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Abstract. Multilevel multiprocess models are simultaneous equation systems
that include multilevel hazard equations with correlated random effects. Demog-
raphers routinely use these models to adjust estimates for endogeneity and sample
selection. In this article, I demonstrate how multilevel multiprocess models can
be fit with the gsem command. I distinguish between two classes of multilevel
multiprocess models: nonrecursive systems of hazard equations without observed
endogenous variables and recursive systems that include a hazard equation with ob-
served endogenous qualitative variables. I illustrate the estimation of both classes
of models using sample datasets shipped with the statistical software aML. I pay
special attention to identifying structural coefficients in nonrecursive simultaneous
systems.
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1 Introduction

Multilevel multiprocess models were developed as systems of proportional hazard mod-
els with correlated individual-level random effects. These models adjust estimates
of the parameters of hazard equations for two forms of simultaneity (Lillard 1993;
Lillard and Waite 1993). Suppose a researcher examines the impact of children on
marital stability. Estimates of ordinary survival models of the hazard of divorce are
likely to be biased; the first form of simultaneity is the endogeneity of the presence of
children, because it is the outcome of a related process of timing of births. Further-
more, the conception hazard might depend on the latent dissolution hazard; if couples
expect that their marriage will be short lived, they may decide to postpone the first
(or higher-order) births. The second form of simultaneity arises because the latent haz-
ard of marriage dissolution is an unobservable (endogenous) variable in the conception
hazard equation.

The multilevel multiequation modeling framework has advantages. First, some of
the explanatory variables in hazard models are endogenous, and estimation of the
hazard model of substantive interest jointly with probit models explaining the en-
dogenous variables eliminates the endogeneity bias (Lillard, Brien, and Waite 1995;
Impicciatore and Billari 2012). Second, the multilevel multiprocess modeling frame-
work easily deals with selection bias. Consider the estimation of the effect of education
on second-birth hazards (Kravdal 2001). Finding a positive effect of higher education
can be explained in terms of a selection effect. Because educated women postpone
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first births, unmeasured factors that also affect the timing of births will be correlated
with education in the sample of mothers, even when those unmeasured factors are in-
dependent of education in the population of childless women. The selection effect is
appropriately controlled if the hazard models explaining first, second, and higher-order
births are jointly fit.

In this article, I show how multilevel multiprocess models can be fit with the gsem

command, which is a natural choice for two reasons: it allows one to estimate multi-
level equations with correlated latent variables, and it supports survival equations in
Stata 14. My endorsement of the gsem command contrasts an earlier suggestion of fit-
ting systems of survival models with the user-written cmp command (Roodman 2011;
Bartus and Roodman 2014). The advantage of the cmp command is that the correla-
tion of residuals can be modeled without including random effects. This strategy has
an additional computational advantage because systems including two equations can be
estimated without numerically approximating two-dimensional integrals. However, the
cmp command forces researchers to impose lognormal duration dependence on the data,
an unrealistic assumption in several applications. Additionally, the computational ad-
vantage of the cmp command might have been overstated because numerical integration
procedures seem to be substantially faster in Stata 14 than in older versions.

I begin by identifying two classes of multilevel multiprocess models: nonrecursive
systems of hazard equations without observed endogenous variables and recursive sys-
tems that include hazard equations with observed endogenous qualitative variables.
Afterward, I detail how both classes of models can be fit using the gsem command. The
examples use sample datasets shipped with the statistical software aML, which was ex-
plicitly developed for multilevel multiprocess modeling (Lillard and Panis 2003). I pay
special attention to identifying structural parameters in nonrecursive systems of hazard
equations, an issue often neglected in empirical applications.

2 Multilevel multiprocess hazard models

2.1 Motivation

Multilevel multiprocess modeling addresses the problem that explanatory variables are
often endogenous because of selection mechanisms. Consider the classic example of
estimating the impact of children on marital stability. Estimates from a separate
hazard model of divorce suffer from two forms of simultaneity biases (Lillard 1993;
Lillard and Waite 1993). First, the presence of children is endogenous because it is the
outcome of a process of timing of births. Second, the latent birth hazard might depend
on the latent dissolution hazard as well. Similar biases arise if the researcher is also
interested in examining the effect of marriage on childbearing. Marriage is the outcome
of the partnership formation process, which may depend on the latent propensity of
becoming a parent.

