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Abstract. Bland and Altman’s (1986, Lancet 327: 307–310) limits of agreement
have been used in many clinical research settings to assess agreement between
two methods of measuring a quantitative characteristic. However, when the vari-
ances of the measurement errors of the two methods differ, limits of agreement
can be misleading. biasplot implements a new statistical methodology that Taffé
(Forthcoming, Statistical Methods in Medical Research) recently developed to cir-
cumvent this issue and assess bias and precision of the two measurement methods
(one is the reference standard, and the other is the new measurement method to
be evaluated). biasplot produces three new plots introduced by Taffé: the “bias
plot”, “precision plot”, and “comparison plot”. These help the investigator visu-
ally evaluate the performance of the new measurement method. In this article, we
introduce the user-written command biasplot and present worked examples using
simulated data included with the package. Note that the Taffé method assumes
there are several measurements from the reference standard and possibly as few
as one measurement from the new method for each individual.
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1 Introduction

Clinical researchers frequently use Bland and Altman’s (1986) limits of agreement (LoA)
to evaluate the agreement between two methods for measuring quantitative character-
istics. Often this is motivated by a new, perhaps less expensive or easier, method of
measurement against an established reference standard. To evaluate the comparabil-
ity of the methods, the investigator collects measurements—one or several—from each
method for a set of subjects. The investigator then computes Bland and Altman’s LoA
by adding and subtracting 1.96 times the estimated standard deviation to the mean
differences. A scatterplot of the differences versus the means of the two variables with
the LoA superimposed is then used to visually appraise the degree of agreement and
quantify the magnitude. Further, the investigator adds a regression of the differences as
a function of the means to the plot to indicate whether there is a bias and the direction
of that bias (Bland and Altman 1999).

However, Bland and Altman’s plot may be misleading when the variances of the
measurement error for each method differ from one another. When this is the case,
the regression line may show an upward or a downward trend when there is no bias or
a zero slope when there is a bias. The literature has previously shown this problem.
However, to the best of our knowledge, no simple-to-use and effective plots that evaluate
bias and precision have been presented as an alternative (Hopkins 2004; Krouwer 2008;
Carstensen, Simpson, and Gurrin 2008; Ludbrook 2010b,a; Carstensen 2010).

However, the purpose of this article is not a careful review of the literature. In-
terested readers should look at Nawarathna and Choudhary (2015) and the references
therein for a recent review of measurement error. Rather, we will present the implemen-
tation of Taffé’s (Forthcoming) method, which extends previously published methods to
the setting of heteroskedastic measurement errors, particularly when heteroskedasticity
is a function of the latent trait. We will perform the estimation in two steps, using
an empirical Bayes approach to identify and quantify the amount of differential and
proportional bias. Further, Taffé introduced two new plots, the “bias plot” and the
“precision plot”, to aid in assessing the new measurement method. These plots are not
afflicted with the same issues as LoA plots but are still easily interpreted. The Taffé
method requires that several measurements be made with the reference standard for
each individual (usually more than five) and possibly only one measurement with the
new method. The Taffé method allows each individual to have a different number of
repeated measurements by each method and is applicable in all circumstances with or
without differential or proportional bias and when the measurement errors are either
homoskedastic or heteroskedastic.

2 The measurement error model

2.1 Formulation of the model

For a full presentation of the methodological theory, see Taffé (Forthcoming). Below we
present an abridged version of the methods. Consider the measurement error model
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y1ij = α1 + β1xij + ε1ij ε1ij |xij ∼ N
{
0, σ2

ε1 (xij ;θ1)
}

y2ij = α2 + β2xij + ε2ij ε2ij |xij ∼ N
{
0, σ2

ε2 (xij ;θ2)
}

xij ∼ fx(μx, σ
2
x)

where y1ij is the jth replicate measurement by method 1 on individual i, j = 1, . . . , ni
and i = 1, . . . , N , y2ij is obtained by method 2, xij is a latent variable with density
fx representing the true unknown trait, and ε1ij and ε2ij represent measurement errors
by methods 1 and 2. We assume the variances of these errors, that is, σ2

ε1(xij ;θ1) and
σ2
ε2(xij ;θ2), are heteroskedastic and increase with the level of the true latent trait, xij ,

in a way to be precisely specified later, depending on the vectors of unknown parameters
θ1 and θ2. For the reference method, α2 = 0 and β2 = 1, whereas for method 1, we
must estimate the differential α1 and proportional β1 biases from the data. The mean
value of the latent variable xij is μx, and its variance is σ2

x. When method 2 is the
reference standard and method 1 the new method for evaluation, the model reduces to

y1ij = α1 + β1xi + ε1ij ε1ij |xi ∼ N
{
0, σ2

ε1 (xi;θ1)
}

(1)

y2ij = xi + ε2ij ε2ij |xi ∼ N
{
0, σ2

ε2 (xi;θ2)
}

xi ∼ fx(μx, σ
2
x)

Note that this measurement error model is slightly different from the classical mea-
surement error model; the heteroskedasticity depends on the latent trait and not on an
observed average (Dunn 2004).

