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Abstract. Individuals may drop out of a longitudinal study, rendering their out-
comes unobserved but still well defined. However, they may also undergo trunca-
tion (for example, death), beyond which their outcomes are no longer meaningful.
Kurland and Heagerty (2005, Biostatistics 6: 241–258) developed a method to con-
duct regression conditioning on nontruncation, that is, regression conditioning on
continuation (RCC), for longitudinal outcomes that are monotonically missing at
random (for example, because of dropout). This method first estimates the prob-
ability of dropout among continuing individuals to construct inverse-probability
weights (IPWs), then fits generalized estimating equations (GEE) with these IPWs.
In this article, we present the xtrccipw command, which can both estimate the
IPWs required by RCC and then use these IPWs in a GEE estimator by call-
ing the glm command from within xtrccipw. In the absence of truncation, the
xtrccipw command can also be used to run a weighted GEE analysis. We demon-
strate the xtrccipw command by analyzing an example dataset and the original
Kurland and Heagerty (2005) data. We also use xtrccipw to illustrate some em-
pirical properties of RCC through a simulation study.

Keywords: st0474, xtrccipw, dropout, generalized estimating equations, inverse-
probability weights, longitudinal data, missing at random, truncation, weighted
GEE

1 Introduction

Consider an individual’s outcomes over time, which form an outcome trajectory. Events
such as death can truncate the trajectory, rendering the outcome at and after trun-
cation undefined. Death is a common truncating event in biomedical studies (Rib-
audo, Thompson, and Allen-Mersh 2000; Billingham and Abrams 2002; Pauler, Mc-
Coy, and Moinpour 2003; Dufouil, Brayne, and Clayton 2004; Shardell and Miller 2008;
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Basu and Manning 2010). For example, the Precipitating Events Project (PEP) is
an ongoing longitudinal study of 754 community-living individuals aged 70 or older
who are scheduled to be followed monthly for 2 years (Gill et al. 2001; Gill 2014).
Kurland and Heagerty (2005) considered inference about the probability of activities-of-
daily-living (ADL) disability conditioning on being alive, treating death as a truncating
event in the PEP data. Other events, such as disease relapse and HIV infection, have also
been defined as truncating events. For instance, investigators of the Breastfeeding, An-
tiretrovirals, and Nutrition study (van der Horst et al. 2009) wanted to draw inference
about a target population of infants at high risk of HIV infection but only while they
were alive and uninfected (Flax et al. 2012). In this case, HIV infection and death are
truncating events. In le Cessie et al. (2009), the target population consisted of patients
with advanced breast cancer who had undergone chemotherapy. The authors wanted
to draw inference about patients who were alive and disease free, such that death and
relapse were truncating events.

For all the aforementioned examples of truncated longitudinal data, outcomes were
also missing for some individuals. Dropout events occur when an individual leaves the
study permanently. For study dropout, the corresponding outcomes are unobserved, but
unlike truncation, they are well defined. Three comprehensive types of such missingness
were characterized by Rubin (1976) and Little and Rubin (2002). In their framework,
outcomes are defined to be missing completely at random (MCAR) if missingness is inde-
pendent of any outcomes. If the pattern of missingness is independent of all missing out-
comes conditional only on observed outcomes, then the outcomes are missing at random
(MAR). Finally, if missingness is not MAR or MCAR, the outcomes are said to be not miss-
ing at random, or missing not at random (MNAR). The method of generalized estimating
equations (GEE), which is frequently used to estimate the marginal means of a longitudi-
nal outcome, can accommodate missingness. If outcomes are MCAR, then the GEE esti-
mator is consistent for these marginal means (Liang and Zeger 1986; Diggle et al. 2002).
If outcomes are either MAR or MNAR, inverse-probability weights (IPWs) may be used to
ensure consistency of the GEE estimator provided that the data missingness model is cor-
rectly specified (Robins, Rotnitzky, and Zhao 1995; Scharfstein, Rotnitzky, and Robins
1999). We refer to this approach as the weighted GEE (WEE) method.

Typical approaches to analyzing longitudinal outcomes with missing data include
both WEE and maximum likelihood methods such as mixed-effects models. These ap-
proaches generally do not distinguish truncation from dropout, in essence envisaging
outcomes past the point of truncation. Kurland and Heagerty (2005) described such
approaches that implicitly assume the existence of outcomes after truncation as un-
conditional regression (UR) models, because they estimate the mean outcome averaged
over individuals who have and have not been truncated. Kurland et al. (2009) consider
both standard selection models and conditional submodels of pattern-mixture models
to be UR models. Mean outcomes among continuing trajectories may be estimated
indirectly with these two types of UR models, with additional modeling assumptions
(Kurland et al. 2009). As an alternative to UR models, one can use joint modeling
of longitudinal measurements and time to truncation (Henderson, Diggle, and Dobson
2000; Guo and Carlin 2004; Kurland et al. 2009).



E. J. Daza, M. G. Hudgens, and A. H. Herring 255

To estimate mean outcomes directly without joint modeling, Kurland and Heagerty
(2005) developed a method for regression conditioning on continuation (RCC), that is,
not being truncated. The RCC method consistently estimates continuing longitudinal
mean outcomes by first modeling and estimating IPWs at each time point based on
the probability of dropout, but only for subjects with a continuing outcome at that
time point. RCC then applies these IPWs in a WEE framework. In the absence of
truncation, the usual WEE method is therefore a special case of RCC. When there is
truncation, WEE is a UR approach that will generally not produce consistent estimates
for RCC estimands (Kurland and Heagerty 2005). Unfortunately, there is currently no
widely available Stata command for estimating the IPWs used in either RCC or WEE.
The teffects commands aipw (see [TE] teffects aipw), ipw (see [TE] teffects ipw),
and ipwra (see [TE] teffects ipwra) estimate IPWs with the goal of making causal
inferences by estimating average treatment effects. The stteffects ipwra command
(see [TE] stteffects ipwra) estimates IPWs that adjust for outcomes that are missing
because of censoring and uses these IPWs in survival analysis of time-to-event outcomes.
In this article, we introduce the xtrccipw command to allow Stata users to estimate
the IPWs used by RCC in analyzing longitudinal outcomes subject to dropout or trun-
cation. These IPWs can then be used as pweight values in the glm command with
the vce(cluster clustvar) option to perform WEE estimation, which can be executed
within a call to xtrccipw if requested. When there is no truncation, xtrccipw can
also be used to estimate the IPWs used in a WEE analysis. When there is truncation
but no dropout, the xtrccipw command produces IPWs that all equal 1, resulting in
unweighted GEE regression.

