes: 1 2
. predict chr, chrn(stage1 0 stage2 1) chrd(stage1 1 stage2 0) ci
> timevar(temptime)
Calculating predictions for the following causes: 1 2

```

Figure 5 now shows a better fit of the model-estimated cause-specific CIFs, particularly with regional stage patients, compared with the nonparametric Aalen–Johansen estimates with very good agreement.

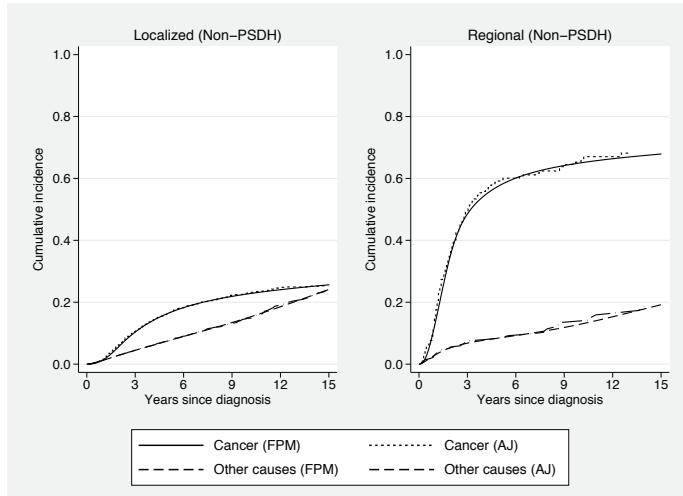


Figure 5. A comparison of cause-specific cumulative incidence functions for death from cancer or death from other causes predicted simultaneously from a log cumulative nonproportional subdistribution hazard model and using the Aalen–Johansen empirical estimates for each cause by stage at diagnosis for patients 40 to 80 years old.

We can obtain absolute differences with 95% confidence intervals between the regional and localized stage groups over time for each cause-specific CIF. Differences are calculated using the `cifdiff1()` and `cifdiff2()` options. The obtained predictions are illustrated in figure 6, which shows us that those with a more severe stage of cancer at diagnosis are more likely to die from cancer. The difference is smaller for other causes for the first six years since diagnosis. In the later years, the cause-specific CIF for other causes is larger for localized stage patients.

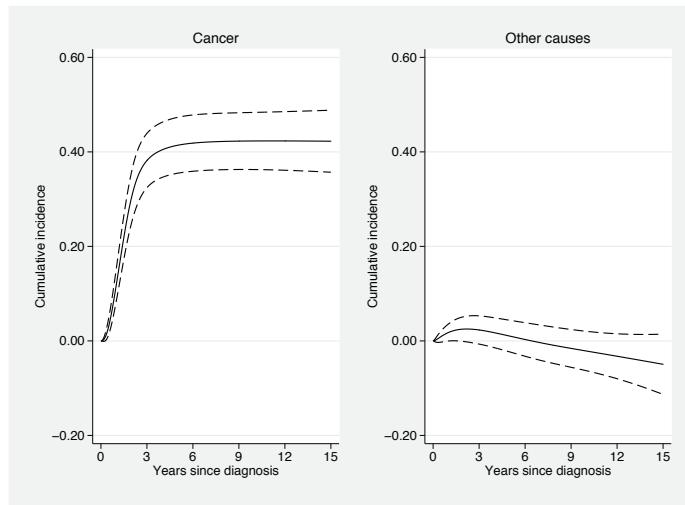


Figure 6. Predicted absolute differences (Regional – Localized) in cause-specific cumulative incidence functions with 95% confidence intervals from a log cumulative-nonproportional subdistribution hazard model.

Time-dependent subdistribution and cause-specific hazard ratios are obtained using the options `shrnumerator()` and `shrdenominator()`, and `chrnumerator()` and `chrdenominator()`, respectively. Using these options, we can obtain ratios for any two covariate patterns. Figure 7 shows the time-dependent subdistribution and cause-specific hazard ratios and compares regional stage patients with localized stage patients at diagnosis. At the start of follow-up, for both cancer-specific hazard ratios, regional stage patients have a mortality rate 17 times that of localized stage patients that decreases over follow-up time. The mortality rate of other causes on both scales for regional stage patients at the start of follow-up time is approximately 4.5 times that of localized stage patients. Beyond two years since diagnosis, the subdistribution hazard rate of other causes for regional stage patients is lower than the localized stage patients because the ratio is less than 1. This is expected because those at a later stage will die earlier from the cancer before they die from other causes. The cause-specific hazard ratios give us the association of stage at diagnosis on the rate and show a different effect on death from other causes, because patients at a later stage tend to be more sick and generally are at a higher risk of dying. This translates to a positive association between more distant stage patients and mortality rate for other causes.