The aforementioned simultaneity problems can easily be studied within the frame-
work of simultaneous equations with qualitative variables (Heckman 1978). Let y∗1t and
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y∗2t denote the endogenous latent hazards under study; for instance, the former might
be the hazard of conception, and the latter might denote the hazard of marital disso-
lution. Subscript t expresses the possible time dependence of the hazards. y1t and y2t
are observed realizations of the latent variables. The dependence of each latent variable
on the other, as well as on other (possibly time-varying) explanatory variables x1t and
x2t, is described with the structural equations

y∗1t = α1y2t + λ1y
∗
2t + β′

1x1t + ε1t

y∗2t = α2y1t + λ2y
∗
1t + β′

2x2t + ε2t (1)

The two forms of simultaneity are related to the presence of latent variables and
observed realizations on the right-hand side of the equations. First, the error terms
are correlated with the exogenous explanatory variables because of the presence of an
unobserved hazard on the right-hand side and the dependence of that hazard on the
same exogenous variables. Second, the expected value of the residual is not constant
across the categories of the observed realizations (Lee 1979).

Joint estimation of the system is viewed as a method for eliminating both sources of
endogeneity bias. I will discuss the method separately for two classes of the model. It
is well known that the parameters of the model defined by (2) are not identified with-
out further restrictions. Using classic results on logical consistency and identification
(Maddala 1983), we see that the model exists only if λ1α2 = λ2α1 = 0 and α1α2 = 0.
This condition implies that there are two forms of estimable systems. The first form is
nonrecursive systems without observed endogenous variables (α1 = α2 = 0):

y∗1t = λ1y
∗
2t + β′

1x1t + ε1t

y∗2t = λ2y
∗
1t + β′

2x2t + ε2t

The second form is recursive systems with observed endogenous variables (λ1 = λ2 = 0
and α1 = 0):

y∗1t = β′
1x1t + ε1t

y∗2t = α2y1t + β′
2x2t + ε2t (2)

I will now discuss these models briefly.

2.2 Nonrecursive systems without observed endogenous variables

In these systems, endogeneity bias emerges because unobserved endogenous hazards
appear on the right-hand sides of both equations. The dependence of hazards on other
hazards disappears in the reduced-form system. However, the reduced-form parame-
ters are not equal to the structural parameters of interest. In this section, I focus on
identifying these parameters via excluded instruments. To emphasize the presence of
excluded instruments, we rewrite the structural model as
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y∗1t = λ1y
∗
2t + β′

1xt + γ1z1t + ε1t

y∗2t = λ2y
∗
1t + β′

2xt + γ2z2t + ε2t

where x is a vector of exogenous variables common to both equations and the z’s are
excluded instruments. The system of reduced-form equations is

y∗1t = π′
10xt + π11z1t + π12z2t + v1t

y∗2t = π′
20xt + π21z1t + π22z2t + v2t

where

πj0 = (1− λ1λ2)
−1

(β′
j + λjβ

′
k)

πjj = (1− λ1λ2)
−1

γj

πjk = (1− λ1λ2)
−1

λjγk

vj = εj + λjεk (3)

where j = {1, 2} indexes the equations and k = 3 − j. Estimation must account
for the residuals in the reduced-form equations being generally correlated, even when
the disturbances in the structural equations are independent of each other. If the
latter error terms are normally distributed, the correlation of the residuals can easily
be modeled using the multivariate normal distribution. In proportional hazard models,
however, the error terms are exponentially distributed. Hence, the correlation of the
underlying residuals should be modeled with the help of jointly normally distributed
random intercepts (Lillard 1993). The resulting multilevel multiprocess model can be
stated as follows:

y∗1t = π′
10xt + π11z1t + π12z2t + u1 + η1t

y∗2t = π′
20xt + π21z1t + π22z2t + u2 + η2t[

u1

u2

]
∼ N

(
0,

[
σ2
1 σ12

σ12 σ2
2

])
(4)

In the presence of excluded instruments, the structural coefficients can be recovered
as follows. First, notice from (3) that the selection coefficient λj can easily be estimated
as follows:

λj = πjk/πkk (5)

Second, use the estimated selection parameters to solve the system:

π10 = (1− λ1λ2)
−1

(β′
1 + λ1β

′
2)

π20 = (1− λ1λ2)
−1

(β′
2 + λ2β

′
1)

The solution is a simple nonlinear combination of reduced-form coefficients:

βj = πj0 − λkπk0 = πj0 − (πjk/πkk)πk0 (6)

