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Abstract. The instantaneous geometric rate represents the instantaneous proba-
bility of an event of interest per unit of time. In this article, we propose a method to
model the effect of covariates on the instantaneous geometric rate with two mod-
els: the proportional instantaneous geometric rate model and the proportional
instantaneous geometric odds model. We show that these models can be fit within
the generalized linear model framework by using two nonstandard link functions
that we implement in the user-defined link programs log-igr and logit_igr. We
illustrate how to fit these models and how to interpret the results with an exam-
ple from a randomized clinical trial on survival in patients with metastatic renal
carcinoma.

Keywords: st0478, log_igr, logit_igr, instantaneous geometric rate, generalized lin-
ear models, glm, survival analysis

1 Introduction

The geometric rate represents the average probability of an event of interest per unit of
time over a specific time interval. Recently, Bottai (Forthcoming) showed that in the
case of events that occur only once, such as death or first diagnosis of a disease, the
geometric rate is a better measure of occurrence than the incidence rate. In the same
article, Bottai proposed a regression method to model the conditional geometric rate
given covariates. That method is based on applying quantile regression to a transfor-
mation of the time variable and is implemented in the user-written grreg command
(Bottai 2015).

As the length of the time interval over which the geometric rate is defined shrinks
to zero, we obtain the instantaneous geometric rate. This measure has a very intuitive
interpretation because it represents the instantaneous probability of the event per unit
of time.

In this article, we propose two models for the effect of covariates on the instan-
taneous geometric rate: the proportional instantaneous geometric rate model and the
proportional instantaneous geometric odds model. We show that these models can be fit
within the generalized linear model (GLM) framework (Nelder and Wedderburn 1972)
by using two nonstandard link functions that can be easily programmed into the official
Stata glm command (Guan and Gutierrez 2002).

© 2017 StataCorp LLC st0478
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The remainder of this article is organized as follows: In section 2, we briefly review
how the instantaneous geometric rate is defined. In section 3, we show how to model
the instantaneous geometric rate via GLM and present two user-defined link programs,
log_igr and logit_igr. In section 4, we use data from a randomized clinical trial to
illustrate some practical examples of how these link programs can be specified as an
option of the glm command and how to interpret and present the analysis results. In
section 5, we provide a summary.

2 Geometric rate and instantaneous geometric rate

In this section, we follow the description provided by Bottai (Forthcoming). Let T be
a continuous random variable with support on (0,+00) representing the time-to-event
of individuals in some population, and let S(¢) be the associated survival function. The
geometric rate over the time interval (0,t) is defined as

e

9(0,t) =1 =5(t)

and represents the average probability of the event per unit of time over (0,t¢). The
geometric rate between any two time points t; and ts, such that 0 < t; < t3 < 400, is

w1 {3)

The limit of the geometric rate over shrinking time intervals (¢,¢t + At) gives the
instantaneous geometric rate

g(t) = lim+ g(t,t+ At)

A0
- 1= {22y

= lim 1-ew { log S(t + AAti —log S(t) }

- exp { 2500}

=1—exp{—h(t)} (1)

where f(t) indicates the probability density function of T and h(t) = f(t)/S(t), the haz-
ard function. The instantaneous geometric rate represents the instantaneous probability
of the event per unit of time.
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3 Instantaneous geometric rates via GLM

In this section, we show how instantaneous geometric rates can be estimated by GLM
using nonstandard link functions. See Hardin and Hilbe (2012) for an exposition of GLM
specifically targeted at Stata users.

Let t;, i = 1,...,n, be a sample of n possibly censored observations on the time
variable, d; be the event indicator variable (0 for a censored observation, 1 for an event),
x; = (T1,...2p,) be a vector of covariates, and B8 = (B1,...,05p) be an unknown

parameter vector.

3.1 Proportional instantaneous geometric rate model
We consider the proportional instantaneous geometric rates model
gi(tlzi) = go(t) exp (73) (2)
By taking the logarithm of both sides of (2), we get
log {gi(t}z:)} = log {go(t)} + a3

and by taking the logarithm of (1), we get

log [1 —exp {—hi(t)} [@:] = s(t;7) + =B (3)
where s(t; ) is a smooth parametric function of analysis time that depends on a vector

of unknown parameters v = (y1,...,%)"

To model the baseline log instantaneous geometric rate via s(¢;7), we split each
individual’s follow-up into a number of intervals (or episodes) by choosing a fine grid of
split points. After splitting the follow-up, let ¢;; be the length of the jth time interval
(the time at risk) relative to the ith individual, and let d;; be the event indicator that
takes value 1 if individual ¢ develops the event in interval j, and 0 otherwise.

