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Abstract. Social, behavioral, and health scientists frequently decompose changes
or differences in outcome variables into components of change and assess their
relative importance. Many Stata commands facilitate this exercise using unit-
level data, notably by applying the Blinder–Oaxaca approach. However, none
of the comparable user-written commands decompose changes or differences in
aggregate data despite their availability and the widespread use of corresponding
decomposition techniques. In this article, I present the user-written command
rdecompose, which decomposes aggregate or cross-classified data based on Das
Gupta’s (1993, Standardization and Decomposition of Rates: A User’s Manual,
Volume 1) approach, and demonstrate its application in multiple settings. This
command extends the original method by allowing multiple factors and flexible
functional specifications.
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1 Introduction

Numeric values such as rates, means, percentages, and proportions are instrumental
in measuring social, economic, health, and demographic outcomes. Researchers often
study measures such as birth rates, prevalences of diseases, or income inequality and
analyze differences between populations or changes over time; such factors reflect dif-
ferences in relevant population characteristics that may directly or indirectly influence
outcomes. Demographers, economists, and public health scientists traditionally ap-
ply standardization and decomposition techniques to distinguish real “rate” differences
from the effects of compositional factors on measured outcomes. These techniques are
used throughout the social sciences to determine why rates differ among populations
(Guo et al. 2012; Wang et al. 2000; Yamaguchi 2011).

The literature uses decomposition techniques that fall broadly into two categories
based on data requirements. The first category uses unit record data along with a mul-
tivariate regression-based technique known as the Blinder–Oaxaca approach (Blinder
1973). This approach has multiple Stata implementations, including the linear ver-
sion from Jann (2008) and nonlinear extensions from Sinning, Hahn, and Bauer (2008)
and Powers, Yoshioka, and Yun (2011). This approach relies on the availability of
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individual-level data. The second approach is designed for cross-classified data or con-
tingency tables and often uses algebraic relationships rather than econometric estima-
tions (Chevan and Sutherland 2009; Das Gupta 1993).

Although some Stata commands apply unit record-based Blinder–Oaxaca decompo-
sition, no comparable user-written commands implement existing decomposition tech-
niques for aggregate data,1 despite wide availability of aggregate data and use of corre-
sponding aggregate data-based decomposition methods in the literature. In this article,
I introduce a new user-written command, rdecompose, for a variant of such methods
known as Das Gupta’s reformulation and demonstrate potential applications from a
range of settings, including demography, public health, and economics.

Das Gupta’s method for cross-classified data is based on incremental methodologi-
cal developments in standardization and decomposition techniques that have occurred
over several decades. Wolfbein and Jaffe (1946) were among the first to demonstrate
the importance of decomposition by applying a double standardization technique, but
Kitagawa (1955) developed a formal procedure for decomposing cross-classified data.
Her work led to the simultaneous identification of separate but additive composition
and rate components that summed to rate differences. In a series of articles, Das Gupta
took a symmetric approach to the interaction component and developed functional re-
lationships that allow deterministic allocation of the interaction components among
cross-classified variables. This approach led to integration of the interaction between
component effects into the additive main effects and facilitated interpretation of results.
Das Gupta’s approach also imposed few constraints on the nature of the variable and
its distribution or on the specification of relationships for the outcome of interest. Thus
the method can be applied flexibly to most cross-classified aggregate data.

2 Method
2.1 Standard rate decomposition with multiplicative factors

Demographers, health researchers, and social scientists must sometimes interpret dif-
ferences between two crude rates of the same or comparable population. For instance,
researchers may want to understand what drives differences in rates of death today
versus 20 years ago. Differences between death rates may be decomposed into multiple
confounding factors such as differences in age-specific death rates and age structures.
Kitagawa’s (1955) approach initially decomposed differences in job mobility rates be-
tween two cities into migrant status and time spent in the labor force. Das Gupta (1978,
1991, 1993) generalized the method, and Chevan and Sutherland (2009) made improve-
ments so that the approach can be applied to any type and number of factors.2 Unlike
other decomposition methods that allow nonlinear specification of rates, Das Gupta’s
method yields stable results independent of the order in which factors are introduced
and needs no special treatment for interaction terms.

1. Researchers may be able to decompose crude rate data via existing individual-record based decom-
position commands such as mvdcmp (Powers, Yoshioka, and Yun 2011) in some cases. Doing so may
involve data transformation and programming.