The remainder of this article is organized as follows: In section 2, we introduce
some notation and the assumptions behind the RCC method, detail the modeling of
the dropout mechanism, and note some asymptotic properties of the RCC estimator. In
section 3, we explain the xtrccipw command. In section 4, we conduct RCC on a binary
outcome using an example dataset. In section 5, we perform a simulation study based
on the original Kurland and Heagerty (2005) simulations and reanalyze their empirical
data. In section 6, we conclude the article.

2 Background and methods
2.1 Notation and assumptions

Consider a random sample of i = 1, . . . , n individuals, each of whom is scheduled to
be measured at fixed study time points j = 1, . . . ,m. Where it is not ambiguous,
the dependence on i will be suppressed for notational ease. To illustrate the relevant
concepts, we use an example wherein the outcome is individual alanine transaminase
(ALT) measured in international units/liter (IU/L) measured at up to m = 3 study
visits, and individuals may die or drop out of the study. The example data are listed in
table 1, where idvar is the variable that denotes individual identifier, timevar denotes
study visit date, timeidxvar denotes study visit number, outcomevar denotes ALT,
tdindepvar denotes a time-dependent continuous-valued covariate, and tiindepvar

denotes a time-independent binary-valued covariate (for example, a baseline variable).
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We first introduce notation for the outcomes and truncation. Let Yj denote the
primary outcome of interest, for example, ALT, at time point j. Let Cj = 1 if the
truncating event, for example, death, has not occurred by j, and let Cj = 0 otherwise.
Thus the outcome Yj is well defined only if Cj = 1. In general, we define truncation as
an irreversible state transition such that Cj = 0 implies Cj′ = 0 for all j′ > j. Define
S =

∑m
j=1 Cj to be the number of time points before a trajectory is truncated, with

S = m indicating that the trajectory is not truncated. If truncation occurs at j, then
outcomes at j and beyond (that is, Yj , . . . , Ym) are undefined. We use “∗” to denote
all undefined values, which extends the support of the outcome Y . In table 1, where
trtimevar denotes truncation time, individual 4 died between study visits 2 and 3.

The indicator variable for dropout is defined as follows. If truncation has not oc-
curred by time point j, but if that individual dropped out of the study at or before j,
then his or her outcome is still defined at j but is not observed. If Cj = 1, let Rj = 1
if an individual has not dropped out by j; otherwise, let Rj = 0. Assume that there is
no dropout at j = 1 (that is, R1 = 1) and that dropout is monotonic such that Rj = 0
implies Rj′ = 0 for all j′ > j. If Cj = 0, then we adopt the convention that Rj = ∗.
In table 1, individual 2 never died during the study but dropped out by visit 3; missing
values are denoted using “.”. Individual 4, however, dropped out of the study between
visits 1 and 2 and died between the scheduled times for visits 2 and 3.

The assumptions about the dropout mechanism are now defined. For any time-
varying random variable A, let Aj =

(
A1, . . . , Aj

)
so that Aj−1 represents an individ-

ual’s history of A prior to j. In table 1, the full truncation vector of individual 1 is C3 =
(1, 1, 1), while his or her ALT history prior to study visit 3 is Y 2 =

(
Y1, Y2

)
= (13, 14).

Let Y
obs

j denote the vector of observed values of Y j , that is, (Yk : Rk = 1, k ≤ j). In

table 1, Y
obs

1 = (Y1) = (25) and Y
obs

2 = Y
obs

3 = (Y1, Y2) = (25, 23) for individual 3,

while Y
obs

1 = Y
obs

2 = Y
obs

3 = (Y1) = (15) for individual 4. Let πj denote the probability
of not dropping out conditional on all outcomes and the full truncation vector, that is,
πj = Pr

(
Rj = 1

∣∣Y m, Cm

)
, and assume π1 = Pr

(
R1 = 1

∣∣C1

)
. We refer to outcomes

as MAR if πj = Pr
(
Rj = 1

∣∣Y obs

j−1, Cj

)
for all j > 1. We refer to outcomes as MCAR

if πj = Pr
(
Rj = 1

∣∣Cj

)
for all j > 1. Outcomes that are neither MAR nor MCAR are

MNAR. Under MAR, πj =
∏j

k=1 λk, where λk = Pr
(
Rk = 1

∣∣Rk−1 = 1, Y
obs

k−1, Ck

)
for

k > 1 and λ1 = π1. The xtrccipw command lets the user specify a model for λk.

2.2 The full and reduced dropout models

In the presence of dropout, the RCC method requires specification of a dropout model.
The xtrccipw command allows the user to choose between two parametric models. In
particular, let g(·) represent the logit or probit link function. The default dropout-
mechanism model specified by xtrccipw is
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g (λik) = α0k + z′ikα1k + I (k > 1)Y
obs′

i(k−1)α2k (1)

where α0k is the intercept, zik represents the vector of time-dependent and time-
independent covariates with conformable parameter vector α1k, I(a) = 1 if a is true and
I(a) = 0 otherwise, and α2k represents the conformable parameter vector corresponding

to lagged outcome values Y
obs

i(k−1). Equation (1) is referred to as the full dropout model.
Note that α0k, α1k, and α2k depend on time (as indexed by k); that is, the dropout
model is estimated at each time point by default. If dropout is assumed or known to
be completely at random, but truncation is present, the user has the option to specify
an MCAR model instead, which sets α2k = 0.

The user may want to estimate a reduced model with fewer lags, with possible values
lag = 1, . . . ,m− 1. In this case, the dropout mechanism is instead modeled as

g (λik) =

{
α0k + z′ikα1k + L′

ikα2k if k ≤ lag
α0 + z′ikα1 + L′

ikα2 if k > lag
(2)

where Lik = (0) at k = 1 and Lik =
(
Yi{max(1,k−lag)}, . . . , Yi(k−1)

)
at k > 1. Equa-

tion (2) is referred to as the reduced dropout model. This model is time dependent for
time points k ≤ lag but shares the same parameters for time points k > lag. This ap-
proach allows xtrccipw to estimate fewer parameters by assuming a common dropout
model once all the requested lagged outcomes potentially become available for estima-
tion (that is, for time points k > lag). The user has the option to specify a reduced
MCAR model instead, which estimates the model g

(
λik

)
= α0 + z′ikα1.