Following the same rationale behind parametric proportional hazard models (Roys-
ton and Lambert 2011, chaps. 4 and 7), (3) suggests using the following link function,

nij = k(pi;) = log {1 — exp (-T)} (4)

j
where p;; is the expected value of d;;, which is assumed to follow a distribution of the
exponential family.
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After suppressing the subscripts, the calculations to program the link function (4)
are

p=k~"(n) = —tlog {—exp (n) + 1}

gg — texp(n) {~ exp(n) + 1}
Z—n’;‘ — texp(n) {exp(y) — 1} (5)

The following is the link program log_igr, contained in the log_igr.ado ado-file:

*! version 1.0.0 - 07dec2016
capture program drop log_igr
program define log_igr

version 7

args todo eta mu return

if “todo” == -1 { /* Title */
global SGLM_1t "Log IGR"
global SGLM_1f "log(l-exp(-u/$SGLM_p))"
capture confirm numeric variable $SGLM_p
if _rc !'= 0 {
noi di as error "argument ($SGLM_p) to log_igr " /*
*/ "link function must be a numeric variable"
exit 198

exit

if “todo” == 0 { /* eta = g(mu) */
gen double “eta” = log(-exp(-"mu”/$SGLM_p)+1)
exit

if “todo” == 1 { /* mu = g"-1(eta) */
gen double “mu” = -$SGLM_p*log(-exp(“eta”)+1)
exit

if “todo” == 2 { /* (d mu)/(d eta) */
gen double “return” = $SGLM_p*exp( eta’)*(-exp(Teta’)+1)"(-1)
exit

if “todo” == 3 { /* (d"2 mu)/(d eta~2) */
gen double “return” = $SGLM_p*exp( eta’)*(exp(“eta’)-1)"(-2)
exit
}
noi di as err "Unknown call to glm link function"
exit 198
end

To use this link, specify the 1ink(log_igr varname) option in the glm command,
where the existing numeric variable varname contains the time at risk, ¢;;. See Guan and
Gutierrez (2002) for a detailed explanation of how to program a custom link function.
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3.2 Proportional instantaneous geometric odds model

We now consider the proportional instantaneous geometric odds model

gillle) _ _gol) ,
1—gi(tlz;) 1 —Ogo(t) exp (2;/3) (6)

As we did in section 3.1, we write
logit[1 — exp{—h;(t)}|x;] = s(t;v) + =,
Therefore, the second proposed nonstandard link function is

nij = k(piz) = logit {1 — exp (_ /Zij ) }
ij

and the necessary calculations to program it are

=k~ () = —tlog[{exp(n) + 1} ']
%j; — texp(n) {exp(n) + 1}

0? _
a7 = Lep(n) {exp(n) + 1177

The following is the content of the logit_igr.ado ado-file, which contains the link
program logit_igr:

*! version 1.0.0 - 07dec2016
capture program drop logit_igr
program define logit_igr
version 7
args todo eta mu return

if “todo” == -1 { /* Title */
global SGLM_1t "Logit IGR"
global SGLM_1f "logit(1-exp(-u/$SGLM_p))"
confirm numeric variable $SGLM_p
if _rc !'=0 {
noi di as error "argument ($SGLM_p) to logit_igr " /*
*/ "link function must be a numeric variable"

exit 198
}
exit
}
if “todo” == 0 { /* eta = g(mu) */
gen double “eta” = logit(l-exp(-"mu’/$SGLM_p))
exit
}
if “todo” == 1 { /* mu = g"-1(eta) */
gen double “mu’ = -$SGLM_p*log((exp(“eta”)+1)~(-1))
exit
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4

if “todo” == 2 { /* (d muw)/(d eta) */
gen double “return” = $SGLM_p*exp(“eta”)*(exp(Teta”)+1)"~(-1)
exit

}

if “todo” == 3 { /* (d°2 mu)/(d eta"2) */
gen double “return” = $SGLM_p*exp(“eta”)*(exp(“eta )+1)~(-2)
exit

}

noi di as err "Unknown call to glm link function"

exit 198

end

Some notes are as follows:

. Both models can easily accommodate time-varying covariates and time-dependent

coefficients.

