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Abstract. In this article, we present StataStan, an interface that allows simula-
tion-based Bayesian inference in Stata via calls to Stan, the flexible, open-source
Bayesian inference engine. Stan is written in C++, and Stata users can use the
commands stan and windowsmonitor to run Stan programs from within Stata. We
provide a brief overview of Bayesian algorithms, details of the commands available
from Statistical Software Components, considerations for users who are new to
Stan, and a simple example. Stan uses a different algorithm than bayesmh, BUGS,
JAGS, SAS, and MLwiN. This algorithm provides considerable improvements in
efficiency and speed. In a companion article, we give an extended comparison of
StataStan and bayesmh in the context of item response theory models.
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1 Introduction

Stata users have long been able to seamlessly access other software specializing in
Bayesian analysis, thanks to Stata users’ abilities to write arbitrary information to
ASCII text files and send commands to the operating system. This allowed for com-
mands such as runmlwin (Leckie and Charlton 2013) and wb (Thompson 2017) to send
data and code to MLwiN and WinBUGS, respectively, then collect the results and dis-
play them inside Stata for further calculation and graphing. Since 2015, when Stata 14
was released, Stata users have been able to use a native implementation of Bayesian
simulation algorithms by using the bayesmh command. However, bayesmh is limited to
regressionlike models where a dependent variable has a specified likelihood conditional
on some function of independent variables, and can allow only certain prior distribu-
tions. It cannot, for example, fit structural equation models, Gaussian processes, or
spatial correlation models.
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The day after Stata 14’s release, StataStan was published online (Stan Development
Team 2016b). StataStan is an umbrella term for all commands and programs neces-
sary to interface with Stan from Stata. It can be installed from Statistical Software
Components by typing

ssc install stan

and Windows users should also install windowsmonitor by typing

ssc install windowsmonitor

Stan is an open-source, collaboratively built software project that implements an
algorithm (Hamiltonian Monte Carlo) for Bayesian modeling that is faster and more
stable than the algorithms (random walk Metropolis–Hastings and the Gibbs sampler)
implemented in BUGS, JAGS, SAS, MLwiN, and bayesmh. Stan has been applied to a wide
range of complex statistical models, including time series, imputation, mixture models,
meta-analysis, cluster analysis, Gaussian processes, and item response theory. These
extend beyond the current (Stata 14.2) capability of bayesmh, which is explicitly for
regression. In our companion article (Grant et al. 2017), we describe the functionality
of Stan and advantages of its algorithm. In this article, we give a brief overview of
Hamiltonian Monte Carlo in intuitive terms, set out the syntax of the commands, and
present a worked example.

2 Hamiltonian Monte Carlo

All Bayesian methods make estimates and inference by evaluating posterior distribu-
tions, combinations of likelihood based on data, and a model with prior distributions
representing uncertainty about parameters of the model before the data were known.
Different practitioners take the prior to mean different concepts, in the same way that
“uncertainty” and “probability” are not rigorously defined concepts despite decades of
hard work by statisticians and philosophers of science. Regardless of the interpretation,
Bayesian methods differ from frequentist methods in that they allow probability state-
ments to be made about any unknown value, not just those that represent eternally
replicable random sampling.

Textbook examples often start with algebraically tractable posterior distributions,
but in practice, this is generally either infeasible or too time consuming and prone to
human error to be worthwhile. Instead, software allows the analyst to run one or more
Markov chains of pseudorandom values that converge to a stationary distribution equiv-
alent to draws from the joint posterior distribution of all parameters of interest. From a
large enough number of these draws, estimation and inference can be done empirically.
The older algorithms, random walk Metropolis–Hastings, and the Gibbs sampler take
random steps through parameter space and accept or reject the new location based on
its posterior probability.

This can work well under some circumstances but under others can require large
numbers of draws before they accurately represent the posterior distribution (conver-
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gence). Problems like this commonly arise when parameters are correlated (like, for
example, how the intercept and slope of a bivariate linear regression are correlated with
only a small amount of data); when priors are not ideal matches for the likelihood
(a subtle topic beyond the scope of this article but discussed in Bayesian textbooks
[Gelman et al. 2013]); or when initial values are poor guesses. Hamiltonian Monte Carlo
addresses these issues by using Hamilton’s equations of motion with periodic random
impulses (Neal 2011). Exploration of the posterior probability is then analogous to a
particle moving in a force field (picture a beachball rolling in the hollow between sand
dunes, with occasional random kicks—gravity is the force providing the Hamiltonian
motion); as the joint posterior distribution guides movement to the region of highest pos-
terior probability, the problems of sampling using random steps disappear. Even chains
with poor initial values can still reveal the whole posterior distribution relatively quickly
(Neal 2011). A computer requires computationally expensive numerical integration and
differentiation to perform this imitation of life, but the lifting of the problems associated
with random walk Metropolis–Hastings and Gibbs more than compensates for this. The
no-U-turn sampler is the algorithm implemented in Stan (Hoffman and Gelman 2014),
which automatically tunes the parameters of Hamiltonian Monte Carlo, achieving nearly
optimal integration time in recent tests using CmdStan (Betancourt 2016).