Note that the full and reduced MAR models are identical when lag = m − 1 is set,
while the full and reduced MCAR models are different. The full MCAR model specifies
a model at each time point, while the reduced MCAR model specifies a common model
across all time points.

2.3 Inference

This section briefly describes inference about longitudinal mean outcome models for
continuing individuals, conditional on covariates. Let μRCC

ij = E
(
Yij

∣∣Cij = 1
)
denote

the mean outcome for individual i whose trajectory is still continuing at time point
j. In the regression setting, we might posit a generalized linear model of the form
h
(
μRCC
ij

)
= x′

ijβ
RCC, where h(·) is a link function, xij is an observed p × 1 vector of

possibly time-dependent covariates that includes a column of ones for the intercept, and
βRCC is the corresponding parameter vector. We refer to this as the outcome model. Let
d′
ij = ∂μRCC

ij

/
∂βRCC denote the Jacobian of partial derivatives of μRCC

ij with respect

to βRCC.

Following Kurland and Heagerty (2005), consider the vector-estimating equation

U
(
βRCC

)
=

n∑
i=1

m∑
j=1

dijCij
Rij

πij

(
Yij − μRCC

ij

)
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We adopt the convention that if Cij = 0, then the summand for individual i at time
point j equals 0. The IPW probability πij is generally unknown in practice but can be
consistently estimated if the dropout mechanism model is correctly specified. Let π̂ij

represent a consistent estimator of πij , and let β̂ denote the solution to U
(
βRCC

)
= 0

under MAR when π̂ij is substituted for πij . The estimator β̂ is consistent and asymp-

totically multivariate normal for βRCC (Robins, Rotnitzky, and Zhao 1995). The glm

command is ideal for calculating β̂ because by default, it assumes the independence
working correlation structure required by RCC, and it allows the user to specify time-
varying IPWs through the pweight qualifier. The empirical sandwich estimator of the

variance of β̂ is readily available by specifying the glm command option vce(cluster

clustvar), where clustvar is the variable that identifies individuals. When computed as
if the IPWs are known and fixed, the empirical sandwich estimator is expected to be
conservative in general (Robins, Hernán, and Brumback 2000; Robins 2000; Wooldridge
2007). Thus 95% Wald confidence intervals constructed using the empirical sandwich
estimator should in general have a coverage probability for βRCC of at least 95%.

3 The xtrccipw command

3.1 Description

The xtrccipw command estimates time-specific weights equal to the inverse of the
nondropout probability conditioning on continuation. This command uses either the
logit or the probit command to estimate IPWs. The user may then specify that
xtrccipw run glm with the pweight qualifier and the vce(cluster clustvar) option to
calculate RCC estimates of the outcome-model parameters, along with variance estimates
constructed using the empirical sandwich estimator. The xtrccipw command runs
under Stata 14.

The rest of this section is organized as follows. We describe and illustrate input
dataset requirements in an example. We then present the command syntax, along
with definitions of all relevant variables and options. Finally, we describe the displayed
outputs and stored results.

3.2 Input datasets

The xtrccipw command accepts datasets in Stata long format (that is, each row cor-
responds to one observation at one measurement time point). It then creates indicator
variables for truncation and dropout based on the supplied variables for measurement
time, truncation time, and outcome-model outcome.

The dataset must include the following variables: unique individual identifiers, mea-
surement time, measurement time index, outcome, and dropout-model covariates. Each
row must provide values for unique individual identifiers, measurement time, and mea-
surement time index. For each individual, unique individual identifier values must be
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identical on all rows, and rows for all possible measurement times and time indices must
be included to create truncation and dropout indicators, regardless of outcome value
being available or unavailable on any given row (that is, because of dropout or trun-
cation). At the current time index, values for all dropout-model covariates (except for
past outcomes) must be provided if an individual had not dropped out by the previous
time index (that is, if an outcome value was provided at the previous time index) and
had not been truncated by the current time index. The dataset must additionally in-
clude a variable for truncation time if truncation occurred for any individual, in which
case an individual’s truncation time must be identical across all of that individual’s
rows. Truncation time must be left missing on all rows for each individual without a
truncation time.

3.3 Syntax

xtrccipw outcomevar
[
if
]
, idvar(varlist) timevar(varname)

timeidxvar(varname) generate(newvar)
[
timeidxf(#) timeidxl(#)

trtimevar(varname) linkfxn(link) tdindepvars(varlist)

tiindepvars(varlist) mcar lagreduced(#) glmvars(indepvars)

glmfamily(familyname) glmlink(linkname)
]

outcomevar is the outcome-model outcome variable used as a covariate in the dropout
model. If outcomevar is an indicator or categorical factor variable, it must be preceded
with “i.”. The other unary operators “c.” and “o.” are not allowed.

3.4 Options

idvar(varlist) defines variables used to uniquely identify individuals (for example, sub-
jects or panels). This is analogous to panelvar in xtset. If the glmvars() option
is specified, then the call to glm will include the vce(cluster clustvar) option.
idvar() is required.

timevar(varname) defines the variable representing the measurement time (for exam-
ple, visit date). This is analogous to timevar in xtset. timevar() is required.

timeidxvar(varname) defines the variable representing the measurement time index
(for example, visit number). All index values must be integers. timeidxvar() is
required.

generate(newvar) defines the variable name for the estimated IPW. generate() is
required.

timeidxf(#) denotes the first time-index value, which must be an integer, to be used
in the outcome-model analysis. This must be specified along with timeidxl(). The
default is the first nonmissing index value found in the current dataset after if is
applied.
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timeidxl(#) denotes the last time index value, which must be an integer, to be used
in the outcome-model analysis. This must be specified along with timeidxf(). The
default is the last nonmissing index value found in the current dataset after if is
applied.

trtimevar(varname) denotes the truncation time (for example, truncation date). This
must have the same scale as timevar(). The default is no truncation.

linkfxn(link) specifies the dropout-model binary link function and only accepts the
values logit or probit. The default is linkfxn(logit).