2.2 Estimation of the model

The estimation process has two steps:

Estimation step 1

Other methods treat xi as a nuisance parameter and attempt to integrate it out from
the joint likelihood function. The Taffé method fits the regression model for y2ij using
marginal maximum likelihood, allowing the variance of ε2ij to be different for each
decile of the empirical distribution of y2i (that is, the mean of the individual repeated
measurements y2i is used as a rough approximation to xi). Then, following an empirical
Bayes approach, we predict xi from the mean of its posterior distribution (that is,
the mean of the conditional distribution of xi given the vector y2i of observations for
individual i by method 2), which is the best linear unbiased prediction (BLUP) for xi.

x̂i = E (xi|y2i) (2)

=

∫
xi

fy2
(y2i|xi)fx(xi)∫

fy2
(y2i|xi)fx(xi)dxi dxi
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For the sake of notational convenience, we have suppressed the dependence of the density
functions fy2

and fx from their parameters, which have been estimated by maximum
likelihood.

When fx is the normal density, (2) is

x̂i = σ2
xι

′V−1
i (y2i − ιμ̂x) + μ̂x

where ι is an ni vector of ones and Vi = σ2
xιι

′ + diag{σ2
ε2(xi;θ2)} is the variance–

covariance matrix of y2i.

It is desirable to have a smooth estimate of the heteroskedasticity that does not
depend on y2i but rather on x̂i, the BLUP for xi. Therefore, Taffé suggests an approach
similar to that of Bland and Altman (1999) by regressing the absolute values of the
residuals ε̂2ij from the linear regression model y2ij = α∗

2+β
∗
2 x̂i+ ε

∗
2ij on x̂i by ordinary-

least squares (OLS) to create a smooth estimate of the heterogeneous variance:

|ε̂∗2ij | = θ
(0)
2 + θ

(1)
2 x̂i + vij

Under the normality assumption, |ε∗2ij | follows a half-normal distribution with mean

E(|ε∗2ij |) = σε2(x̂i; θ2)
√

2/π. Therefore, we obtain a smooth standard-deviation esti-
mate as follows:

σ̂ε2

(
x̂i; θ̂2

)
= Ê

(|ε̂∗2ij |)√π/2 =
(
θ̂
(0)
2 + θ̂

(1)
2 x̂i

)√
π/2

Note that Taffé suggests that the form of the heterogeneity need not be a straight
line; we may consider other heterogeneity structures, and a graphical representation of
|ε̂∗2ij | versus x̂i provides a good start to visually check the plausibility of the straight-
line model. It may be useful to assess the fit using a scatterplot of y2ij versus x̂i, with

the estimated regression line and the 95% prediction limits computed as α̂∗
2 + β̂∗

2 x̂i ±
2σ̂ε2(x̂i;θ2).

Estimation step 2

The second stage of the estimation process involves the estimation of the regression
equation for y1ij in (1) and estimation of the differential (α1) and proportional (β1)
biases by OLS after substituting the BLUP for x̂i for the true unmeasured trait, xi. We
may then use the Wald test and 95% confidence intervals (CIs) for α1 and β1 to formally
assess these biases. As before, we can obtain a smooth estimate of the variance by using

OLS to fit the model |ε̂∗1ij | = θ
(0)
1 + θ

(1)
1 x̂i + ωij , where |ε̂∗1ij | is the absolute value of the

residuals ε̂∗1ij , from the linear regression model y1ij = α∗
1 + β∗

1 x̂i + ε∗1ij . Then, based on

the estimates α̂∗
1 and β̂∗

1 , the bias of the new method is estimated as

biasi = α̂∗
1 + x̂i

(
β̂∗
1 − 1

)
To visually assess the degree of bias, we obtain the “bias plot”, after which the

package is named, by graphing a scatterplot of y1ij and y2ij versus the BLUP for x̂i,
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along with the two regression lines, while adding a second scale on the right showing
the relationship between the estimated amount of bias and x̂i.