In the companion article, we present a comparison of the efficiency of StataStan
alongside bayesmh for an item response model (Grant et al. 2017).

3 The stan and windowsmonitor commands

3.1 Objectives and development

Building on the history of linking Stata to WinBUGS (Thompson 2017), we sought
to provide one command that would dispatch a specified Stan model code along with
data. Because Stata can easily issue operating system commands, we use this to run
the command-line implementation of Stan (CmdStan) and display summary results
inside Stata. This is the approach also taken by the Stan interfaces from MATLAB

and Julia. CmdStan has to be installed before using StataStan, but this is relatively
straightforward with instructions on the Stan website, http://mc-stan.org.

We believe that Stata users who are becoming familiar with Bayesian techniques will
find StataStan a flexible, stable, and fast tool. Also, people who already use Stata and
Stan separately will find it helpful to keep everything in one workflow, because most
people find it easier to work with one piece of software than to switch among them (and
find it easier to maintain quality control). This allows data processing, simple analysis,
complex modeling, graphics, and report writing all in one place.

One unexpected problem we encountered was that Windows does not make its stan-
dard output on the command line available in such a way that Stata can display it in the
results window until the external program has finished execution. In the case of complex
Bayesian models that can take hours to run, this would be unacceptable. Therefore, we
wrote a small companion program called windowsmonitor that displays command-line
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output close to real time. windowsmonitor may provide a useful alternative to shell

and winexec in other settings too.

3.2 The stan command for Stata

stan specifies what data are to be sent to CmdStan, with options controlling its settings
and additional requirements such as sampling diagnostics or posterior modes. Data are
passed to CmdStan in a text file, and outputs are returned similarly. These files are
temporarily created in the CmdStan directory, then moved to the working directory.
There is an option to retain all files. Otherwise, unnecessary files are deleted afterward.
Users should be mindful that any existing files in these locations with these names may
be overwritten. A model has to be stored in its own file with extension .stan, and we
discuss different ways to achieve this below.

Syntax of stan

stan varlist
[
if
] [

in
] [

, datafile(filename) modelfile(filename) inline

thisfile(filename) rerun initsfile(filename) load diagnose

outputfile(filename) chainfile(filename) mode modesfile(filename)

winlogfile(filename) seed(integer) warmup(integer) iter(integer)

thin(integer) chains(integer) skipmissing matrices(string) globals(string)

keepfiles stepsize(integer) stepsizejitter(integer)
]

Options

datafile(filename) specifies the name (and path if desired) of a text file where stan

will write the data on its way to Stan. This is done in the format used by R/S-Plus
and BUGS. For example, with the sample 1978 Automobile dataset,

stan mpg, ...

would write

mpg=c(...)

The default is datafile(statastan data.R).

modelfile(filename) specifies the name (and path if desired) of a text file containing
the Stan model. The file must have the extension .stan. If this file already exists,
the model is read from there, or the model can be written into the file using one
of the methods detailed below under Specifying the Stan model. The default is
modelfile(statastan model.stan).
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inline instructs Stata to read the .stan model from a comment block inside the do-file
(see below under Specifying the Stan model for further discussion of modelfile(),
inline, and thisfile()).

thisfile(filename) specifies the name (and path if required) of the current do-file; this
is an option if inline has been specified (see below under Specifying the Stan model
for further discussion of modelfile(), inline, and thisfile()).

rerun uses the existing executable file with the same name as modelfile() (in Windows,
it will have the extension .exe). This should exist in the working directory. Be aware
it will be copied into cmdstandir (see below), deleting any existing file of that name.

initsfile(filename) specifies the name of a text file in R/S-Plus format containing
initial values. Because Stan is far less sensitive to initial values than software using
older algorithms, we do not presently provide any mechanism like the datafile()

option to write this file from inside Stata.

load instructs Stata to read in the resulting draws as its current dataset.

diagnose runs Stan’s diagnostics and displays them after sampling to examine whether
the algorithm has run successfully.