2. For a review of rate standardization and comparison methods, see Keiding and Clayton (2014).
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Suppose rate r can be expressed by k multiplicative factors x1 . . . xk. Rate r can be
a death rate, fertility rate, or any aggregate measures of interest. x1 . . . xk are k factors
(for example, age structure in the case of death rates) driving changes in the rate.

r(x1 . . . xk) =

k∑
i=1

xi

If superscript a is used to denote the first population and superscript b the second
population, the (unstandardized) contribution of two factors C(x1) and C(x2) to the
difference of ra and rb in the case of two factors can be expressed mathematically as
below, following Das Gupta (1991, 1993):{

C(x1) = 1
2 (x

a
2 + xb

2)(x
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C(x2) = 1
2 (x
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1)(x
a
2 − xb
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Intuitively, the contribution of a factor lies in its conditional effect on the mean values of
other factors. The relative contribution of x1 is therefore C(x1)/{C(x1) + C(x2)}, and
the relative contribution of x2 is C(x2)/{C(x1) + C(x2)}. This approach is generally
straightforward when there are few factors. However, calculations become cumbersome
as k increases because of the need to compute all possible counterfactuals (2k) and
aggregate the result. Mathematically, the contribution of the ith factor to the rate is

C(xi) =

k−1∑
j=1

R(j − 1, i)

k
(

k−1
j−1

) (xa
i − xb

i )

where R(j, i) is the sum of all possible values of the product of k− 1 factors (excluding
xi), from which j factors are from population a and all other factors are from population
b. The number of possible values can be large when there are many factors because the
number of permutations increases faster than k.

One advantage of this type of decomposition is the consideration of all possible
replacements of the elementary rates of the first population with the corresponding rates
of the second, thus avoiding path dependency. Das Gupta’s method essentially assigns
a weight to each possible path where the importance of the specific factor gradually
fades when further changes to other factors are introduced in the counterfactual. This
assumption differs from Shapley’s decomposition approach, where all paths are treated
equally (Sastre and Trannoy 2002).

The result of Das Gupta’s decomposition can be presented intuitively, where ob-
served rate differences are decomposed into different component effects with the relative
contribution summing to 100%. This method can be applied to a wide range of research,
such as differences in sociodemographic attributes, income inequality, and disparities in
health outcome.
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2.2 Generalized rate decomposition

In some cases, the crude rate cannot be represented by a series of multiplicative factors.
Instead, more complex computations might be involved. In the case of death rates, for
instance, researchers might need to use only summative and multiplicative operators
to control for deaths attributable to different potential mechanisms and age structure.
In other cases, rate functions can be more complicated. Consider, for example, r =
x1e

x2 ln(x3 +x4). In such cases, the calculation of r can be presented in a more generic
form,

r(x1 . . . xk) = f(x1, . . . , xk)

where f(·) is the rate function instead of a simple multiplicative equation as before.
Although the principle remains the same, the calculation of the rate must be replaced
by a more generic function. This necessity often increases technical complexity in prac-
tical implementation, especially when k is large. The rdecompose command assists
researchers with such issues.

3 The rdecompose command

The rdecompose command implements Das Gupta’s style decomposition where the
aggregate rate r is calculated based on k factors and aggregated over s in the following
manner:

r =
∑
s

f(x1 . . . xk)

3.1 Syntax

The syntax of rdecompose is

rdecompose varlist
[
if
]
, group(varname)

[
sum(varname) detail reverse

function(string) transform(varname) multi baseline(#)
]

rdecompose should be immediately followed by the names of the variables (factors)
that contribute to the rates. The population group indicator also must be included in
the group() option. An if condition can be used in combination with rdecompose if
required.

3.2 Options

group(varname) specifies the group indicator of the two populations that will be com-
pared. varname can be in numeric or string format. group() is required.

sum(varlist) indicates the population rate is an aggregated value summation over each
distinct value of this variable or variables (for example, age or location).

detail gives more detailed output when the sum() option is specified.
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reverse reverses the order of the two compared groups.

function(string) specifies the function form of the rate. For example, the user may
specify ln(factor1+factor2)*exp(factor3) to be used as a function. Most Stata-
supported functions can be used here. rdecompose assumes multiplicative operations
if a function is not specified. An error message will appear if the specified function
is invalid or cannot be evaluated.

transform(varname) converts absolute numbers into proportions within the popula-
tion.

multi indicates there are more than two populations in the group() option. Specifying
this option results in multiple comparisons against the baseline population, which
can be specified in the baseline() option.

baseline(#) specifies the value of the group variable for the baseline population.