Taffé shows, by simulation, that this methodology performs well and that the es-
timates of the differential α1 and proportional β1 biases are reasonably unbiased and
consistent already for sample sizes of 100 persons, with 3 to 5 repeated measurements
per individual from the reference method and only 1 measurement from the new method.
However, to appropriately estimate the (heterogeneous) measurement error variances,
one should have 10 to 15 repeated measurements per individual from the reference
method and 1 or several measurements from the new method.

2.3 Recalibration of the new method

To remove the differential and proportional biases of the new method, we recalibrate it
by computing y∗1ij = (y1ij − α̂∗

1)/β̂
∗
1 . The “comparison plot” allows us to visualize the

recalibration procedure.

Now that y2ij and y∗1ij are on the same scale, we can compare the variances of the
measurement errors to determine which method is more precise. Because we would like
to compare y2ij with y∗1ij (and not with y1ij), we should recalculate a smooth estimate
of the measurement errors variance of y∗1ij by proceeding like before.

We can then compare the variances by making a scatterplot of the estimated stan-
dard deviations σ̂ε1(x̂i;θ1) and σ̂ε2(x̂i;θ2) versus x̂i, which we call the “precision plot”.
It is possible that after recalibration, the new method will turn out to be more precise
(locally or globally) than the reference standard.

3 The biasplot command

biasplot fits the measurement error model and provides estimates of the differential and
proportional biases. It also allows the computation of the extended version of Bland and
Altman’s LoA when the variances of measurement errors are possibly heteroskedastic.
We obtain the (extended) LoA, bias, precision, and comparison plots by specifying one
of the options: loa, bias, precision, or comp.

3.1 Syntax

The syntax for using biasplot is

biasplot
[
if
] [

in
]
, idvar(varname) ynew(varname) yref(varname)

[
loa

bias precision comp pdfs
]
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Note that you must choose at least one of the options loa, bias, precision, or comp
for the program to run and save the corresponding graphs to the current directory. Also,
the recalibrated values (y1 corr) of the new measurement method will be added to the
dataset after computing the bias plot.

3.2 Options

idvar(varname) specifies the variable identifying the individual. idvar() is required.

ynew(varname) specifies the new measurement method’s variable name. ynew() is
required.

yref(varname) specifies the reference standard method’s variable name. yref() is
required.

loa computes and graphs the (extended) LoA.

bias graphs the bias plot.

precision graphs the precision plot.

comp graphs the comparison plot.

pdfs saves the graphs in .pdf format (instead of Stata’s .gph format).

4 Examples

To illustrate the use of biasplot, we will consider three simulated datasets:

Simulated dataset 1

y1i = −4 + 1.2xi + ε1i ε1i|xi ∼ N
{
0, (1 + 0.1xi)

2
}

y2ij = xi + ε2ij ε2ij |xi ∼ N
{
0, (2 + 0.2xi)

2
}

xi ∼ Uniform[10−40]

where i = 1, . . . , 100 and the number of repeated measurements of individual i from the
reference standard was n1i = 1 and n2i ∼ Uniform[10−15].

Simulated dataset 2

y1i = −4 + 1.2xi + ε1i ε1i|xi ∼ N
{
0, (1 + 0.1xi)

2
}

y2ij = xi + ε2ij ε2ij |xi ∼ N
{
0, (2 + 0.2xi)

2
}

xi ∼ Uniform[10−40]

where i = 1, . . . , 100 and the number of repeated measurements of individual i from the
reference standard was n1i ∼ Uniform[1−5] and n2i ∼ Uniform[10−15].
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Simulated dataset 3

y1i = 3 + 0.9xi + ε1i ε1i|xi ∼ N
{
0, (2 + 0.06xi)

2
}

y2ij = xi + ε2ij ε2ij |xi ∼ N
{
0, (1 + 0.01xi)

2
}

xi ∼ Uniform[10−40]

where i = 1, . . . , 100 and the number of repeated measurements of individual i from the
reference standard was n1i ∼ Uniform[1−5] and n2i ∼ Uniform[10−15].

4.1 Dataset 1

In dataset 1, there are between 10 and 15 repeated measurements by the reference stan-
dard and only 1 by the new measurement method for each individual. The differential
and proportional biases are −4 and 1.2, respectively. The standard deviation of the mea-
surement errors is heteroskedastic for both measurement methods and increases with
the level of the underlying true latent trait. However, the dispersion of the reference
standard is twice that of the new measurement method.