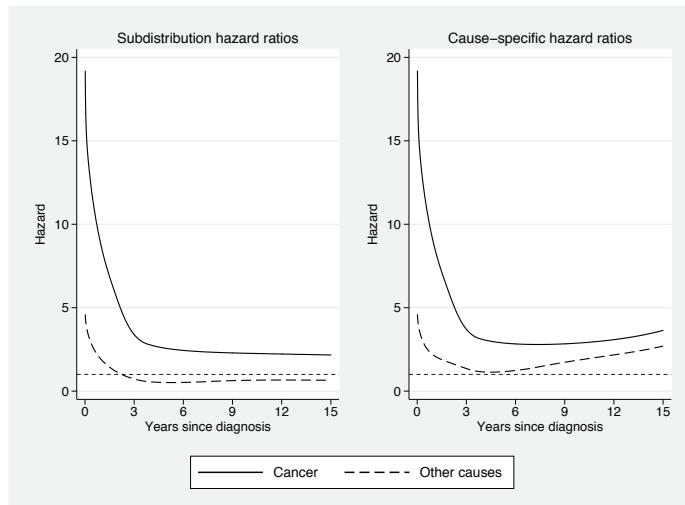


Figure 7. Predicted subdistribution and cause-specific hazard ratios for each cause from a log cumulative-nonproportional subdistribution hazard model. Ratios compare regional stage with localized stage patients at diagnosis. Dotted line is a reference line when the rate is equal to 1, that is, no difference.

5.6 Cure model

Cure models for any cause can be fit by adding the equation option `cure`. However, we highly recommend that this be done only for one cause, usually the event of interest. Predictions can be made after fitting a cure model with `predict` using the `cured` and `uncured` options. Specifying the `cured` option will calculate the cure proportion for the cause that `cured` was specified for and a variable with the suffix `_btd` that partitions those that are still alive into two groups: patients bound to die from cancer and not bound to die from cancer. The code for fitting a cure model and predictions is shown below:

```

. stpm2cr [cancer: , scale(hazard) df(5) cure]
> [other: , scale(hazard) df(5)],
> events(status) cause(1 2) cens(0) eform nolog
  (output omitted)
Log likelihood = -1742.7601                               Number of obs      =     1,692

```

	exp(b)	Std. Err.	z	P> z	[95% Conf. Interval]
cancer					
_rcs_c1_1	2.168448	.0851865	19.70	0.000	2.007752 2.342007
_rcs_c1_2	.9134977	.0245224	-3.37	0.001	.8666772 .9628475
_rcs_c1_3	.9989706	.0182824	-0.06	0.955	.9637729 1.035454
_rcs_c1_4	.9775022	.0134488	-1.65	0.098	.9514954 1.00422
_rcs_c1_5	1 (omitted)				
_cons	.348136	.0181445	-20.25	0.000	.3143294 .3855784
other					
_rcs_c2_1	2.645041	.3083898	8.34	0.000	2.104696 3.324111
_rcs_c2_2	.9981758	.0919501	-0.02	0.984	.8332895 1.195689
_rcs_c2_3	.9368575	.0517331	-1.18	0.238	.8407566 1.043943
_rcs_c2_4	1.013603	.037129	0.37	0.712	.9433826 1.089051
_rcs_c2_5	.9643029	.0211338	-1.66	0.097	.9237584 1.006627
_cons	.0220712	.0032665	-25.77	0.000	.0165139 .0294985

```

. range temptime 0 15 1000
(692 missing values generated)
. predict cif, cif timevar(temptime)
Calculating predictions for the following causes: 1 2
. predict cure, cured timevar(temptime)
Calculating predictions for the following causes: 1 2
. generate cif_tot = cif_c1 + cif_c2
(693 missing values generated)

```

In section 2.8, we showed that to fit cure models, we constrained the last knot to be zero to force a plateau. This is shown in the output above, where the parameter for `_rcs_c1_5` is equal to one. Analysis is restricted to localized stage patients 40 to 54 years old, where a cure is found to be reasonable. To check this, we note that the plot to the left in figure 8 compares the estimated cancer-specific CIF from the model with the Aalen–Johansen estimate and shows extremely good agreement with the cure proportion estimated at approximately 30% after 12 years since diagnosis where the cancer-specific CIF plateaus. On the right-hand side of figure 8, the cause-specific CIFs are stacked, and the dashed line is the partitioning of alive patients that are bound to or not bound to die into two groups. This estimate is provided as part of the `cured` option with the suffix `_btd`. [Eloranta et al. \(2014\)](#) introduce this quantity to aid better risk communication, and it is calculated as follows,

$$\begin{aligned}
P_{\text{alive,can}}(t) &= \pi_c - F_1(t) \\
P_{\text{alive,oth}}(t) &= 1 - F_2(t) - \dots - F_K(t) - \pi_c
\end{aligned}$$

where π_c is the proportion of those bound to die from cancer on which a cure is assumed. For $k = 1$, $P_{\text{alive,can}}(t)$ represents patients who will ultimately die from their cancer, and $P_{\text{alive,oth}}(t)$ represents those who will die from competing causes where $k = 2, \dots, K$.