Both the nonlinear combination and its standard error can be calculated using the nlcom
command.
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2.3 Recursive systems with observed endogenous variables

In recursive systems, all coefficients are structural. Endogeneity arises because the
expected value of ε1 differs in groups y1t = 1 and y1t = 0. The problem is the same
as the problem of sample selection. The endogeneity bias is eliminated if the residuals
are allowed to be correlated and the seemingly unrelated system is jointly estimated.
In the case of two equations with normally distributed residuals, this boils down to the
estimation of a bivariate probit model. However, the second equation is a proportional
hazard model, and the joint estimation requires the inclusion of random intercepts. The
multilevel multiprocess model is

y∗1t = β′
1x1t + u1 + η1t

y∗2t = α2y1t + β′
2x2t + u2 + η2t[

u1

u2

]
∼ N

(
0,

[
σ2
1 σ12

σ12 σ2
2

])
(7)

To identify the correlation of the random effects, one should include in the first-stage
equation at least one variable not included in the second-stage hazard equation.

In empirical applications, the latent variable y∗1t is often a time-constant latent
propensity to experience an event. The classic example is the propensity to form a
cohabiting union before marriage that in turn will affect the (time-varying) hazard of
marital dissolution (Lillard, Brien, and Waite 1995).

3 Fitting multilevel multiprocess models with gsem

The official Stata gsem command can fit multiprocess hazard models because it supports
multiequation survival models with correlated latent variables. The description of the
syntax is restricted to components of the gsem command specific to our purposes. We
also assume a multispell data structure where each record corresponds to an episode
nested within an individual.

3.1 Multilevel hazard models

In the multispell dataset, idvar identifies the individuals, timevar records the survival
time, t0var records entry time, and event is a dummy variable recording the occurrence
of the event under study. The inclusion of the random intercept requires specification
of a latent variable at the level of individuals. This latent variable might be specified
as U[idvar]. Instead of U, one can choose any word beginning with a capital letter.
However, specifying [idvar] after the chosen word is mandatory; this syntax element
tells Stata that the latent variable is random intercept, which is constant within the
individuals.
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To fit a multilevel hazard model assuming distribution family, one should type

gsem (timevar <- indepvars U[idvar], family(family, fail(event) lt(t0var)))

3.2 Piecewise-constant multilevel hazard models

Most of the empirical applications in demography use piecewise-linear exponential haz-
ard models. Thus I will focus on simple exponential hazard models. Exponential hazard
models can easily be fit as Poisson models of events, provided that the explanatory vari-
ables include the natural log of the duration of the current spell (Skrondal and Rabe-
Hesketh 2004). The reason is that if survival time t follows an exponential distribution
with parameter h, the expected number of failures follows a Poisson distribution with
parameter ht (Holford 1980).

Define durvar as timevar minus t0var. durvar thus measures the duration of the
current spell. The multilevel piecewise-constant exponential hazard model can be fit as
follows:

gsem (event <- indepvars U[idvar], poisson exposure(durvar))

Duration dependence is allowed if indepvars includes t0var, other variables generated
from t0var, or indicator variables capturing the rank order of the current spell.

3.3 Fitting nonrecursive systems without observed endogenous vari-
ables

Systems of piecewise-constant exponential models require separate latent variables for
the equations. Let U1[idvar] and U2[idvar] be the equation-specific latent variables
(random intercepts). Two equations can be jointly estimated as follows:

gsem

(event 1 <- indepvars 1 U1[idvar], poisson exposure(durvar))

(event 2 <- indepvars 2 U2[idvar], poisson exposure(durvar))

gsem automatically estimates the variance–covariance matrix of the random effects. The
loadings of the latent variables will be constrained to 1.

event 1 and event 2 might refer to recurrent events of the same kind. (For simplicity,
the outcomes of sequential choices, like the timing for first, second, and higher-order
births, are also treated as recurrent events.) The practice of multilevel modeling sug-
gests that equations for recurrent events should share the same latent variable. Even if
K different equations are used to model recurrent events of the same kind, the equations
should include a single latent variable, not K different latent variables. This strategy
of modeling first, second, and higher-order births is present in Lillard’s (1993) seminal
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article. The reason for using one instead of K different latent variables is computa-
tional: integrating out one latent variable takes less time than integrating out K jointly
distributed latent variables. The syntax for recurrent events is

gsem

(event 1 <- indepvars 1 U[idvar], poisson exposure(durvar))

(event 2 <- indepvars 2 U[idvar], poisson exposure(durvar))

gsem automatically constrains the loading of the latent variable to 1 in the first equation
but estimates the loadings in the other equations and the variance of the latent variable.