. use sample1.dta, clear

. biasplot, idvar(id) ynew(y1) yref(y2) loa
(0 observations deleted)
Bias and Precision Plots
Variables - Please check -
id Variable: id
New Method Y Variable: y1
Reference Method Y Variable: y2
Running ...
Generating Bland and Altman LoA Plot
Bland and Altman LoA Plot saved to current working directory
Please wait ...
diff_bias=-3.211, 95%CI=[-5.1218891;-1.300695]
prop_bias=1.189, 95%CI=[1.096019;1.2812098]
Bias Plot Omitted
Comparison Plot Omitted
Precision Plot Omitted
End of Commands

. biasplot, idvar(id) ynew(y1) yref(y2) bias

(output omitted )

. biasplot, idvar(id) ynew(y1) yref(y2) comp

(output omitted )

. biasplot, idvar(id) ynew(y1) yref(y2) precision

(output omitted )
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Figure 1. (a) Bland and Altman’s LoA plot; (b) bias plot showing the amount of bias of
the new measurement method; (c) scatterplot illustrating that recalibration of the new
measurement method (that is, y1 corr) was effective; and (d) precision plot showing the
precision (that is, standard deviation of the measurement error) of each measurement
method.

The LoA plot indicates a slight positive bias of the new measurement method for
low values of the estimated latent trait level (that is, BLUP of x) and a negative bias
for high values. On the contrary, the bias plot illustrates that the bias is negative for
low values and positive for high values. The estimated differential bias is −3.21 95%
CI = [−5.36,−1.06], and the estimated proportional bias is 1.19 95% CI = [1.10, 1.28].
These values are close, and the CIs cover the true values. The precision plot shows
that after recalibration, the new measurement method is about twice as precise as the
reference standard and that both measurement methods are more precise for lower
values than for higher values of the true latent trait. One can see on the comparison
plot that recalibration of the new measurement method was effective in removing bias.
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4.2 Dataset 2

Dataset 2 is similar to dataset 1, except there are between one to five repeated mea-
surements (instead of just one) by the new measurement method for each individual:

. use sample2.dta, clear

. biasplot, idvar(id) ynew(y1) yref(y2) loa
(0 observations deleted)
Bias and Precision Plots
Variables - Please check -
id Variable: id
New Method Y Variable: y1
Reference Method Y Variable: y2
Running ...
Generating Bland and Altman LoA Plot
Bland and Altman LoA Plot saved to current working directory
Please wait ...
diff_bias=-3.527, 95%CI=[-5.4047941;-1.6485342]
prop_bias=1.181, 95%CI=[1.1038746;1.2575773]
Bias Plot Omitted
Comparison Plot Omitted
Precision Plot Omitted
End of Commands

. biasplot, idvar(id) ynew(y1) yref(y2) bias

(output omitted )

. biasplot, idvar(id) ynew(y1) yref(y2) comp

(output omitted )

. biasplot, idvar(id) ynew(y1) yref(y2) precision

(output omitted )



P. Taffé, M. Peng, V. Stagg, and T. Williamson 217

(a) (b)

−
40

−
20

0
20

40
di

ffe
re

nc
e:

 y
1−

y2

0 20 40 60
average: (y1+y2)/2

y1−y2 = y1−y2 regression line
upper LoA lower LoA

LoA

−
2

0
2

4
bi

as

0
20

40
60

80
y1

 a
nd

 y
2

10 20 30 40
BLUP of x

y2 Reference standard: y2
y1 New method: y1
Bias

differential bias = −3.527; proportional bias = 1.181
Bias plot

(c) (d)

0
20

40
60

80
m

ea
su

re
m

en
t m

et
ho

d

10 20 30 40
BLUP of x

y2 Reference standard: y2
y1 New method: y1
y1_corr Recalibrated new method

Comparison of the methods

2
4

6
8

10
st

an
da

rd
 d

ev
ia

tio
n 

of
 th

e 
m

ea
su

re
m

en
t e

rr
or

s

10 20 30 40
BLUP of x

Reference standard: y2
Recalibrated new method: y1

Precision plot (after recalibration)

Figure 2. (a) Bland and Altman’s LoA plot; (b) bias plot showing the amount of bias
of the new measurement method; (c) scatterplot illustrating that the recalibration of
the new measurement method (that is, y1 corr) was effective; and (d) precision plot
showing the precision (that is, standard deviation of the measurement error) of each
measurement method.