In our example, from the stacked probabilities in figure 8, at 6 years after diagnosis, approximately 25% have died, 6% are alive yet bound to die from cancer, and 69% are alive and not bound to die from cancer.

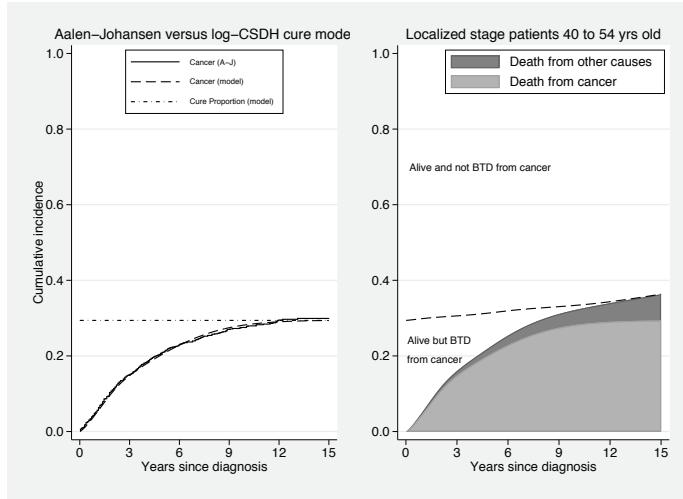


Figure 8. Left: Comparison of predicted cancer-specific CIFs obtained from the log cumulative-subdistribution hazard cure model and using the Aalen–Johansen method for localized stage patients 40 to 54 years old. Right: Stacked cause-specific CIFs obtained from a log cumulative-subdistribution hazard cure model. Dashed-line partitions living patients into those bound to die from cancer and not bound to die from cancer.

5.7 Conclusions

Competing-risks models are being widely applied in research, and fitting regression models on the subdistribution hazard scale is encouraged for researchers to make inferences on prognosis and understand the association of a covariate on risk. Analysis from within the flexible parametric modeling framework using the direct likelihood approach for the cause-specific CIF has several advantages. For example, the method saves computational time because numerical integration is not required to model the baseline log cumulative-subdistribution hazard function. All causes are modeled simultaneously, so there is no need to fit separate models for each cause. This is implemented in the new `stpm2cr` command, an adaptation of the `stpm2` command. Other useful predictions can be obtained using `predict` after fitting a model using `stpm2cr`. This complements flexible parametric regression models for competing risks on the cause-specific hazard scale and allows researchers to gain a more complete understanding on the impact of the event of interest on outcome. However, a well-known problem of direct regression models for the cause-specific CIF is that the sum of all probabilities may exceed 1 for certain covariate patterns. This is particularly problematic in the oldest age groups, where patients are at a higher risk of dying from competing events, which leads to

very high overall probability of death. This is also the case in our approach, and it is sometimes avoided if models are not misspecified, for example, by adjusting for all appropriate covariates with any potential interactions and by including time-dependent effects. In some situations, models may fail to converge when specified correctly, but this will depend on the use of better initial values for the optimizer so that it is not searching in the wrong direction. Therefore, future work may involve implementing an appropriate constraint on the models to avoid issues in convergence.

6 References

Andersen, P. K., R. B. Geskus, T. de Witte, and H. Putter. 2012. Competing risks in epidemiology: Possibilities and pitfalls. *International Journal of Epidemiology* 41: 861–870.

Andersson, T. M.-L., P. W. Dickman, S. Eloranta, and P. C. Lambert. 2011. Estimating and modelling cure in population-based cancer studies within the framework of flexible parametric survival models. *BMC Medical Research Methodology* 11: 96.

Coviello, V., and M. Boggess. 2004. Cumulative incidence estimation in the presence of competing risks. *Stata Journal* 4: 103–112.

Dickman, P. W., and E. Coviello. 2015. Estimating and modeling relative survival. *Stata Journal* 15: 186–215.