tdindepvars(varlist) defines the additional dropout-model time-dependent variables
(that is, distinct from the time-dependent outcome-model outcome variable). Use
spaces to separate multiple variables. Each indicator or categorical factor-variable
argument in tdindepvars()must be preceded with “i.”. The other unary operators
“c.” and “o.” are not allowed, and neither is variable-interaction notation (that is,
“#” or “##”). A variable representing the interaction between two variables must be
created and included as a distinct variable. The varlist syntax is otherwise identical
to the indepvars syntax for the logit or probit command. For example, suppose
we have two time-dependent binary variables, that is, x and y, and the continuous
variable z. If we wish to model dropout dependent on x, y, and z, the interaction
between x and y, and the interaction between x and z, we would first create the
interaction variables, for example, generate xy = x * y and generate xz = x *

z. Then, we would correspondingly type something like tdindepvars(i.x i.y i.xy

z xz). The default is no additional time-dependent variables.

tiindepvars(varlist) defines the dropout-model time-independent variables. The same
description as that for tdindepvars() applies. The default is no additional time-
independent variables.

mcar defines whether to use the full MCAR model. This option cannot be specified with
lagreduced(). The default is the full MAR model.

lagreduced(#) defines whether and how to use the reduced dropout model. The
number of lags, that is, #, can range from 1 to m − 1, where m is the number of
scheduled study time points. However, specifying m−1 lags is identical to specifying
the full MAR model. To specify the reduced MCAR model, type lagreduced(0). This
option cannot be specified with mcar. The default is the full MAR model.

glmvars(indepvars) defines the outcome-model independent variables for glm.

glmfamily(familyname) specifies the distribution of outcomevar for glm. The default
is glmfamily(gaussian).

glmlink(linkname) specifies the link function for glm. The default is the canonical link
for the specified glmfamily().

An example dataset is illustrated in table 1. The variable names correspond to
a unique individual identifier idvar, measurement time timevar, measurement time
index timeidxvar, continuous outcome outcomevar, dropout-model time-dependent
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continuous covariate tdindepvar, dropout-model time-independent binary covariate
tiindepvar, and truncation time trtimevar. The variables Cj , Rj , and S (that is,
the truncation indicator, dropout indicator, and number of time points before trunca-
tion, respectively) are included only to help illustrate the example in section 2.1, but
xtrccipw does not output them.

3.5 Displayed outputs

xtrccipw displays two outputs. The first is a list of all arguments for verification by
the user. The second is a tabulation of the observed values of the xtrccipw ec variable
(where ec stands for “error code”), which indicates the number of nonzero observations
at each time point for which dropout regression and subsequent probability prediction
are successful, or for which there are errors. The xtrccipw ec variable is equal to 0
if regression and prediction are successful, 1 if regression fails because there is either
no dropout or all dropout at that time point, 2 if regression fails because all eligible
observations are dropped because of regression collinearities, and 3 if regression succeeds
but prediction fails. In any of the failure cases, the dropout probability is estimated
as the empirical mean of dropout in the risk set (that is, among observations with
Ri(j−1) = 1).

3.6 Stored results

The command attaches five variables to the input dataset. The outcome variable
used in estimating the dropout probability while accounting for truncation is stored
as xtrccipw outcomevar. The value of this variable can differ from that of outcomevar
in the following way: if a truncation event and outcome are both recorded at time point
j, then xtrccipw treats truncation as having occurred before the outcome and sets
xtrccipw outcomevar as undefined (that is, “.” in Stata syntax). The indicators for
truncation (that is, C represented as xtrccipwCi) and dropout (that is, R represented
as xtrccipwRi) are also stored, as are the estimated IPWs (that is, the newvar specified
by generate(newvar)). Finally, the xtrccipw ec variable is also output.

4 Example

Our example data came from the National Longitudinal Survey of Young Women
(NLSYW). We took a subsample of an available Stata dataset for our analysis, gen-
erated truncation, and then analyzed a binary outcome from this analysis sample.

We started with nlswork5.dta, a subsample of 4,711 young women ages 14–26 in
1968 that was originally derived to illustrate how to use the xt commands. These
data are composed of “women in years when employed, not enrolled in school and
evidently having completed their education, and with wages in excess of $1/hour but
less than $700/hour” (see [XT] xt). The longitudinal binary outcome of interest was
union membership union (1 if yes, 0 if no). The covariates we used were age, age;
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ln(wage/gross national product deflator), ln wage; total work experience, ttl exp; birth
year, birth yr; and college graduate indicator, collgrad (1 if yes, 0 if no). The
identifier variables were NLSYW ID (idcode) and interview year (year).

For our analysis, we selected the nlswork5.dta subsample of women with nonmissing
values for any of these outcomes or covariates from years 70 (that is, 1970) through
73, 77, 78, and 80, which gave us 357 individuals. We then generated truncation at
follow-up years; no truncation was generated for baseline year 70. Truncation was
generated with probability 0.2 if union membership in the previous year was missing.
Otherwise, truncation was generated with higher probability if an individual was a union
member in the previous year and with lower probability if she was not a member. The
degree of increase or decrease in truncation probability itself increased over time. In
the Appendix, we show the commands used to create nlswork5-xtrccipw.dta.

The following output characterizes the analysis dataset:

. use nlswork5_xtrccipw
(NLS: Young women 14-26 years of age in 1968. Example dataset for xtrccipw.)

. describe

Contains data from nlswork5_xtrccipw.dta
obs: 2,499 NLS: Young women 14-26 years of

age in 1968. Example dataset for
xtrccipw.

vars: 10 9 Jan 2017 07:45
size: 42,483

storage display value
variable name type format label variable label

idcode int %8.0g NLS ID
year byte %8.0g interview year
yearidx byte %9.0g interview year
truncyear byte %9.0g
union byte %8.0g 1 if union
age byte %8.0g age in current year
ln_wage float %9.0g ln(wage/GNP deflator)
ttl_exp float %9.0g total work experience
birth_yr byte %8.0g birth year
collgrad byte %8.0g 1 if college graduate

Sorted by: idcode yearidx

The following individuals illustrate the three possible truncation and dropout patterns.
Individual 5 experienced dropout but not truncation. Individual 20 experienced neither
dropout nor truncation. Individual 126 experienced both dropout and truncation.
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. list idcode year truncyear union age ln_wage ttl_exp birth_yr collgrad if
> inlist(idcode, 5, 20, 126), sepby(idcode) abbreviate(5)

idc~e year tru~r union age ln_wage ttl_exp bir~r col~d

15. 5 70 . 0 24 1.820858 3.076923 45 0
16. 5 71 . 0 25 1.858522 4.038462 45 0
17. 5 72 . 0 26 1.979301 5.038462 45 0
18. 5 73 . 0 27 1.990412 6.038462 45 0
19. 5 77 . 0 31 1.937521 7.576923 45 0
20. 5 78 . . 32 2.070492 7.846154 45 0
21. 5 80 . . 34 1.830269 9.346154 45 0