Consistently with the results for dataset 1, the LoA plot indicates a slight positive
bias of the new measurement method for low values of the estimated latent trait level
(that is, BLUP of x) and a negative bias for high values. In contrast, the bias plot
(correctly) illustrates that the bias is negative for low values and positive for high
values. The estimated differential bias is −3.53 95% CI = [−5.13,−1.92], and the
estimated proportional bias is 1.18 95% CI = [1.12, 1.24]. Note that these CIs are, as
expected, more narrow than when we have only one measurement by the new method
(that is, dataset 1). The conclusions for the precision and comparison plots are the
same as for dataset 1.

4.3 Dataset 3

In dataset 3, there are between 10 to 15 repeated measurements by the reference stan-
dard and 1 to 5 repeated measurements by the new measurement method for each
individual. The differential bias amounts to 3, and the proportional bias amounts
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to 0.9. The standard deviation of the measurement errors is heteroskedastic for both
measurement methods and increases with the level of the underlying true latent trait.
However, the dispersion of the reference standard is much lower than that of the new
measurement method.

. use sample3.dta, clear

. biasplot, idvar(id) ynew(y1) yref(y2) loa
(0 observations deleted)
Bias and Precision Plots
Variables - Please check -
id Variable: id
New Method Y Variable: y1
Reference Method Y Variable: y2
Running ...
Generating Bland and Altman LoA Plot
Bland and Altman LoA Plot saved to current working directory
Please wait ...
diff_bias=2.714, 95%CI=[1.3859422;4.0417949]
prop_bias=.902, 95%CI=[.84553455;.95922297]
Bias Plot Omitted
Comparison Plot Omitted
Precision Plot Omitted
End of Commands

. biasplot, idvar(id) ynew(y1) yref(y2) bias

(output omitted )

. biasplot, idvar(id) ynew(y1) yref(y2) comp

(output omitted )

. biasplot, idvar(id) ynew(y1) yref(y2) precision

(output omitted )
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Figure 3. (a) Bland and Altman’s LoA plot; (b) bias plot showing the amount of bias
of the new measurement method; (c) scatterplot illustrating that the recalibration of
the new measurement method (that is, y1 corr) was effective; and (d) precision plot
showing the precision (that is, standard deviation of the measurement error) of each
measurement method.

The LoA plot does not indicate any bias from the new measurement method, whereas
the bias plot illustrates that the bias is positive for low values and negative for high
values. The estimated differential bias is 2.71 95% CI = [1.37, 4.06], and the estimated
proportional bias is 0.9 95% CI = [0.85, 0.96]. The precision plot shows that after
recalibration, the new measurement method is clearly less precise than the reference
standard. Note that the dispersion of measurement errors of the reference standard
is almost constant throughout the whole range of the latent trait, whereas that of
the new method is, in comparison, sharply increasing. Again, the recalibration of the
new measurement method was very effective in removing bias, as illustrated by the
comparison plot.

5 Discussion

Using simulated data where the relationship between the true latent trait and the two
measurement methods is known, we have illustrated that biasplot was effective in
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removing existing bias of the new measurement method and in assessing the precision
of the two measurement methods after recalibration. We have also illustrated that
there are settings where Bland and Altman’s LoA methodology is misleading, whereas
biasplot allows one to properly identify, quantify, and correct for any biases.

biasplot is widely applicable when one has repeated measurements from the ref-
erence standard or possibly as few as one measurement per individual from the new
method to be evaluated. Also, biasplot is useful when measurement errors are either
homoskedastic or heteroskedastic. When one’s focus is mainly on identifying and cor-
recting for the bias, as few as three to five repeated measurements from the reference
standard and only one from the new measurement method may be large enough to
provide good point estimates of the proportional and differential biases and CIs with
appropriate coverage rates. However, when one compares the precision of the two mea-
surement methods, it is better to have at least 10 to 15 repeated measurements by the
reference standard (and possibly only 1 from the new measurement method) to appropri-
ately estimate the (heteroskedastic) standard deviations of the 2 measurement methods.
Actually, it is important to have repeated measurements from the reference standard
because our methodology relies essentially on the BLUP of xi, whereas repeated mea-
surements from the new method will increase precision of the estimated heteroskedastic
relationship.

In summary, we have implemented in biasplot a new estimation procedure to as-
sess bias and precision of a quantitative measurement method relative to the refer-
ence standard, which performs very well in many settings, particularly when several
measurements from the reference standard and possibly only one from the new mea-
surement method are available. This method enables measurement errors to be either
homoskedastic or heteroskedastic and provides bias, precision, and comparison plots to
allow the investigator to visually and clinically appraise the performance of the new
method. These plots do not have the shortcomings of Bland and Altman’s LoA and are
still in the spirit of the original article.
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