Lillard (1993) modeled recurrent occurrences of births jointly with marital disso-
lution. The joint modeling of recurrent events nested within another process can be
implemented as follows: Variables event 11 and event 12 capture the occurrences of the
recurrent events. Variable event 2 measures the termination of another process within
which the occurrences of event 11 and event 12 are nested. The syntax, which combines
the previous syntax elements, is

gsem

(event 11 <- indepvars 12 U1[idvar], poisson exposure(durvar))

(event 12 <- indepvars 12 U1[idvar], poisson exposure(durvar))

(event 2 <- indepvars 2 U2[idvar], poisson exposure(durvar))

3.4 Fitting recursive systems with observed endogenous variables

For simplicity, consider one survival process and one probit equation. Again, event is
the variable indicating failures. xvar is the endogenous dummy variable in the hazard
equation. indepvars includes the exogenous variables appearing in both the hazard and
the probit equations. Finally, zvars contains the excluded instrument (or the list of
excluded instruments), which appears only in the probit equation. The syntax is

gsem

(event <- xvar indepvars U[idvar], poisson exposure(durvar))

(xvar <- zvars indepvars V[idvar], probit)
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gsem also allows one to estimate more complicated systems. Consider a hazard model
that includes two endogenous dummy variables. (For an example, see Impicciatore and
Billari [2012].) The syntax for fitting models of this kind is

gsem

(event <- xvar 1 xvar 2 indepvars U[idvar], poisson exposure(durvar))

(xvar 1 <- zvars 1 indepvars V1[idvar], probit)

(xvar 2 <- zvars 2 indepvars V2[idvar], probit)

One can also fit a hazard model with an endogenous qualitative variable jointly with
a multinomial selection model:

gsem

(event <- xvar indepvars U[idvar], poisson exposure(durvar))

(xvar <- zvars indepvars V[idvar], mlogit)

4 Example 1. Nonrecursive simultaneous equations for
hazards

4.1 Introduction: The research problem and the dataset

Our first example considers the relationship between education and second-birth rates.
We hypothesize that higher education has a positive effect on second-birth hazards
(even when higher education has a negative effect on first births). We use a sample
dataset on married American women that was shipped with the statistical software aML

(Lillard and Panis 2003). The original dataset was converted into a multispell dataset.
You can obtain the data as follows:

. use "http://web.uni-corvinus.hu/bartus/stata/divorce2.dta"
(Data on marriages (source: divorce4.raw, shipped with aML))

The data have a multilevel structure: spells are nested within conception episodes,
and conception episodes are nested within individuals. Our sample data include the
first two conception episodes within the first marriage. Conception episodes within
marriages are identified with the variable numkids, measuring the number of children
at the beginning of conception episodes. The duration of a conception episode is the
difference between two variables, time and mardur. mardur measures the duration of
the marriage at the beginning of each spell, while time measures the date of separation
(or interview date).

We begin by creating separate dummies for first and second conceptions. We use
the separate command to separate the samples for the study of first and second births.
Then, we define the model. The key explanatory variable is hereduc, which is a categor-
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ical variable with three categories: primary, secondary, and higher education. (Actually,
these variables are computed from years of schooling.) I chose secondary education as
the reference category. To keep matters simple, I used only the age at the beginning
of the conception spell (that is, the mother’s age when the first child was born) as a
control variable. We place the independent variables and the model definition in global
macros. The commands are

. separate birth, by(numkids)

(output omitted )

. global xvars ib2.hereduc age

. global model poisson exposure(dur)

We begin our analyses with fitting the model separately. We fit a multilevel model
because records within the multispell dataset are nested within individuals. The com-
mand and result are

. gsem (birth2 <- $xvars U[id], $model)

(output omitted )

Coef. Std. Err. z P>|z| [95% Conf. Interval]

birth2 <-
hereduc

<12 years -.0389349 .0727403 -0.54 0.592 -.1815032 .1036334
16+ years .4029357 .1093571 3.68 0.000 .1885998 .6172716

age -.0914562 .0062165 -14.71 0.000 -.1036404 -.079272

U[id] 1 (constrained)

_cons -1.86012 .0506612 -36.72 0.000 -1.959414 -1.760826
ln(dur) 1 (exposure)

var(U[id]) .6216596 .068415 .5010442 .7713105

The third level of the hereduc variable (16+ years of education) has a positive and
statistically significant coefficient. This suggests that second-birth rates are relatively
high among educated women. In the rest of this section, we control for sample selection
and endogeneity to check whether the estimate of 0.403 is robust.

