Go to main content
Formats
Format
BibTeX
MARCXML
TextMARC
MARC
DublinCore
EndNote
NLM
RefWorks
RIS

Files

Abstract

In competing-risks analysis, the cause-specific cumulative incidence function (CIF) is usually obtained in a modeling framework by either 1) transforming on all cause-specific hazards or 2) transforming by using a direct relationship with the subdistribution hazard function. We expand on current competing-risks methodology from within the flexible parametric survival modeling framework and focus on the second approach. This approach models all cause-specific CIFs simultaneously and is more useful for answering prognostic-related questions. We propose the direct flexible parametric survival modeling approach for the causespecific CIF. This approach models the (log cumulative) baseline hazard without requiring numerical integration, which leads to benefits in computational time. It is also easy to make out-of-sample predictions to estimate more useful measures and incorporate alternative link functions, for example, logit links. To implement these methods, we introduce a new estimation command, stpm2cr, and demonstrate useful predictions from the model through an illustrative melanoma dataset.

Details

PDF

Statistics

from
to
Export
Download Full History