43. 20 70 . 0 21 2.01878 .5 48 0
44. 20 71 . 0 22 2.081666 1.5 48 0
45. 20 72 . 0 23 2.117261 2.403846 48 0
46. 20 73 . 1 24 2.099896 3.442308 48 0
47. 20 77 . 0 28 2.10058 5.416667 48 0
48. 20 78 . 0 29 1.990396 6.493589 48 0
49. 20 80 . 0 31 1.958695 8.378204 48 0

64. 126 70 77 0 21 1.657229 2.01282 48 0
65. 126 71 77 0 22 1.676201 2.99359 48 0
66. 126 72 77 0 23 1.943153 3.99359 48 0
67. 126 73 77 1 24 2.159794 4.974359 48 0
68. 126 77 77 . 28 2.087653 8.25 48 0
69. 126 78 77 . 29 2.137434 9.25 48 0
70. 126 80 77 . 31 2.026384 11.33333 48 0

We now analyze the example dataset. We regressed union on age, ln wage, and
birth yr. We modeled dropout on ttl exp and collgrad using a probit link. We also
requested that xtrccipw run the RCC outcome-model regression for union membership.
The IPW variable was generated as ipw full.

* RCC and full dropout model.
. xtrccipw i.union, idvar(idcode) timevar(year) timeidxvar(yearidx)
> generate(ipw_full) trtimevar(truncyear) linkfxn(probit) tdindepvars(ttl_exp)
> tiindepvars(i.collgrad) glmvars(age ln_wage birth_yr) glmfamily(binomial)

The xtrccipw arguments were output to the Stata Results window for verification.
Here timeidxf and timeidxl took on values derived from the dataset because they
were not specified. The dropout-model regression result for each month can also be
quickly scanned for errors using the xtrccipw ec variable.

outcomevar = i.union
idvar = idcode
timevar = year
timeidxvar = yearidx
generate = ipw_full
timeidxf = 1
timeidxl = 7
trtimevar = truncyear
linkfxn = probit
tdindepvars = ttl_exp
tiindepvars = i.collgrad
mcar =
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lagreduced =
glmvars = age ln_wage birth_yr
glmfamily = binomial
glmlink =

interview xtrccipw_ec
year 0 1 3

1 357
2 159
3 111
4 79 10
5 67
6 54 5
7 42 9

At this point, the IPW ipw full variable has been calculated and attached to the
input dataset. The probability of being a union member was then modeled using a logit
link.

Iteration 0: log pseudolikelihood = -711.82082
Iteration 1: log pseudolikelihood = -704.44499
Iteration 2: log pseudolikelihood = -704.40354
Iteration 3: log pseudolikelihood = -704.40354

Generalized linear models No. of obs = 670
Optimization : ML Residual df = 666

Scale parameter = 1
Deviance = 1408.807085 (1/df) Deviance = 2.115326
Pearson = 1731.432897 (1/df) Pearson = 2.599749

Variance function: V(u) = u*(1-u/1) [Binomial]
Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = 2.114637
Log pseudolikelihood = -704.4035425 BIC = -2925.04

(Std. Err. adjusted for 205 clusters in idcode)

Robust
xtrccipw_union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.1432499 .0453955 -3.16 0.002 -.2322235 -.0542764
ln_wage 1.230599 .3777844 3.26 0.001 .4901551 1.971043

birth_yr -.0347123 .0798514 -0.43 0.664 -.1912182 .1217937
_cons 1.470027 4.487581 0.33 0.743 -7.32547 10.26552

Note that while 893 IPW values were calculated, only 670 were used by glm. This is
because at any given time point with a continuing outcome, xtrccipw estimates an
IPW regardless of whether the outcome at that time point is missing. In contrast, glm
uses only complete cases (that is, nonmissing outcomes), thereby excluding the missing
outcomes from its analysis.

Excluding trtimevar(truncyear) from the xtrccipw call resulted in truncation
being treated like dropout, with the following dropout-model regression error codes and
UR results.
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. use nlswork5_xtrccipw, clear
(NLS: Young women 14-26 years of age in 1968. Example dataset for xtrccipw.)

. xtrccipw i.union, idvar(idcode) timevar(year) timeidxvar(yearidx)
> generate(ipw_full) linkfxn(probit) tdindepvars(ttl_exp)
> tiindepvars(i.collgrad) glmvars(age ln_wage birth_yr) glmfamily(binomial)

(output omitted )

interview xtrccipw_ec
year 0 3

1 357
2 205
3 121
4 105
5 6 65
6 54 13
7 42 11

Iteration 0: log pseudolikelihood = -997.47372
Iteration 1: log pseudolikelihood = -985.96245
Iteration 2: log pseudolikelihood = -985.88336
Iteration 3: log pseudolikelihood = -985.88336

Generalized linear models No. of obs = 670
Optimization : ML Residual df = 666

Scale parameter = 1
Deviance = 1971.766711 (1/df) Deviance = 2.960611
Pearson = 2317.068804 (1/df) Pearson = 3.479082

Variance function: V(u) = u*(1-u/1) [Binomial]
Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = 2.954876
Log pseudolikelihood = -985.8833555 BIC = -2362.08

(Std. Err. adjusted for 205 clusters in idcode)

Robust
xtrccipw_union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.1602152 .0473475 -3.38 0.001 -.2530145 -.0674159
ln_wage 1.377227 .4380323 3.14 0.002 .5186997 2.235755

birth_yr -.0227574 .0991343 -0.23 0.818 -.2170571 .1715423
_cons 1.251279 5.499011 0.23 0.820 -9.526585 12.02914

Compared with their RCC counterparts, the UR parameter estimates kept the same signs
and did not change much in magnitude. Levels of statistical significance also resembled
those under RCC.

The full and reduced MCAR models were also specified to illustrate how they can
produce different results. The following is the output for the corresponding RCC full
MCAR model:
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. use nlswork5_xtrccipw, clear
(NLS: Young women 14-26 years of age in 1968. Example dataset for xtrccipw.)