3.3 Output and stored results

The typical output of rdecompose resembles what is presented in output 1. The output
reports the names of variables and rates corresponding to the two compared populations,
the functional form assumed in the computation, and a table listing factors and their
contributions. rdecompose also standardizes the total contribution into 100% for the
convenience of interpretation.

Output 1: An example of the rdecompose command

. rdecompose size rate, sum(agegroup) group(pop)

Decomposition between pop == 1 (9800.09)
and pop == 2 (55800.13)

Func Form = sum(agegroup)size*rate

Component Absolute Difference Proportion (%)

size 15839 34.43
rate 30161 65.57

Overall 46000 100.00

Besides table output, rdecompose returns some estimation results as scalars, macros,
and matrices. The most notable include

Scalars
e(rate1) contains the rate calculated for the first group
e(rate2) contains the rate calculated for the second group
e(diff) shows total differences between two groups

Macros
e(basegroup value) stores the value of the group variable for the baseline population

Matrices
e(b) contains total contributions for each factor
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4 Examples

This section demonstrates the use of rdecompose for a range of decomposable factors
and data types. The first two examples are mostly for validation because they replicate
known examples from Bongaarts (1978) and Clogg and Eliason (1988). These exam-
ples draw data from the discipline of demography and decompose changes in parity
progression and total fertility rates (TFRs). Both examples are cited and discussed by
Das Gupta (1993). The third example uses health expenditure data from China from
1993 to 2012 and attempts to decompose growth in health expenditures into five major
factors. The fourth example shows rdecompose’s use in economics through an exer-
cise of income inequality decomposition. The final example demonstrates how standard
errors of decomposition results can be derived with bootstrapping.

4.1 Example 1: Explaining changes in fertility rates over time

Table 1 presents the TFR in South Korea from 1960–1970. It also shows data on
proportions of married women (Cm), women not using contraception (Cc), prevalence
of abortion (Ca), lactational infecundability (Ci), and total fecundity (TF) rate. The
last is the level of natural fertility that the population would have attained if all women
had married at an early age, practiced neither contraception nor abortion, and did not
have long gestation periods during lactation. In demographic literature, these variables
are collectively known as proximate determinants of fertility. TFR is expressed as a
product of these five factors (that is, TFR = TF× Cm × Cc × Ca × Ci).

Table 1. TFRs and proximate determinants of fertility

South Korea (1960–1970)
Fertility measures 1960 1970

(population 1) (population 2)

TF rate 16.158 16.573
Index of proportion married (Cm) 0.72 0.58
Index of noncontraception (Cc) 0.97 0.76
Index of induced abortion (Ca) 0.97 0.84
Index of lactational infecundability (Ci) 0.56 0.66
TFR 6.13 4.05

Source: Bongaarts (1978)

As table 1 shows, between 1960 and 1970, the TFR in South Korea declined 2.08
points from 6.13 in 1960 to 4.05 in 1970. rdecompose can be applied as follows to
determine relative contributions of each proximate determinant factor to changes in
TFR observed:
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Output 2: Stata code and command output of example 1

. use example1-bongaarts

. rdecompose marriage noncontracept abortion lactation fecundity, group(year)

Decomposition between year == 1960 (6.13)
and year == 1970 (4.05)

Func Form = marriage*noncontracept*abortion*lactation*fecundity

Component Absolute Difference Proportion (%)

marriage -1.09 52.46
noncontracept -1.23 59.13

abortion -.728 35.00
lactation .84 -40.38
fecundity .129 -6.20

Overall -2.08 100.00

The first column in output 2 shows the factor names, and the second column reports
absolute contributions of each factor to the decline in recorded fertility rates. Regarding
the reduction of 2.08 children per woman between 1960 and 1970, contraception and
marriage contributed to a decline of about one child each. Abortion contributed about
0.73 to the total reduction of 2.08. The last column shows relative contributions of each
factor as a percent of the total difference. Here 59.1% of the decline in TFRs during
the decade can be attributed to increased use of contraception. During the same time,
however, the duration of lactation declined and contributed to an increase in fertility.
Results derived from rdecompose match the outcomes reported in the original article.