. In (2), the exponentiated coefficients exp(3) are interpreted as instantaneous ge-

ometric rate ratios (IGRR), whereas in (6), they are interpreted as instantaneous
geometric odds ratios (IGOR).

. If the instantaneous geometric rates are proportional across different populations,

the instantaneous geometric odds are not, and vice versa.

. The inverse link function (5) is defined only for n < 0. This has two practical

consequences. First, the default initial values (v,,3,) = (0,0,...,0) used for
the maximization of the log likelihood (Gould, Pitblado, and Poi 2010) are not
feasible, because the log likelihood cannot be evaluated in (7y,3,). This can
be solved by passing feasible initial values to glm or by specifying the search
option (see [R] maximize). Second, the parameter space for (v,3) is bounded,
which means the log likelihood is defined only within that parameter space. This
introduces challenges in maximizing the log likelihood and may lead to failed
convergence of the optimization algorithms, similarly to what happens to binomial
models with a log link (Williamson, Eliasziw, and Fick 2013).

Example: Survival in metastatic renal carcinoma

We illustrate the use of the two proposed regression models using data from a clinical
trial on 347 patients diagnosed with metastatic renal carcinoma (Medical Research
Council Renal Cancer Collaborators 1999). The patients were randomly assigned to
either interferon-a (IFN) or oral medroxyprogesterone (MPA). A total of 322 patients
died during follow-up.

4.1 Data preparation

The numeric variable survtime represents the time in days to death or censoring, the
binary variable cens indicates the death status (0 = censored, 1 = death), and the
variable pid contains the unique patient identifier.
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First, we declare the data to be survival-time data with the stset command, and
we rescale the analysis time from days to years with the scale(365.24) option.

Next, we split each patient’s follow-up in intervals of length equal to one week using
the stsplit command with the every(‘=1/52’) option and generate a new variable
containing the time at risk within each interval (risktime).

Last, to model the baseline instantaneous geometric rate, we generate restricted
cubic spline (RCS) transformations of analysis time, using the user-written recsgen com-
mand (Lambert 2008). We use four knots, which by default are located at the minimum,
maximum, and the 33rd and 66th centiles of the uncensored survival times’ distribution.
To do so, we add the df (3) and if2(_.d == 1) options.

. use http://www.imm.ki.se/biostatistics/data/kidney

(Metastatic renal carcinoma trial. MRCRCC. Lancet. 1999, 353:14-7)
. stset survtime, failure(cens) id(pid) scale(365.24)

id: pid
failure event: cens != 0 & cens < .
obs. time interval: (survtime[_n-1], survtime]
exit on or before: failure
t for analysis: time/365.24

347 total observations
0 exclusions

347 observations remaining, representing
347 subjects
322 failures in single-failure-per-subject data
375.687 total analysis time at risk and under observation
at risk from t 0
earliest observed entry t 0
last observed exit t = 6.209616

. stsplit click, every( =1/52")
(19,360 observations (episodes) created)

. generate risktime = _t - _tO

. rcsgen _t, df(3) if2(_d == 1) gen(_rcs)
Variables _rcsl to _rcs3 were created

4.2 Proportional instantaneous geometric rates model

We fit a proportional instantaneous geometric rates model with the glm command with
the log_igr custom link program. The risktime variable, which contains ¢;;, is passed
as an argument to log_igr.

We start by including the binary treatment indicator (trt) and the RCS transfor-
mations of analysis time (_rcs1, rcs2, and _rcs3) in the model. The outcome variable
_d contains the event indicator d;;.
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. glm _d i.trt c._rcs?, family(poisson) link(log_igr risktime) vce(robust) nolog
> search eform

initial: log pseudolikelihood = -<inf> (could not be evaluated)
feasible: log pseudolikelihood = -4804.4455
rescale: log pseudolikelihood = -1959.6083
Generalized linear models No. of obs = 19,707
Optimization : ML Residual df = 19,702
Scale parameter = 1
Deviance = 3239.4169 (1/df) Deviance = .1644207
Pearson = 124086.9279 (1/df) Pearson = 6.298189
Variance function: V(u) = u [Poisson]
Link function : g(uw) = log(l-exp(-u/risktime)) [Log IGR]
AIC = .1975652
Log pseudolikelihood = -1941.70845 BIC = -191588.3
Robust
_d exp(b)  Std. Err. z P>|z| [95% Conf. Intervall
trt
IFN .8371623 .0568225 -2.62 0.009 . 7328824 .9562799
_rcsi .9604894 .2909327 -0.13 0.894 .5304729 1.739089
_rcs2 1.308916 .8565102 0.41 0.681 .3630067 4.719643
_rcs3 .9010516 .2378547 -0.39 0.693 .5370987 1.511629
_cons . 7243848 .0642749 -3.63 0.000 .6087542 .8619789