outputfile(filename) provides the name (and path if required) for the text file into
which CmdStan will write its outputs. The default is outputfile(output.csv).

chainfile(filename) provides the name for a comma-separated values format file that
will contain the draws from CmdStan; this is the same as outputfile(), but extra
information is removed so it can be read into Stata using import delimited. The
default is chainfile(statastan chains.csv).

mode runs Stan’s optimization to find posterior modes and displays the results after
sampling; it will also write the output into modesfile() (see below).

modesfile(filename) provides the name of a text file to hold output from CmdStan’s
estimation of modes. The default is modesfile(modes.csv).

winlogfile(filename) provides the name of a temporary file to hold Windows output
(see windowsmonitor); windowsmonitor will display the output in Stata’s Results
window, so there is no need to change the name of the temporary file from the
default, which is winlog.txt.

seed(integer) provides an integer pseudorandom-number generator seed for Stan.

warmup(integer) specifies the number of warmup draws, which are discarded from the
output and summaries. The default is warmup(1000).

iter(integer) specifies the number of iterations (draws) to retain after warmup(). The
default is iter(1000).

thin(integer) specifies how much Stan thins draws; if thin() is set to n, Stan will retain
one out of every n draws in output files and use the thinned draws for summaries.
The default is thin(1) (no thinning).
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chains(integer) determines how many chains to run, in parallel if possible (regardless
of the Stata flavor installed).

skipmissing removes missing data observations (on a cell-by-cell basis inside each col-
umn) before sending data to Stan. This is relevant if you want to send a series
of vectors of different sizes by making these appear as “variables” in your Stata
data. This could be useful in the context of multilevel models with smaller vectors
of cluster-level data. It is not a natural way to think of Stata data, so it should be
used with caution because it will apply to all the variables in varlist.

matrices(string) provides a list of matrices to send to Stan or if set to all, it will send
all current matrices. These are written into datafile() as two-dimensional arrays.

globals(string) provides a list of global macros to send to Stan, or all to send all
current global macros. These are written into datafile() as scalars. The user
should not write a string value, because this will probably cause an error from
CmdStan.

keepfiles instructs stan to keep all files produced along the way; otherwise, the model
file, C++ file, executable file, chains file, and (if produced) modes file will be retained
in the working directory.

stepsize(integer) sets the stepsize for Hamiltonian Monte Carlo. The default is
stepsize(1) (see the Stan manual [Stan Development Team 2016b] for more de-
tails).

stepsizejitter(integer) sets the stepsize jitter for Hamiltonian Monte Carlo. The
default is stepsizejitter(0) (see the Stan manual [Stan Development Team 2016b]
for more details).

4 Specifying the Stan model

You can specify the Stan model in at least three ways. First, you can write a .stan file
externally, for example, in a text editor, then name it with the modelfile() option.
This has the disadvantage that updating the analysis may require synchronized changes
in the do-file and model file. However, we recommend this method as the starting point
for new StataStan users because it avoids any bugs in writing and reading text files and
allows you to begin immediately using examples from the Stan manual and website.
Second, you can include the code inside a comment block in the do-file. If you use the
inline and thisfile() options, Stata will read the text contents of thisfile() and
identify the comment block that begins (on the line following the /* symbol) with the
word data, as seen below:
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/*
data {

int<lower=0> N;
int<lower=0,upper=1> y[N];

}
parameters {

real<lower=0,upper=1> theta;
}
model {

theta ~ beta(1,1);
y ~ bernoulli(theta);

}
*/

Stata will then write the contents of the block to the .stan file specified in modelfile().

Third, you can include the model code in the do-file as a series of strings in a foreach
loop, which writes each line to the modelfile(). This has the advantage that all Stata
and Stan code is in one file, but does not rely on naming or finding the do-file.

At present, the inline approach (option two above) does not accommodate multiple
blocks of code, but we intend to add this capability.

4.1 The windowsmonitor program

windowsmonitor is a wrapper extending the ability of shell. It will be called by stan

under Windows only; it will return an error message if it is used in Mac or Linux
computers. It intercepts the stdout stream (text displayed on the screen for command
line programs) and prints it inside Stata. It does this by diverting stdout to a text file,
checking that file every two seconds for new content, and displaying that in Stata if it
finds any. This continues until it receives a message that it is finished (in the form of a
final line of output, Finished!), which is added automatically. The user should avoid
using windowsmonitor to carry out any task that could write one Finished! line for
any reason, because this will terminate the display inside Stata prematurely. However,
if this is unavoidable, it is relatively simple to amend the signal word Finished! in
the source code. windowsmonitor creates a file called wmbatch.bat. If this survives
execution, it can safely be deleted later.