4.2 Example 2: Explaining differences in desire for more children

The second example is adapted from Clogg and Eliason (1988), who examine the desire
to bear more children. It illustrates decomposition using cross-classified data. Table 2
compares desire for more children in two groups of women: those with 4 or more children
(represented by parity 4+) and those with 1 child (represented as parity 1). Given that
age is an important determinant of fertility and that most parity 1 women are likely
younger than women with 4 or more children, the question is how to isolate the effect
of age composition differences in the two parity groups. rdecompose can be applied to
isolate the effect of age composition from actual differences in rates between the two
groups of women.
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Table 2. Population size and percent desiring more children (rate) by age

Parity 4+ (population 1) Parity 1 (population 2)
Age groups Size (Ni) Rate (T i) Size (Ni) Rate (T i)

20 to 24 27 37.037 363 90.083
25 to 29 152 19.079 208 76.923
30 to 34 224 15.179 96 56.25
35 to 39 239 5.021 59 20.339
40 to 44 211 6.161 48 10.417
All ages 853 11.489 774 72.093

Source: Clogg and Eliason (1988)

As shown, this example uses the transform() option to convert the absolute number
for size into proportions within the population group. The result suggests that the rate
effect contributes about 62% of the difference, whereas the size effect (size of each age
group) contributes about 38% of the differences.

Output 3: Stata code and command output of example 2

. use example2-clogg

. rdecompose Size Rate, group(Parity) transform(Size) sum(age_group)

Decomposition between Parity == 1 (11.49)
and Parity == 4 (72.09)

Func Form = \sum(age_group){Size*Rate}

Component Absolute Difference Proportion (%)

Size(*) 23.1 38.07
Rate 37.5 61.93

Overall 60.6 100.00

(*) indicates transformed variables

Source: Zhai, Goss, and Li (2017)

4.3 Example 3: Explaining drivers of health expenditures in China

The third example is from Zhai, Goss, and Li (2017), which examines the factors driving
rising health expenditures in China. Using published National Health Accounts reports
and disease prevalence data from the Global Burden of Disease 2013 Study from the
Institute for Health Metrics and Evaluation (2015), this example decomposes the growth
of health expenditure between 1993 and 2012 in China into five factors: population
increase, changes in disease prevalence rates, shifts in age structure of the population,
excessive health price inflation, and changes in treatment cost per case. This example
showcases a more complex decomposition with multiple factors and the detail option.
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rdecompose allows users to aggregate results from multiple subgroups—disease and
age groups in this example. The detail option allows the program to display more
detailed decomposition results normally hidden by the sum process. As seen in output 4,
the detail option shows the contribution to health expenditures by disease and age
group. Given page limits, only partial results are presented.

The decomposition suggests that real expenditure per case (exp percase), excess
health price inflation (ehpi), and aging (aging) drove increased health expenditures
in China between 1993 and 2012. Population growth (population) was a secondary
factor. Reductions in disease prevalence rates (prevalence rate) only slightly slowed
the growth in expenditures. Moreover, the result suggests that more than 70% of the
difference in health expenditures on neoplasms and circulatory, respiratory, endocrine,
nutritional, metabolic, and digestive diseases over the period was caused by changes
in expenditures per case and the excess health price inflation. Examining results in
the “detail” section reveals that aging of the population contributes more to growth
of expenditures on neoplasms and circulatory, endocrine, nutritional, metabolic, and
digestive diseases versus other diseases.

Output 4: Stata code and command output of example 3

. use example3-zhai

. rdecompose prevalence_rate population ageing exp_percase ehpi, group(year)
> sum(disease age_group) detail

Decomposition between year == 1993 (124535.24)
and year == 2012 (1000586.64)

Func Form = \sum(disease)\sum(age_group){prevalence_rate*population*
> ageing*exp_percase*ehpi}

Component Absolute Difference Proportion (%)

prevalence_rate -18982 -2.17
population 59535 6.80

ageing 98405 11.23
exp_percase 635946 72.59

ehpi 101148 11.55

Value of disease and Components Detailed Contributions

Blood prevalence_rate -507 -0.06
population 500 0.06

ageing 426 0.05
exp_percase 4183 0.48

ehpi 851 0.10
Circulatory prevalence_rate -6919 -0.79

(output omitted )

Overall 876051 100.00
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4.4 Example 4: Income equality decomposition

The rate decomposition method also applies to other fields such as economics. A series
of studies (for example, Bargain and Callan [2010]) decomposed changes in inequali-
ties between countries using Shorrocks–Shapley decomposition (Shorrocks 2013). Such
studies often use indexes derived from counterfactual simulations to attribute the rela-
tive importance of each component. In this case, decomposing the contributing factors
to the income inequality resembles a rate decomposition.