Durrleman, S., and R. Simon. 1989. Flexible regression models with cubic splines. *Statistics in Medicine* 8: 551–561.

Eloranta, S., P. C. Lambert, T. M.-L. Andersson, M. Björkholm, and P. W. Dickman. 2014. The application of cure models in the presence of competing risks: A tool for improved risk communication in population-based cancer patient survival. *Epidemiology* 25: 742–748.

Fine, J. P., and R. J. Gray. 1999. A proportional hazards model for the subdistribution of a competing risk. *Journal of the American Statistical Association* 94: 496–509.

Gerds, T. A., T. H. Scheike, and P. K. Andersen. 2012. Absolute risk regression for competing risks: Interpretation, link functions, and prediction. *Statistics in Medicine* 31: 3921–3930.

Gray, R. J. 1988. A class of k-sample tests for comparing the cumulative incidence of a competing risk. *Annals of Statistics* 16: 1141–1154.

Hinchliffe, S. R., and P. C. Lambert. 2013. Flexible parametric modelling of cause-specific hazards to estimate cumulative incidence functions. *BMC Medical Research Methodology* 13: 13.

Jeong, J.-H., and J. Fine. 2006. Direct parametric inference for the cumulative incidence function. *Journal of the Royal Statistical Society, Series C* 55: 187–200.

Koller, M. T., H. Raatz, E. W. Steyerberg, and M. Wolbers. 2012. Competing risks and the clinical community: Irrelevance or ignorance? *Statistics in Medicine* 31: 1089–1097.

Lambert, P. C. Forthcoming. The estimation and modeling of cause-specific cumulative incidence functions using time-dependent weights. *Stata Journal*.

Lambert, P. C., L. Holmberg, F. Sandin, F. Bray, K. M. Linklater, A. Purushotham, D. Robinson, and H. Møller. 2011. Quantifying differences in breast cancer survival between England and Norway. *Cancer Epidemiology* 35: 526–533.

Lambert, P. C., and P. Royston. 2009. Further development of flexible parametric models for survival analysis. *Stata Journal* 9: 265–290.

Lambert, P. C., S. R. Wilkes, and M. J. Crowther. Forthcoming. Flexible parametric modelling of the cause-specific cumulative incidence function. *Statistics in Medicine*.

Latouche, A., V. Boisson, S. Chevret, and R. Porcher. 2007. Misspecified regression model for the subdistribution hazard of a competing risk. *Statistics in medicine* 26: 965–974.

Lau, B., S. R. Cole, and S. J. Gange. 2009. Competing risk regression models for epidemiologic data. *American Journal of Epidemiology* 170: 244–256.

Mozumder, S. I., M. J. Rutherford, and P. C. Lambert. 2016. Direct likelihood inference on the cause-specific cumulative incidence function: A flexible parametric regression modelling approach.

Noordzij, M., K. Leffondré, K. J. van Stralen, C. Zoccali, F. W. Dekker, and K. J. Jager. 2013. When do we need competing risks methods for survival analysis in nephrology? *Nephrology Dialysis Transplantation* 28: 2670–2677.

Putter, H., M. Fiocco, and R. B. Geskus. 2007. Tutorial in biostatistics: Competing risks and multi-state models. *Statistics in Medicine* 26: 2389–2430.

Royston, P., and M. K. B. Parmar. 2002. Flexible parametric proportional-hazards and proportional-odds models for censored survival data, with application to prognostic modelling and estimation of treatment effects. *Statistics in Medicine* 21: 2175–2197.

Sapir-Pichhadze, R., M. Pintilie, K. J. Tinckam, A. Laupacis, A. G. Logan, J. Beyene, and S. J. Kim. 2016. Survival analysis in the presence of competing risks: The example of waitlisted kidney transplant candidates. *American Journal of Transplantation* 16: 1958–1966.

Wolbers, M., M. T. Koller, V. S. Stel, B. Schaer, K. J. Jager, K. Leffondré, and G. Heinze. 2014. Competing risks analyses: Objectives and approaches. *European Heart Journal* 35: 2936–2941.

About the authors

Sarwar Islam Mozumder is a PhD student at the University of Leicester, UK. His PhD focuses on further development of flexible parametric modeling methods in competing risks and risk communication of cancer survival statistics.

Mark Rutherford is a lecturer of biostatistics at the University of Leicester, UK. He has a keen interest in applying survival methods in Stata, particularly for population-based cancer data.

Paul Lambert is a professor of biostatistics at the University of Leicester, UK. He also works part-time at the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. His main interest is in the development and application of methods in population-based cancer research.