4.2 Joint model for first and second births

Our first concern with the previous result is it might arise because of a selection effect.
Education has a negative effect on the transition to first birth, so education will be
positively correlated with unobserved causes of fertility in samples of mothers (Kravdal
2007). Therefore, the comparison of the fertility outcomes across educational categories
in the sample of mothers measures not only the true effect of education but also the effect
of unobserved preferences or personality traits (Kravdal 2001). This selection effect can
be controlled for if the parity-specific transitions are modeled jointly by adding person-
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specific random intercepts to both the second- and first-birth equations. The command
is

. gsem (birth2 <- $xvars U[id], $model)
> (birth1 <- $xvars U[id], $model)

(output omitted )

Results are not shown because the coefficient of higher education is again positive
and statistically significant and, more importantly, the exact value of the estimate,
0.381, is close to the previous estimate. This finding suggests that the positive effect of
higher education cannot be explained in terms of sample selection.

4.3 Joint model for second births and marital dissolutions

Our second concern is the dependence of the birth process on the latent hazard of marital
dissolution; pessimistic expectations regarding the duration of the marriage are likely
to affect second births. To eliminate the bias arising from simultaneity, we now turn to
fitting a joint model of the timing of second births and the timing of marital dissolutions.
Because the joint model includes reduced-form equations, identifying the structural
parameters requires excluded instruments. We assume that age affects only second-
birth rates, while the hazard of marital disruption depends exclusively on marriage
duration. In other words, age and marital duration are the excluded instruments in
the respective birth and dissolution equations. The reduced-form equations include all
variables appearing in all structural equations. We again specify the model using a
global macro:

. global xvars ib2.hereduc age mardur

We restrict the analysis to married mothers of one child. The reduced-form system
is estimated as follows:
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. gsem (birth2 <- $xvars U[id], $model)
> (divorce <- $xvars V[id], $model)
> if numkids==2

(output omitted )

Generalized structural equation model Number of obs = 5,100

(output omitted )

Coef. Std. Err. z P>|z| [95% Conf. Interval]

birth2 <-
hereduc

<12 years -.0028288 .068905 -0.04 0.967 -.1378801 .1322225
16+ years .3128652 .1036965 3.02 0.003 .1096238 .5161066

age -.0396747 .0087697 -4.52 0.000 -.056863 -.0224863
mardur -.1071725 .0138669 -7.73 0.000 -.1343512 -.0799939

U[id] 1 (constrained)

_cons -1.180374 .0971953 -12.14 0.000 -1.370873 -.9898746
ln(dur) 1 (exposure)

divorce <-
hereduc

<12 years -.1479639 .1482184 -1.00 0.318 -.4384667 .1425389
16+ years -.4958348 .2942543 -1.69 0.092 -1.072563 .0808931

age -.0970939 .0212381 -4.57 0.000 -.1387197 -.0554681
mardur .0857423 .0290449 2.95 0.003 .0288152 .1426693

V[id] 1 (constrained)

_cons -4.391784 .3508382 -12.52 0.000 -5.079414 -3.704153
ln(dur) 1 (exposure)

var(U[id]) .4275274 .0636296 .3193583 .5723342
var(V[id]) .478624 .3789376 .1014095 2.258969

cov(V[id],
U[id]) -.0836689 .1472204 -0.57 0.570 -.3722154 .2048777

Introducing the latent variables implies that five additional parameters should be
estimated: the loadings and the variances of the latent variables and the covariance of
the latent variables. We can identify three of these parameters because the variance–
covariance matrix of the dependent variables includes the variances and the covariance
of the outcomes. To identify these parameters, Stata constrains the loadings to unity.