. xtrccipw i.union, idvar(idcode) timevar(year) timeidxvar(yearidx)
> generate(ipw_mcarfull) trtimevar(truncyear) linkfxn(probit)
> tdindepvars(ttl_exp) tiindepvars(i.collgrad) mcar
> glmvars(age ln_wage birth_yr) glmfamily(binomial)
outcomevar = i.union
idvar = idcode
timevar = year
timeidxvar = yearidx
generate = ipw_mcarfull
timeidxf = 1
timeidxl = 7
trtimevar = truncyear
linkfxn = probit
tdindepvars = ttl_exp
tiindepvars = i.collgrad
mcar = mcar
lagreduced =
glmvars = age ln_wage birth_yr
glmfamily = binomial
glmlink =

interview xtrccipw_ec
year 0 1 3

1 357
2 159
3 111
4 89
5 67
6 59
7 48 3

Iteration 0: log pseudolikelihood = -706.60703
Iteration 1: log pseudolikelihood = -699.40805
Iteration 2: log pseudolikelihood = -699.36553
Iteration 3: log pseudolikelihood = -699.36553

Generalized linear models No. of obs = 670
Optimization : ML Residual df = 666

Scale parameter = 1
Deviance = 1398.731061 (1/df) Deviance = 2.100197
Pearson = 1689.294056 (1/df) Pearson = 2.536478

Variance function: V(u) = u*(1-u/1) [Binomial]
Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = 2.099599
Log pseudolikelihood = -699.3655307 BIC = -2935.116

(Std. Err. adjusted for 205 clusters in idcode)

Robust
xtrccipw_union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.1464272 .0455808 -3.21 0.001 -.2357638 -.0570906
ln_wage 1.26635 .3806582 3.33 0.001 .5202734 2.012426

birth_yr -.03907 .0794123 -0.49 0.623 -.1947152 .1165752
_cons 1.720208 4.46455 0.39 0.700 -7.03015 10.47057
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Here is the output for the corresponding RCC-reduced MCAR model for comparison:

. use nlswork5_xtrccipw, clear
(NLS: Young women 14-26 years of age in 1968. Example dataset for xtrccipw.)

. xtrccipw i.union, idvar(idcode) timevar(year) timeidxvar(yearidx)
> generate(ipw_mcarred) trtimevar(truncyear) linkfxn(probit)
> tdindepvars(ttl_exp) tiindepvars(i.collgrad) lagreduced(0)
> glmvars(age ln_wage birth_yr) glmfamily(binomial)
outcomevar = i.union
idvar = idcode
timevar = year
timeidxvar = yearidx
generate = ipw_mcarred
timeidxf = 1
timeidxl = 7
trtimevar = truncyear
linkfxn = probit
tdindepvars = ttl_exp
tiindepvars = i.collgrad
mcar =
lagreduced = 0
glmvars = age ln_wage birth_yr
glmfamily = binomial
glmlink =

interview xtrccipw_ec
year 0

1 357
2 159
3 111
4 89
5 67
6 59
7 51

Iteration 0: log pseudolikelihood = -768.5719
Iteration 1: log pseudolikelihood = -759.70025
Iteration 2: log pseudolikelihood = -759.6436
Iteration 3: log pseudolikelihood = -759.64359
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Generalized linear models No. of obs = 670
Optimization : ML Residual df = 666

Scale parameter = 1
Deviance = 1519.287182 (1/df) Deviance = 2.281212
Pearson = 1876.698513 (1/df) Pearson = 2.817866

Variance function: V(u) = u*(1-u/1) [Binomial]
Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = 2.279533
Log pseudolikelihood = -759.6435911 BIC = -2814.56

(Std. Err. adjusted for 205 clusters in idcode)

Robust
xtrccipw_union Coef. Std. Err. z P>|z| [95% Conf. Interval]

age -.1507094 .0461782 -3.26 0.001 -.241217 -.0602017
ln_wage 1.261449 .4020585 3.14 0.002 .473429 2.049469

birth_yr -.0309284 .0848459 -0.36 0.715 -.1972234 .1353666
_cons 1.476253 4.720117 0.31 0.754 -7.775006 10.72751

5 Simulation study and PEP data analysis

In this section, we report results from a simulation study and reanalysis of the PEP

analysis data from Kurland and Heagerty (2005).

5.1 Simulation study

The data-generating specifications used to simulate 1,000 datasets with 1,000 individuals
each were similar to those found in section 5 of Kurland and Heagerty (2005) and are
summarized as follows. The outcome of interest was a binary variable representing ADL

disability, denoted by Yij = 1 if individual i is disabled at time point j = 1, . . . , 5, and
Yij = 0 otherwise. The relevant covariates were sexi = 0 for women (and sexi = 1
otherwise), timeij = ageij − 65 (where ageij = 65, 70, 75, 80, 85 years), and sex-time

interaction. Let βRCC =
(
β0, β1, β2, β3

)′
denote the corresponding vector of coefficients.

The binary outcome RCC model was specified as

logit
{
E
(
Yij

∣∣Cij = 1
)}

= β0 + β1 × sexi + β2 × timeij + β3 × sexi × timeij

with βRCC = (−2.19, 0.5, 0.1,−0.025)′. The binary outcome was defined as Yij =
I
(
Y ∗
ij > 0

)
, where Y ∗

ij was a normally distributed variable with mean μU
ij and standard

deviation σY ∗ = 0.15. The correlation for the vector of outcomes
(
Y ∗
i1, . . . , Y

∗
i5

)
was

order-1 autoregressive (AR1). Nontruncation was defined as Cij = I
(
Si > ageij

)
, where

Si represented time of death, a normally distributed variable with mean 85 for women
and 80 for men and standard deviation σS = 5. The correlation among Y ∗

ij was set as
0.7, and the covariance of Y ∗

ij and Si was set as −0.4 for women and −0.3 for men. By
using the identity
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E
(
Yij

∣∣Cij = 1
)
= Pr

(
Y ∗
ij > 0

∣∣Si > ageij
)
=

Pr
(
Y ∗
ij > 0,Si > ageij

)
Pr
(
Si > ageij

)
values for μU

ij were calculated via bisection with an arbitrary precision tolerance of

0.0001. All μU
ij values were calculated using the pmvnorm() function of the mvtnorm

package in R. Dropout was generated by specifying

logit (λik) = φ0 + φ1

(
Si − ageij

)
where φ0 = −0.5 and φ1 = 0.15. Truncation or dropout was not allowed at the first
time point.