Syntax of windowsmonitor

windowsmonitor, command(string)
[
waitsecs(integer) winlogfile(filename)

]
Options

command(string) contains the Windows command-line code to be sent for execution.
command() is required.

waitsecs(integer) specifies the number of seconds to wait for output to appear before
giving up. The default is waitsecs(20).
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winlogfile(filename) specifies the file (and path if desired) to store the output in;
by default, a Stata tempfile will be used, so there is nothing to be gained from
specifying a tempfile macro here. The default is winlogfile(winlog.txt).

5 Considerations for newcomers to Stan

Newcomers are strongly advised to work through some of the examples in the Stan
manual before attempting serious applications. The Stan user must specify the type
(such as integer or real number) as data or parameters. This allows Stan to make
efficient calculations and helps with checking for inadvertent errors at compile time.
Stan will translate the model to C++, which is itself a “typed” language. For the most
part, the Stata user need not be concerned with this other than with the obvious choice
when writing the Stan code. However, one potential pitfall may arise when reading in
data from nonnative file formats into Stata and sending it with stan. Floating-point
precision means that what the person reads may not match what the computer stores,
and this may lead to a “type mismatch” error message from CmdStan.

The statistics reported by CmdStan and hence displayed by stan are the mean of
draws from the posterior; the Monte Carlo standard error representing the uncertainty
in the results arising from a finite number of draws; the standard deviation; the 5th,
50th, and 95th centiles of the draws; the number of effective independent samples (N Eff,
which accounts for autocorrelation in the chains) and number of effective independent
samples obtained per second (N Eff/s); and a measure of convergence (R hat). The
calculation of these measures is set out in Gelman et al. (2013). N Eff and R hat are
best assessed across multiple chains, so we advise users run at least four chains as a
general rule. stan can run parallel chains on multicore computers, even if Stata/MP
is not installed, so most modern laptops can run four chains simultaneously. In the
authors’ experience, this runs in about half the time of serial chains.

Beyond these reported statistics, the value of loading the draws from the posterior
distributions is that custom-derived values can be calculated and summarized by the
user inside Stata to provide decision-theoretic outputs. To give an example from health
economics, we can load a meta-analysis from Stan providing inference on the effective-
ness of alternative drugs into Stata and combine it with constant costs to derive a new
cost-effectiveness variable, which allows probability statements about whether the cost
effectiveness exceeds a willingness-to-pay threshold. Another important benefit of work-
ing with the posterior draws is that the covariance structure among the parameters is
preserved, while the tabulated summaries provide only marginal inferences.

Another consideration is that the number of available CPU cores needs to be specified
when installing CmdStan itself, and the StataStan chains() option can parallelize only
up to this number (Stan Development Team 2016a).
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Stan model code allows for vectorized statements such as

y ~ bernoulli(theta);

instead of

for (n in 1:N) { y[n] ~ bernoulli(theta); }

Both can be used in Stan, but the vectorized version is generally faster in execution.

6 Example

All the models set out in the Stan manual and website can be fit directly using StataStan,
including many models that are not possible in bayesmh. We can use StataStan for a
simple example to estimate the probability of success θ in a Bernoulli process,

Pr(yi) = θ, 1 ≤ i ≤ 10, i ∈ N

when we have 10 outcomes: 8 failures and 2 successes. We will apply a flat prior distri-
bution over [0, 1], either by explicitly specifying it or by omitting it because Stan uses
uniform priors as default, provided that bounds on the parameter have been specified.
The corresponding bayesmh command is

bayesmh y, likelihood(dbernoulli({theta})) prior({theta},beta(1, 1))

The Stan code for this example is contained in the examples folder inside CmdStan.

data {
int<lower=0> N;
int<lower=0,upper=1> y[N];

}
parameters {

real<lower=0,upper=1> theta;
}
model {

theta ~ beta(1,1);
y ~ bernoulli(theta);

}

The code is arranged in blocks of data, parameters, and model. Other block types
can also be included, described fully in the Stan manual. Each object in the model,
whether data or parameter, must be declared with its type and constraints before it
can be used. Like BUGS and JAGS, the assignment operator < − is used to calculate a
value and store it in the object named on the left-hand side, while the ~ operator has
two functions. In the line

theta ~ beta(1,1);

we are specifying a prior distribution (because theta is already declared as a parameter),
and in the line

y[i] ~ bernoulli(theta);
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we are incrementing the log probability by the likelihood contribution of one observation
according to the Bernoulli probability given the current estimate of theta.