To interpret the results, recall that the birth equation is not a structural equation
but a reduced-form equation (see section 2.2). The structural effect of higher education
must be recovered using (1). The structural effect is a nonlinear combination of four
reduced-form coefficients. This nonlinear combination can easily be computed with the
nlcom command:
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. nlcom _b[birth2:3.hereduc] - (_b[birth2:mardur] / _b[divorce:mardur]) *
> _b[divorce:3.hereduc]

_nl_1: _b[birth2:3.hereduc] - (_b[birth2:mardur] / _b[divorce:mardur])
> * _b[divorce:3.hereduc]

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 -.3068977 .4508039 -0.68 0.496 -1.190457 .5766616

The structural effect of higher education in the second-birth equation, labeled nl 1

in the output, is small and lacks statistical significance. This suggests that the partial
correlation between higher education and second-birth rates is not direct but might be
mediated by the latent separation hazard. This conjecture can easily be tested. Using
(2.2), we can compute the structural effect of higher education on the dissolution hazard
as follows:

. nlcom _b[divorce:3.hereduc] - (_b[divorce:age] / _b[birth2:age]) *
> _b[birth2:3.hereduc]

_nl_1: _b[divorce:3.hereduc] - (_b[divorce:age] / _b[birth2:age]) *
> _b[birth2:3.hereduc]

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 -1.261495 .4305668 -2.93 0.003 -2.10539 -.4175992

Using (2.2), we see that the effect of the dissolution hazard on the second-birth hazard
is

. nlcom _b[birth2:mardur] / _b[divorce:mardur]

_nl_1: _b[birth2:mardur] / _b[divorce:mardur]

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 -1.249938 .4477062 -2.79 0.005 -2.127426 -.3724502

These linear combinations support the hypothesis that the positive effect of higher
education on second births is mediated by the latent hazard of marital separation: highly
educated women tend to live in relatively stable marriages, and marital stability has a
positive effect on second-birth rates.

4.4 Joint model for first births, second births, and marital dissolution

In the previous subsections, we first modeled first- and second-birth processes, then
modeled second-birth and marital dissolution processes jointly. The respective concerns
were sample selection bias and endogeneity bias. We can address these concerns at the
same time and estimate the first-birth, second-birth, and marital dissolution equations
jointly. Indeed, this model is very close to the classic multilevel multiprocess model
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presented in Lillard (1993). As described in section 3.3, we specify two correlated latent
variables for the respective conception and marital dissolution processes. The syntax is

. gsem (birth2 <- $xvars U[id], $model)
> (birth1 <- $xvars U[id], $model)
> (divorce <- $xvars V[id], $model)

(output omitted )

We omit the output because the ultimate interest lies in the structural coefficients.
These can be recovered by computing the appropriate nonlinear combination:

. nlcom _b[birth2:3.hereduc] - (_b[birth2:mardur] / _b[divorce:mardur]) *
> _b[divorce:3.hereduc]

_nl_1: _b[birth2:3.hereduc] - (_b[birth2:mardur] / _b[divorce:mardur])
> * _b[divorce:3.hereduc]

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 .1031687 .1907404 0.54 0.589 -.2706757 .4770131

Again, there is no evidence that higher education would have a direct effect on
second-birth rates. By contrast, there is evidence that the positive effect of higher ed-
ucation is an indirect one, mediated by the latent dissolution hazard. The respective
nonlinear combinations that estimate the direct effect of higher education on the disso-
lution hazard and the effect of the dissolution hazard on the second-birth hazard are as
follows:

. nlcom _b[divorce:3.hereduc] - (_b[divorce:age] / _b[birth2:age]) *
> _b[birth2:3.hereduc]

_nl_1: _b[divorce:3.hereduc] - (_b[divorce:age] / _b[birth2:age]) *
> _b[birth2:3.hereduc]

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 -.5290925 .2280571 -2.32 0.020 -.9760761 -.0821088

. nlcom _b[birth2:mardur] / _b[divorce:mardur]

_nl_1: _b[birth2:mardur] / _b[divorce:mardur]

Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 -.8249733 .2544315 -3.24 0.001 -1.32365 -.3262967
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5 Example 2. Hazard models with endogenous dummy
variables

5.1 Introduction: The research problem and the dataset

Our second example is about examining the impact of hospital delivery on child mor-
tality. We hypothesize that children delivered in hospitals have a lower death hazard
than similar children delivered at home. We use a modified and Stata-compatible ver-
sion of the children dataset shipped with the statistical software aML to replicate one of
the examples in the aML manual (Lillard and Panis 2003). You can obtain the data as
follows:

. use "http://web.uni-corvinus.hu/bartus/stata/children1.dta", clear
(Child mortality data (source: aML))

The data have a multispell and multilevel structure: spells are nested within children,
identified with the variable bid, and children are nested within mothers, identified with
the variable id. For simplicity, the survival process is split into two spells; the first spell
lasts three months (or less in case of early death). Episode splitting is motivated by
the observation that child mortality is relatively large in the first three months. The
survival process is described by three variables: death indicates deaths, dur records the
duration of the spell (in months), and age0 is the age of the child (in months) at the
beginning of the spell.