The estimated IGRR comparing the two treatment groups (IFN versus MPA) is 0.84
(95% confidence interval: [0.73,0.96]), constant throughout the entire follow-up. Under
this model, the instantaneous yearly probability of death in the IFN group was estimated
to be 16% lower than in the MPA group. We can predict the log instantaneous geometric
death rate for the two treatment groups with the predict postestimation command.

. predict log_igr, xb

. generate igr = exp(log_igr)

In figure 1, we see that the instantaneous yearly risk of dying in patients on MPA
decreased from about 75% to 25% over the 6 years of follow-up. Figure 1 also clearly ex-
hibits the assumption of proportional instantaneous geometric rates in that the vertical
distance between the two lines (on the log scale) is constant throughout the follow-up.
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Figure 1. Predicted instantaneous geometric death rates for the two treatment groups
from an instantaneous geometric proportional rates model. The vertical axis is on a log
scale.
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We now relax the assumption of constant IGRR. To do so, we add interactions (prod-
uct terms) between trt and the three RCS transformations of analysis time.

. glm _d i.trt##c._rcs?, family(poisson) link(log_igr risktime) vce(robust)
> nolog search

initial: log pseudolikelihood = —<inf> (could not be evaluated)
feasible: log pseudolikelihood = -4804.4455
rescale: log pseudolikelihood = -1959.6083
Generalized linear models No. of obs = 19,707
Optimization : ML Residual df = 19,699
Scale parameter = 1
Deviance = 3237.985686 (1/df) Deviance = .1643731
Pearson = 122535.5358 (1/df) Pearson = 6.220394
Variance function: V(u) = u [Poisson]
Link function : g(u) = log(1l-exp(-u/risktime)) [Log IGR]
AIC = .197797
Log pseudolikelihood = -1940.992843 BIC = -191560.1
Robust
_d Coef. Std. Err. z P>zl [95% Conf. Intervall
trt
IFN -.3683698 .1914883 -1.92 0.054 -.7436799 .0069403
_rcsi -.3103316 .3603476 -0.86 0.389 -1.0166 .3959368
_rcs2 -.2934956 .8245528 -0.36 0.722 -1.909589 1.322598
_rcs3 .1167311 .3344125 0.35 0.727 -.5387053 .7721675
trt#c._rcsi
IFN .7833079 .6631432 1.18 0.238 -.5164289 2.083045
trt#c._rcs2
IFN 1.572779 1.383879 1.14 0.256 -1.139574 4.285131
trt#c._rcs3
IFN -.6156042 .5543412 -1.11 0.267 -1.702093 .4708846
_cons -.2639627 .0874417 -3.02 0.003 -.4353452  -.0925802

. predict log_igr, xb
. generate igr = exp(log_igr)

. predictnl log_igrr = _b[l.trt] + _b[l.trt#c._rcsl]*_rcsl +
> _b[l.trt#c._rcs2]*_rcs2 + _b[l.trt#c._rcs3]*_rcs3

. generate igrr = exp(log_igrr)

The log-time dependent IGRR is obtained with the predictnl postestimation com-
mand and plotted in figure 2 after exponentiation, together with the instantaneous
geometric death rates for the two treatment groups.
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Figure 2. Predicted instantaneous geometric death rates for patients on MPA (solid
black line) and IFN (long-dashed black line) and predicted time-dependent IGRR (short-
dashed black line) (IFN versus MPA). The gray solid line indicates the time-fixed IGRR,
equal to 0.84. The vertical axes are on a log scale.

When we inspect figure 2, it seems the assumption of constant IGRR throughout the
follow-up is tenable. We can formally test this assumption by testing the coefficients of
the interaction terms to be jointly equal to zero. This can be done with the testparm
postestimation command.