The following three estimators mirror those of Kurland and Heagerty (2005) and
were used to estimate the mean binary outcome. (The marginalized transition model
was not included because its technical specifications were beyond the scope of this article,
and its inclusion was not necessary to demonstrate the simulation-based performance
of RCC.)

1. IEE: GEE with independent working correlation. This is identical to the Kur-
land and Heagerty (2005) independence estimating equations (IEE) model (that
is, model with parameters estimated using IEEE).

2. GEE-AR1: GEE with AR1 working correlation. This is similar to the Kurland and
Heagerty (2005) inverse probability of censoring weighted (IPCW)-GEE model (that
is, model with parameters estimated using IPCW-GEE) but without IPWs. (The
original IPCW GEE model was not reproduced because to date, no Stata commands
allow for GEE estimation with time-varying weights.)

3. RCC: IEE with correctly specified IPWs. This is identical to the Kurland and
Heagerty (2005) IPCW-IEE model (that is, model with parameters estimated using
IPCW-IEEE).

The RCC estimator was the only estimator expected to be consistent for the βRCC

coefficients. For each βp where p = 0, . . . , 3, the empirical relative bias was calculated
by taking the average of the empirical bias over all datasets as a percentage of βp, and
the coverage probability was calculated as the percentage of all confidence intervals that
contained βp.

We generated simulated datasets in Stata 14 using the parameter values above and
analyzed them as follows. RCC IPWs were estimated using the following code:

. xtrccipw i.Yij, idvar(idvarname) timevar(ageij) timeidxvar(timeidx)
> generate(ipw_sims) trtimevar(trunctime) linkfxn(logit) tdindepvars(Siminusageij)
> mcar

i.Yij represents Yij , ageij represents ageij , and Siminusageij represents Si − ageij .
After specifying the individual-identifier and measurement-time variables using xtset
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idvarname timeij, where timeij represents timeij , we implemented the IEE estimator
via the following code:

. xtgee xtrccipw_Yij i.sexi timeij sexitimeij, family(binomial) vce(robust)
> corr(independent)

xtrccipw Yij represents the outcome variable used by xtrccipw, i.sexi represents
sexi, and sexitimeij represents sexi × timeij . The code used to implement the GEE-
AR1 estimator was identical, except that the AR1 working correlation was specified using
corr(ar 1). The RCC estimator was implemented with the following code:

. glm xtrccipw_Yij i.sexi timeij sexitimeij [pweight=ipw_sims], family(binomial)
> vce(cluster idvarname)

The simulation results are listed in table 2. RCC produced the smallest empirical
relative bias and was the only approach that exhibited coverage close to or greater than
the 95% nominal level for all βp. These results qualitatively agree with the corresponding
empirical relative bias findings in table 4 of Kurland and Heagerty (2005).

Table 2. Simulation study results: Empirical relative bias (coverage probability)

Intercept Sex Time Sex× Time
(β0 = −2.19) (β1 = 0.50) (β2 = 0.10) (β3 = −0.025)

IEE 2 (93.7) 3 (100.0) −16 (73.5) −14 (99.1)
GEE-AR1 8 (81.0) −2 (99.6) 2 (94.9) −33 (97.3)
RCC 0 (94.8) 1 (99.7) 0 (95.5) 1 (97.8)

5.2 PEP data analysis

We now reanalyze the Kurland and Heagerty (2005) analysis data from the PEP study.
Few individuals dropped out (n = 17, 2.3%), and only 62 (8.2%) died in the first
two years of the study. Kurland and Heagerty (2005) estimated the association of ADL

disability with ADL-disability risk group (that is, risk levels low, medium, and high),
month, month2, and the interaction between month and risk group. Their dropout
model included all of these covariates in addition to sex, ADL-disability status at the
previous month to reflect the MAR assumption, and a baseline depression indicator.

To analyze the PEP data, we called the xtrccipw command as follows, with the
relevant output displayed. The variables were study ID (studyid), month (month),
month index (monthidx), ADL disability (adldis = 1 if disabled; 0 otherwise), risk
group (rgamed = 0, rgahigh = 0 for low; rgamed = 1, rgahigh = 0 for medium;
and rgamed = 0, rgahigh = 1 for high), month2 (monthsq), medium-risk interac-
tion with month (rgamedmonth = rgamed × month), high-risk interaction with month
(rgahighmonth = rgahigh × month), and ADL disability status at the previous month
(lagreduced = 1). The dropout mechanism was modeled using a logit link.
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. xtrccipw i.adldis, idvar(studyid) timevar(month) timeidxvar(monthidx)
> generate(ipw_pep) trtimevar(deathmo) linkfxn(logit) tdindepvars(month monthsq
> rgamedmonth rgahighmonth) tiindepvars(i.rgamed i.rgahigh i.sex i.depresbl)
> lagreduced(1) glmvars(month monthsq rgamedmonth rgahighmonth i.rgamed i.rgahigh)
> glmfam(binomial)
outcomevar = i.adldis
idvar = studyid
timevar = month
timeidxvar = monthidx
generate = ipw_pep
timeidxf = 1
timeidxl = 24
trtimevar = deathmo
linkfxn = logit
tdindepvars = month monthsq rgamedmonth rgahighmonth
tiindepvars = i.rgamed i.rgahigh i.sex i.depresbl
mcar =
lagreduced = 1
glmvars = month monthsq rgamedmonth rgahighmonth i.rgamed i.rgahigh
glmfamily = binomial
glmlink =

xtrccipw_ec
monthidx 0 1

1 752
2 750
3 748
4 743
5 742
6 740
7 735
8 731
9 730

10 729
11 727
12 721
13 715
14 712
15 710
16 706
17 701
18 700
19 696
20 690
21 686
22 681
23 677
24 674

Iteration 0: log pseudolikelihood = -4805.9074
Iteration 1: log pseudolikelihood = -4456.9226
Iteration 2: log pseudolikelihood = -4448.8392
Iteration 3: log pseudolikelihood = -4448.7424
Iteration 4: log pseudolikelihood = -4448.7424
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Generalized linear models No. of obs = 17,177
Optimization : ML Residual df = 17,170

Scale parameter = 1
Deviance = 8897.484773 (1/df) Deviance = .5181995
Pearson = 17402.11245 (1/df) Pearson = 1.013518