We begin with estimating a simple multilevel child mortality hazard equation. The
explanatory variables include the hospital dummy, education, and an indicator for being
aged three months at the beginning of the current spell. For simplicity, we assume that
the mortality hazard is constant within the spells. We use a random intercept at the
level of mothers to model the interdependence of spells within mothers. We place the
independent variables and the model definition in global macros. The commands are

. global death hospital i.edu i.age0

. global model poisson exposure(dur)

. gsem (death <- $death U[id], $model)

(output omitted )

Estimates are not shown. The coefficient of the hospital dummy is negative (the
estimate is −0.382) but statistically not significant (p = 0.064). The robustness of this
estimate is examined in the next subsection.

5.2 Joint estimation of hazard and probit equations

Finding no statistically significant negative effect of hospital delivery might be due to a
selection effect. Mothers are aware of their health status and form an expectation about
the mortality of their child. Hospital delivery is chosen by mothers who fear losing their
baby and believe hospitals reduce this risk. By contrast, home delivery is chosen by
women with a low risk of losing their baby. In short, hospital delivery is correlated with
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factors affecting child mortality. To control for this endogeneity bias, one can fit the
hazard model jointly with a probit model of hospital delivery on education and distance
to the nearest hospital, the latter being the excluded instrument. The joint model is fit
as follows:

. global hospital distance i.edu

. gsem (death <- $death U[id], $model)
> (hospital <- $hospital V[id], probit)

(output omitted )

Generalized structural equation model Number of obs = 2,002

(output omitted )

Coef. Std. Err. z P>|z| [95% Conf. Interval]

death <-
hospital -.5131628 .2411954 -2.13 0.033 -.9858971 -.0404285

educ
high school -.2625067 .1909157 -1.37 0.169 -.6366945 .1116811

college -2.021169 .7341519 -2.75 0.006 -3.46008 -.5822573

3.age0 -4.920847 .1656668 -29.70 0.000 -5.245548 -4.596146

U[id] 1 (constrained)

_cons -3.12697 .1432276 -21.83 0.000 -3.407691 -2.846249
ln(dur) 1 (exposure)

hospital <-
distance -.0231453 .0175738 -1.32 0.188 -.0575894 .0112987

educ
high school 2.01218 .2895358 6.95 0.000 1.4447 2.57966

college 3.148736 .5114086 6.16 0.000 2.146393 4.151078

V[id] 1 (constrained)

_cons -2.209737 .2767038 -7.99 0.000 -2.752066 -1.667407

var(U[id]) .4091622 .2339894 .1333875 1.255093
var(V[id]) 4.149642 1.079965 2.491617 6.910987

cov(V[id],
U[id]) .2157169 .1885667 1.14 0.253 -.1538671 .5853009

The coefficient of the hospital delivery variable is now statistically significant. The
estimate of −0.513 is larger than that appearing in the separate model. This suggests
that hospital delivery has the expected negative effect on mortality, but this effect was
partially suppressed by the aforementioned selection effect.
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The present example assumes that the hazard of death is constant within the spells.
Descriptive analyses, not reported in this article, suggest this assumption is unreal-
istic. The hazard is monotonically decreasing in the first three months, while it is
approximately constant after surviving the first three months. A more realistic model
specification would be a Weibull model, which can be fit as follows:

. global model family(weibull, fail(death) lt(age0))

. gsem (month <- $death U[id], $model)
> (hospital <- $hospital V[id], probit)

(output omitted )

Note that the dependent variable in the hazard equation is the variable recording
the survival time. The output is not reported because the coefficient of the hospital
delivery dummy is statistically significant, and the size of the coefficient is very close to
the previously estimated −0.513.