The contribution of a factor to income inequality sometimes is determined based on
Shapley values, which are computed by averaging the effects of all possible permuta-
tions before and after the factor of interest is substituted. This approach avoids path
dependency (Devicienti 2010; Okamoto 2011) but treats the first-order effect with the
same weight as mixed effects where multiple input factors have been substituted. Al-
ternatively, the estimation of a factor’s contribution can follow Das Gupta’s approach,
where weights are normalized, giving greater weight to direct effects. rdecompose can
be used for such analyses.

Because the outcome value cannot be described as a simple function, specific values
can be passed via the function() option of the command. For instance, to assess the
contribution to Gini from two factors (for example, the population structure and the
tax system as in table 3), one can use rdecompose as demonstrated in output 5.

Table 3. Estimated Gini coefficient with two factors

Gini Factor 1 (for example, population)
1 2

Factor 2 (for example, tax system) 1 0.31 0.39
2 0.48 0.52

Output 5: Decompose contributions to Gini based on two factors

. rdecompose factor1 factor2, group(group)
> function(cond(factor1==1, cond(factor2==1,0.31,0.48),
> cond(factor2==1,0.39,0.52)))

Decomposition between group == 1 (0.31)
and group == 2 (0.52)

Func Form = cond(factor1==1, cond(factor2==1,0.31,0.48),
> cond(factor2==1,0.39,0.52))

Component Absolute Difference Proportion (%)

factor1 .06 28.57
factor2 .15 71.43

Overall .21 100.00
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4.5 Example 5: Bootstrap with rdecompose

rdecompose does not have the native support of standard-error estimations in its current
version because sources of sampling and nonsampling errors could vary substantially
for each case. Standard errors in some cases might be meaningless if population-level
data are applied or possibly inaccurate because of data confidentialization processes.
However, should uncertainties of input data be mathematically described, it may be
possible to derive the standard errors of the estimators. One way to do this is to use
the bootstrap technique (Wang et al. 2000), which can be programmed in combination
with rdecompose.

For example, to consider the sampling errors in example 2, one may bootstrap the
underlying sample, which can be presented as a unit record dataset. A short customized
program can be written in Stata to extract the rdecompose output for each iteration of
the bootstrapping process.

Output 6: A customized rdecompose program for bootstrapping

program mydecompose, eclass
preserve
collapse (count) Size= d (mean) Rate = d, by(age_group Parity)
quietly rdecompose Size Rate, group(Parity) transform(Size) sum(age_group)
matrix b = e(b) * 100
ereturn post b
restore

end

The dataset from example 2 needs to be transformed for the bootstrap command as
shown in output 7, which includes both the commands and the results of this example.

Output 7: Results from bootstrapping

. use example2-clogg

. expand Size
(1,617 observations created)

. by age_group Parity, sort: generate d = _n<=round(Rate*Size/100)

. bootstrap, nowarn nodots reps(1000): mydecompose

Bootstrap results Number of obs = 1,627
Replications = 1,000

Observed Bootstrap Normal-based
Coef. Std. Err. z P>|z| [95% Conf. Interval]

Size(*) 23.07168 2.459112 9.38 0.000 18.25191 27.89145
Rate 37.53248 3.136146 11.97 0.000 31.38575 43.67922

As shown, this short program returns the standard errors of estimated rate contri-
butions via bootstrapping. With minor changes to the program, one can estimate the
standard error of the percentage values if needed.
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5 Concluding remarks

This article presents a user-written command, rdecompose, that replicates and extends
the popular rate decomposition method presented by Das Gupta (1993). This command
provides researchers a user-friendly tool to decompose changes in populations, which is
a task common to research in demography, health, and economics. This tool reduces
the tediousness of programming large numbers of factors and relaxes the functional
requirement of the original method. rdecompose normally assumes that the underlying
relations of the rate calculation are known; however, some or all permutations can be
overridden via the function() option. The command currently has no native support
for standard-error estimation because each case may contain vastly different sources
of sampling and nonsampling errors. It may be possible, however, to use bootstrap
techniques to derive standard errors of the estimates.
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