Variance function: V(u) = u*(1-u/1) [Binomial]
Link function : g(u) = ln(u/(1-u)) [Logit]

AIC = .5188033
Log pseudolikelihood = -4448.742386 BIC = -158532.8

(Std. Err. adjusted for 752 clusters in studyid)

Robust
xtrccipw_adldis Coef. Std. Err. z P>|z| [95% Conf. Interval]

month .042531 .0136743 3.11 0.002 .0157298 .0693322
monthsq -.0023904 .0007797 -3.07 0.002 -.0039185 -.0008622

rgamedmonth .0007953 .0159911 0.05 0.960 -.0305466 .0321372
rgahighmonth .0239548 .0186385 1.29 0.199 -.012576 .0604855

1.rgamed 1.869464 .2275534 8.22 0.000 1.423468 2.31546
1.rgahigh 2.186206 .2463283 8.88 0.000 1.703412 2.669001

_cons -3.532125 .1850643 -19.09 0.000 -3.894844 -3.169405

These estimates were used to produce figure 1. The predicted trajectories match the
fitted curves for the IPCW-IEE estimator in figure 3 of Kurland and Heagerty (2005).
The fitted odds ratio comparing odds of disability in the high-risk group with that of
the low-risk group at the last time point is 8.90, while Kurland and Heagerty (2005)
estimated this odds ratio as 8.95. This minor difference likely results from 752 indi-
viduals in the data we analyzed (provided by Professor Kurland) compared with 754
individuals used by Kurland and Heagerty (2005).
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Figure 1. Predicted trajectories for PEP data by risk group

6 Discussion

In this article, we introduced the xtrccipw command to estimate the IPWs used to con-
duct WEE regression and, in particular, RCC. The assumed dropout-probability mech-
anism could be specified using either a logit or probit link function. We noted asymp-
totic properties of the subsequent glm mean and empirical sandwich variance estimates
and demonstrated xtrccipw using an example with binary outcomes. Finally, we used
xtrccipw to conduct a simulation study similar to that of Kurland and Heagerty (2005)
and to reanalyze their original study findings.

The xtrccipw command does have some limitations. The command can estimate
IPWs only if missingness is monotonic, while many studies suffer from nonmonotonic
(that is, arbitrary or intermittent) missingness. To use xtrccipw, one may construct
an “artificial” dropout indicator that treats the first instance of missingness as dropout,
discarding any subsequent nonmissing outcomes (Robins, Rotnitzky, and Zhao 1995).
One can also impute arbitrarily missing outcomes up to the last nonmissing outcome,
as done in Kurland and Heagerty (2005); however, valid subsequent inferences would
need to account for imputation.

The RCC method is appropriate when one wishes to draw inference about a target
population or real-world population that is itself subject to truncation and when one
is interested only in the subset of continuing outcomes in the target population. For
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example, the PEP study investigators were interested only in the target population of
living individuals. The xtrccipw command gives the user readily available software to
run a WEE or RCC analysis or to simply calculate the relevant IPWs for longitudinal
outcomes.
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Appendix: NLSYW example creation code

use "http://www.stata-press.com/data/r14/nlswork5.dta"

** Only keep records for subsample women with any survey responses available
** from years 70 through 73, 77, 78, and 80. We start at year 70 because the
** binary outcome of interest (union) is completely missing for years 68 and 69.
keep idcode year
keep if (70 <= year & year <= 80 & year != 75)
generate dummy = 1
reshape wide dummy, i(idcode) j(year)
egen yearsavailable = rowtotal(dummy*)
keep if (yearsavailable == 7)
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keep idcode
merge 1:m idcode using "http://www.stata-press.com/data/r14/nlswork5.dta"
keep if (_merge == 3 & 70 <= year & year <= 80 & year != 75)
keep idcode year age ln_wage ttl_exp birth_yr collgrad union
misstable summarize union

** Identify first and last years of any observations.
sort idcode year
by idcode : egen yearidx = seq()
foreach outcomevar in union {

generate _firstyearRD1`outcomevar´ = (`outcomevar´ < .)
generate firstyearRD1`outcomevar´ = .
replace firstyearRD1`outcomevar´ = _firstyearRD1`outcomevar´ ///

if (yearidx == 1)
replace firstyearRD1`outcomevar´ = ///

_firstyearRD1`outcomevar´ * firstyearRD1`outcomevar´[_n-1] ///
if (yearidx > 1)

drop _firstyearRD1`outcomevar´
rename firstyearRD1`outcomevar´ RD`outcomevar´
replace `outcomevar´ = . if (RD`outcomevar´ == 0)

}
keep idcode yearidx year union birth_yr age collgrad ttl_exp ln_wage RDunion
tempfile nlswork5_sub1
save "`nlswork5_sub1´", replace

** Generate no truncation in year 70 and generate truncation based on union
** status at previous year for all subsequent years.
use "`nlswork5_sub1´", clear
keep idcode yearidx year union
sort idcode yearidx
reshape wide union year, i(idcode) j(yearidx)
generate truncyear = .
generate Ci1 = 1
local yearidx = 1
forvalues yearidx = 2/7 {

local yearidxminus1 = `yearidx´ - 1
set seed 140925
generate lambda`yearidx´ = 0.8
replace lambda`yearidx´ = 0.8 - 0.65 * (`yearidx´ / 7) if ///

(union`yearidxminus1´ == 1)
replace lambda`yearidx´ = 0.8 + 0.05 * (`yearidx´ / 7) if ///

(union`yearidxminus1´ == 0)
generate Ci`yearidx´ = Ci`yearidxminus1´ * rbinomial(1, lambda`yearidx´)
replace truncyear = year`yearidx´ if (Ci`yearidx´ == 0 & Ci`yearidxminus1´ == 1)

}
reshape long union year Ci, i(idcode) j(yearidx)
merge 1:1 idcode yearidx using "`nlswork5_sub1´"
drop _merge
foreach varname in union RDunion {

replace `varname´ = . if (truncyear < . & year >= truncyear)
}
keep idcode year yearidx truncyear union age ln_wage ttl_exp birth_yr collgrad
order idcode year yearidx truncyear union age ln_wage ttl_exp birth_yr collgrad
compress
label data "NLS: Young women 14-26 years of age in 1968. Example dataset for ///

xtrccipw."