5.3 Joint estimation of hazard and multinomial logit equations

Suppose that children can be delivered in public hospitals, in private hospitals, and at
home. Suppose further that hospital delivery improves life expectancy, but the negative
effect of hospital delivery on child mortality differs between private and public hospitals.
Women are expected to select the delivery form, which minimizes the risks but also
economizes on (travel and other) costs. Again, the chosen form of delivery will be
correlated with factors affecting the health of the child. To eliminate the endogeneity
bias, one must fit the hazard model jointly with a multinomial model of delivery choice.
The gsem command allows one to fit hazard models jointly with multinomial selection
equations. To illustrate, we use a modified version of the child mortality dataset. The
specification of the hazard and the selection equations is not changed. The only change
is that we use a multinomial logit selection model instead of a probit model. The
commands are

. use "http://web.uni-corvinus.hu/bartus/stata/children2.dta", clear
(Child mortality data (source: aML))

. global death i.hospital i.edu i.age0

. global hospital distance i.edu

. global model poisson exposure(dur)
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. gsem (death <- $death U[id], $model)
> (hospital <- $hospital V[id], mlogit)

(output omitted )

Generalized structural equation model Number of obs = 2,002

(output omitted )

Coef. Std. Err. z P>|z| [95% Conf. Interval]

death <-

hospital
1 -.5085083 .2527484 -2.01 0.044 -1.003886 -.0131305
2 -3.024408 .5896255 -5.13 0.000 -4.180053 -1.868763

educ
high school -.1914267 .1871073 -1.02 0.306 -.5581502 .1752968

college -1.965382 .7309886 -2.69 0.007 -3.398093 -.5326702

3.age0 -4.836307 .1661777 -29.10 0.000 -5.16201 -4.510605

U[id] 1 (constrained)

_cons -2.885532 .1392459 -20.72 0.000 -3.158449 -2.612615
ln(dur) 1 (exposure)

0.hospital (base outcome)

1.hospital <-
distance -.0530196 .0337748 -1.57 0.116 -.1192171 .0131779

educ
high school 3.239981 .4779804 6.78 0.000 2.303157 4.176805

college 4.849681 .7717843 6.28 0.000 3.337011 6.36235

V[id] 1 (constrained)

_cons -3.793961 .4544799 -8.35 0.000 -4.684725 -2.903196

2.hospital <-
distance -.0060001 .0212732 -0.28 0.778 -.0476949 .0356946

educ
high school 1.074023 .1810285 5.93 0.000 .7192138 1.428833

college 1.707243 .3263577 5.23 0.000 1.067594 2.346892

V[id] .2732314 .0500081 5.46 0.000 .1752174 .3712454

_cons -1.293195 .1406849 -9.19 0.000 -1.568932 -1.017458

var(U[id]) .2992881 .2126223 .0743658 1.204497
var(V[id]) 13.02677 2.624814 8.776573 19.3352

cov(V[id],
U[id]) .3196824 .3756769 0.85 0.395 -.4166308 1.055996
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Again, we find that hospital delivery reduces child mortality compared with home
delivery. The effect is larger in hospitals coded with 2 than in hospitals coded with 1.
(It is up to the reader to interpret the 1 code as a private or as a public hospital.)

6 Concluding remarks

Demographers routinely use multilevel multiprocess models to adjust estimates for en-
dogeneity and sample selection. In this article, I showed how multilevel multiprocess
models could be fit with the gsem command. I provided two examples to illustrate the
estimation of nonrecursive systems without observed endogenous variables and recur-
sive systems with observed endogenous variables. The examples used sample datasets
shipped with the statistical software aML, explicitly developed for multiprocess multi-
level modeling (Lillard and Panis 2003). I paid special attention to identifying structural
effects in nonrecursive systems.

Most of the examples in this article illustrate the estimation of systems with two
equations. In some empirical applications, however, more than two equations are esti-
mated jointly (Upchurch, Lillard, and Panis 2002; Steele et al. 2005). As the number
of equations increases, the number of correlated random intercepts increases. Fitting
models with a large number of random effects is slow and may have convergence prob-
lems. Referencing the classic article on multilevel multiprocess modeling (Lillard 1993),
I suggested a simple rule to avoid or minimize numerical problems: the number of latent
variables must be equal to the number of processes under study, but separate equations
for recurrent (or sequential) occurrences of events of the same kind should share the
same latent variable.

For simplicity, I used (piecewise-constant) exponential hazard models for the purpose
of survival modeling. As shown in section 3.1, gsem supports a large class of parametric
survival models. Recently, multilevel multiprocess models often rely on discrete-time
(binary and multinomial) logistic regression models (Steele et al. 2005). However, the
Poisson model is flexible enough to model duration dependence and represent discrete-
time event-history models. In theory, systems of logit and multinomial logit models can
easily be estimated with gsem. In conclusion, the gsem command is a powerful tool to
fit various forms of multilevel multiprocess models. I believe the examples shown in this
article will help researchers solve complicated research problems.
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