. testparm 1.trt#c._rcs?

(1) [_dlil.trt#c._rcsl =0
(2) [_dlil.trt#c._rcs2 =0
(3 [_dlil.trt#c._rcs3 =0
chi2( 3) = 1.43
Prob > chi2 = 0.6983

From this output, we fail to reject the null hypothesis of proportionality of the
instantaneous geometric rates (p-value = 0.6983).

4.3 Proportional instantaneous geometric odds model

To illustrate the proportional instantaneous geometric odds model, we now explore
whether white cell count (wcc), a continuous prognostic factor, affects the treatment
effect as measured by the IGOR. This analysis builds upon the findings reported by
Royston, Sauerbrei, and Ritchie (2004), where they observed a beneficial effect of IFN—
in terms of relative hazard—only among patients with a white cell count lower than
about 10 x 10° L1,
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We include the treatment indicator, white cell count, their interaction term, and
the three RCS transformations of analysis time as covariates. We specify the option
link(logit_igr risktime) to fit a proportional instantaneous geometric odds model.

. glm _d i.trt##c.wcc _rcs?, family(poisson) link(logit_igr risktime)
> vce(robust) nolog

Generalized linear models No. of obs = 19,707
Optimization : ML Residual df = 19,700
Scale parameter = 1
Deviance = 3210.596989 (1/df) Deviance = .1629745
Pearson = 119282.802 (1/df) Pearson = 6.054965
Variance function: V(u) = u [Poisson]

Link function : g(u) = logit(l-exp(-u/risktime)) [Logit IGR]
AIC = .1963057
Log pseudolikelihood = -1927.298494 BIC = -191597.4

Robust
_d Coef. Std. Err. z P>zl [95% Conf. Intervall
trt
IFN -1.674116 .5957372 -2.81 0.005 -2.841739 -.5064921
wce .0824596 .0453305 1.82 0.069 -.0063865 .1713058
trt#c.wcce

IFN .1620935 .0705864 2.30 0.022 .0237467 .3004403
_rcsl .7416164 .8740937 0.85 0.396 -.9715757 2.454809
_rcs2 2.101511 1.771603 1.19 0.236 -1.370766 5.573789
_rcs3 -.8266814 .7022011 -1.18 0.239 -2.20297 .5496075
_cons -.0688033 .4756726 -0.14 0.885 -1.001105 .8634979

Based on the p-value for the interaction term, we reject the null hypothesis of con-
stant treatment effect throughout the observed range of white cell count (p-value =
0.022).

. predictnl log_igor = _b[l.trt] + _b[l.trt#c.wccl*wcc, se(log_igor_se)
. generate igor = exp(log_igor)
. generate igor_lo = exp(log_igor - 1.96%log_igor_se)

. generate igor_hi = exp(log_igor + 1.96%log_igor_se)

The log IGOR comparing mortality among patients on IFN and patients on MPA
as a function of white cell count can be obtained with the predictnl postestimation
command and then plotted (figure 3).
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Figure 3. Predicted IGOR for IFN versus MPA (solid line) with 95% confidence interval
(long-dashed lines) as a function of white cell count. The vertical axis is on a log scale.

The treatment effect seems to be largest among patients with a low white cell count.
For example, the estimated IGOR for white cell counts of 4.9 and 13.7 x 10° L=! (5th
and 95th centiles of wee distribution) were 0.40 (95% confidence interval: [0.23,0.72])
and 1.72 (95% confidence interval: [0.74,4.04]), respectively.

5 Summary

In this article, we proposed a method to model the effects of covariates on the instan-
taneous geometric rate within the GLM framework by using two nonstandard link func-
tions. We showed how these link functions could be easily programmed into the glm com-
mand by creating two short, independent ado-files, log_igr.ado and logit_igr.ado.

Using data from a randomized clinical trial on survival in patients with metastatic
renal carcinoma, we illustrated how to use these link programs and how to interpret
results from the proportional instantaneous geometric rate model and the proportional
instantaneous geometric odds model. We also demonstrated that a clear advantage
of using glm to fit these models is that postestimation commands for glm are readily
available.

In conclusion, the intuitive interpretation of the instantaneous geometric rate and
the ease with which the proposed regression models can be fit in Stata make them a
useful addition to the existing tools for the analysis of survival data.
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