Having specified this model, we can make the data,

clear
set obs 10
generate y=0
replace y=1 in 2
replace y=1 in 10

and then call stan:

quietly count
global N=r(N)
global cmdstandir "/path_to/CmdStan"
stan y, modelfile("bernoulli.stan") cmd("$cmdstandir") globals("N")

StataStan first displays its own version number and then the CmdStan version in-
stalled in cmdstandir. The first output to be displayed concerns translating the model
to C++, then compiling the resulting code. Compiling can be time consuming but
does not have to be done again unless the model changes. If StataStan finds CmdStan
successfully, and CmdStan is properly installed, this line will appear followed by some
output that users can ignore:

--- Translating Stan model to C++ code ---

Next, a block of code will appear, starting with this line and comprising the command
to the g++ compiler program (which is installed as part of CmdStan):

--- Linking C++ model ---

After compilation, we will see some settings for CmdStan, including the number of
samples to retain and the number to use as warm-up:

method = sample (Default)
sample

num_samples = 1000 (Default)
num_warmup = 1000 (Default)

We then see the iterations appear, followed by a total time to do the sampling:

Iteration: 1800 / 2000 [ 90%] (Sampling)
Iteration: 1900 / 2000 [ 95%] (Sampling)
Iteration: 2000 / 2000 [100%] (Sampling)

Elapsed Time: 0.017155 seconds (Warm-up)
0.024054 seconds (Sampling)
0.041209 seconds (Total)

Inference for Stan model: bernoulli_model
4 chains: each with iter=(1000,1000,1000,1000);

warmup=(0,0,0,0); thin=(1,1,1,1);
4000 iterations saved.
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Warmup took (0.017, 0.017, 0.017, 0.016) seconds,
0.067 seconds total

Sampling took (0.024, 0.032, 0.031, 0.031) seconds,
0.12 seconds total

This is followed by a summary of the parameters:

Mean MCSE StdDev 5% 50% 95% N_Eff N_Eff/s R_hat
theta 0.25 2.3e-03 1.2e-01 0.076 0.24 0.46 2784 23545 1.0e+00

Samples were drawn using hmc with nuts.
For each parameter, N_Eff is a crude measure of effective

sample size, and R_hat is the potential scale reduction
factor on split chains (at convergence, R_hat=1).

This shows us that we ran 4 chains and retained 1,000 samples from each, but because of
autocorrelation, this was equivalent to 2,784 independent samples (23,545 independent
samples per second). The posterior mean for θ was 0.25 (pulled upward from the max-
imum likelihood estimate by the flat prior and the small dataset). If mode is specified,
we will then see the posterior mode,

Log-probability at maximum: -5.004020214080811

Posterior
Parameter Mode

theta .200004

which is directly comparable (with a flat prior) with the maximum likelihood estimate,
0.2.

If we specify diagnose, we will see corresponding output; see the Stan manual for
details on this.

TEST GRADIENT MODE

Log probability=-7.10591

param idx value model finite diff error
0 -0.557247 -1.37022 -1.37022 -1.66588e-010

Finally, if we specify load, we will see a Stata-generated summary, including the
95% credible interval:

variable N mean sd se(mean)

theta 1000 .2485084 .1121162 .0035454

variable min p1 p5 p25

theta .019246 .0477189 .0814933 .1628
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variable p50 p75 p95 p99

theta .244064 .3222845 .4458295 .5513045

95% CI for theta: .0656607497483492 to .4934002541005615

This is similar to the approximate confidence interval:

. cii proportions 10 2, wilson

Wilson
Variable Obs Proportion Std. Err. [95% Conf. Interval]

10 .2 .1264911 .0566822 .5098375

We see the data replaced with variables called theta (which contains draws for the
parameter of that name), lp , accept stat , stepsize , treedepth , n leapfrog ,
and n divergent , all of which are created by CmdStan to track progress of the algo-
rithm and can be safely deleted unless needed for methodological investigations. The
theta variable, containing the draws from the posterior, can then be used for graphics
or further inference.

7 Conclusion

Stan continues to develop rapidly, with one major project being the inclusion of Riemann
manifold Hamiltonian Monte Carlo, which will provide further significant improvements
in speed and stability (Girolami and Calderhead 2011). StataStan can readily track this
by adding new options that are passed to future versions of CmdStan.

Stan and all its interfaces have been made possible by enthusiastic contributions from
developers around the world, coordinated by a core team. We encourage all interested
Stata users to visit http://mc-stan.org and become involved there through reporting
issues and suggesting improvements (Stan Development Team 2016b).
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