
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

The Stata Journal (2017)
17, Number 1, pp. 3–38

Creating HTML or Markdown documents from
within Stata using webdoc

Ben Jann
University of Bern
Bern, Switzerland

ben.jann@soz.unibe.ch

Abstract. In this article, I discuss the use of webdoc for creating HTML or
Markdown documents from within Stata. The webdoc command provides a way
to embed HTML or Markdown code directly in a do-file and automate the inte-
gration of results from Stata in the final document. The command can be used,
for example, to create a webpage documenting your data analysis, including all
Stata output and graphs. More generally, the command can be used to create and
maintain a website that contains results computed by Stata.

Keywords: pr0065, webdoc, HTML, Markdown, weaving, Stata output, Stata log,
reproducible research

1 Introduction

webdoc is a command to process a do-file that contains Stata commands as well as
pieces of HTML or Markdown code. A primary use of webdoc is to produce an HTML

document that displays literal Stata output as it is shown in Stata’s Results window.
However, webdoc can be seen as a general tool for generating HTML documents that
combine text sections and results from statistical analysis.

Several other user commands are available to support the production of HTML doc-
uments in Stata. For example, you can

• translate Stata output or Stata Markup and Control Language files to HTML

format using commands such as log2html by Baum, Cox, and Rising (2001) or
hlp2html by Jeanty (2010);

• create HTML documents from within Stata with tools such as the ht package by
Quintó et al. (2012) or htmlutil by Newson (2015);

• export tables or matrices into an HTML file with commands such as listtex by
Newson (2001), matprint by Bruun (2016b), tabout by Watson (2004), or esttab
by Jann (2007);

• and weave commands and HTML or Markdown code in a single do-file using tools
such as log2markup by Bruun (2016a), weaver and markdoc by Haghish (2014a,b),
or weave by Rodŕıguez (2015).

c© 2017 StataCorp LLC pr0065

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X1701700102&domain=pdf&date_stamp=2017-03-01

4 Creating HTML or Markdown documents using webdoc

The webdoc command covers much of the functionality of these packages. Like
log2html, it converts Stata output to HTML format (relying, in part, on the undocu-
mented log html command); like the ht package or htmlutil command, it allows you
to work on an HTML file from within Stata; like log2markup or markdoc, it allows you to
integrate HTML or Markdown code in a do-file. Furthermore, although webdoc does not
provide specific tools for producing tables, results from special-purpose programs such
as listtex can easily be integrated. A major difference from other weaving programs,
such as log2markup or markdoc, is that webdoc preprocesses the do-file. This provides
some advantages, such as the ability to update the HTML output document without
having to rerun all Stata commands. However, it also means that webdoc cannot be
used interactively.

Below I will discuss the features of webdoc and provide examples of its usage (for
further examples, see http://repec.sowi.unibe.ch/stata/webdoc/). webdoc has a similar
architecture, functionality, and user interface as texdoc, a command for producing
LATEX documents (Jann 2016). If you are familiar with texdoc, you will find webdoc

easy to use. Additionally, knowledge of HTML and CSS will be beneficial. A good
source for detailed information on HTML and CSS is http://www.w3schools.com/. For
information on Markdown, consult http://daringfireball.net/projects/markdown/.

2 The webdoc command

2.1 Processing a do-file by webdoc do

The basic procedure is to write a do-file including Stata commands and sections of HTML

code, then process the do-file by typing webdoc do. The command will create the HTML

source file, which can then be viewed in a browser. One can also use Markdown code
instead of HTML. In this case, a Markdown converter has to process the source document
before it can be viewed in the browser. The syntax of webdoc do is

webdoc do filename
[
arguments

] [
, options

]
where filename is the name of the do-file to be processed (as usual, include the file name
in double quotes if it contains spaces) and arguments are optional arguments passed
through to the do-file (as local macros 1, 2, 3, and so on; see [R] do). options are the
following:[
no
]
init

[
(docname)

]
initializes the output document. If the processed do-file con-

tains an initialization command (that is, if the do-file contains webdoc init doc-
name; see section 2.2) or if the output document is already open (that is, in a nested
application of webdoc do), the default for webdoc do is not to initialize the output
document. Otherwise, webdoc do will automatically initialize the output document
in the folder of the do-file using basename.html (or, if the md option is specified,
basename.md) as the name for the document, where basename is the name of the
do-file without a suffix. Use the init option to override these defaults as follows:

B. Jann 5

noinit will deactivate automatic initialization; init will enforce automatic initial-
ization; init(docname) will enforce initialization using docname as the name for
the document (docname may include an absolute or relative path; the base folder is
the current working directory or the folder of the do-file, depending on whether the
cd option is specified).

init options are options to be passed through to webdoc init. See section 2.2 for details
on available options.

nostop allows continuing execution even if an error occurs. Use the nostop option if
you want to make sure webdoc do runs the do-file all the way to the end, even if
some of the commands return an error. Usage of this option is not recommended.
Use the nostop option with webdoc stlog using if you want to log output from a
command that returns an error (see section 2.5).

cd changes the working directory to the directory of the specified do-file for processing
the do-file and restores the current working directory after termination. The default
is not to change the working directory.

webdoc do can be nested. That is, webdoc do can be applied in a do-file that is pro-
cessed by webdoc do. Options specified with a nested call to webdoc do will be applied
only to the nested do-file. This is also true for applications of webdoc init or webdoc
close within the nested do-file: after you terminate a nested do-file, all preexisting
webdoc settings will be restored. For example, if you use the init() option or webdoc
init to change the output document in the nested do-file, webdoc closes the new out-
put document and switches back to the previous one when exiting the nested do-file
(similarly, if you use webdoc close in the nested do-file, the document will be reopened
after termination).

2.2 Initializing the output document

Within a do-file, use webdoc init to initialize the HTML or Markdown output document
(alternatively, if the do-file does not contain an initialization command, webdoc do will
automatically call webdoc init; see the init() option in section 2.1). The syntax of
webdoc init is

webdoc init
[
docname

] [
, init options

]
docname is the name of the HTML or Markdown target file, possibly including a path.
You may also apply webdoc init without docname in later parts of the do-file to change
settings. init options are the following:

replace allows you to overwrite an existing output document.

append appends results to an existing output document.

md specifies that .md instead of .html be used as the default suffix for the output
document.

6 Creating HTML or Markdown documents using webdoc

header
[
(header opts)

]
causes an HTML header (and a footer) to be added to the output

document. header opts are as follows.

width(width) sets the maximum width of the HTML page, where width is a width
specification in CSS units (see http://www.w3schools.com/cssref/css units.asp),
such as 800px or 50em. If you use the bstheme() option, an alternative ap-
proach is to include the body of your page in a container. For example, type
<div class="container-fluid" style="max-width:800px"> on the first line
and </div> on the last line.

nofooter omits the footer. This is useful if you want to append more material to
the same document later.

title(str) provides a title for the metadata of the page. The default is to use the
name of the document as the title.

author(str), date(str), description(str), and keywords(str) provide author in-
formation, a date, a description, and a (comma-separated) list of keywords to be
included in the metadata of the page.

language(str) specifies the document’s language. str is an HTML language spec-
ification (see https://www.w3.org/International/articles/language-tags/). The
default is language(en).

charset(str) specifies the document’s character encoding. str is an HTML charset
specification (see http://www.w3schools.com/html/html charset.asp). The de-
fault depends on the Stata version. If you are using Stata 13 or older, the default
is charset(iso-8859-1) (Windows and Unix) or charset(mac) (Mac OS X). If
you are using Stata 14 or newer, the default is charset(utf-8).

bstheme
[
(spec)

]
puts a Bootstrap CSS (see http://getbootstrap.com) in the header.

spec is[
theme

] [
, jsript selfcontained

]
where theme is equal to default (for the default Bootstrap CSS) or equal to the
name (in lowercase letters) of a Bootswatch theme (such as cerulean or cosmo;
see http://bootswatch.com or https://www.bootstrapcdn.com/bootswatch/ for
the list of available themes). If theme is omitted, the default Bootstrap CSS is
used. In addition to the Bootstrap CSS, webdoc will append a few additional CSS

definitions to sightly modify the display of images and code. Furthermore, if you
use the bstheme() option, you should consider specifying a maximum page width
using the width() option or including the body of your page in a container, for
example, typing <div class="container-fluid" style="max-width:800px">

on the first line and </div> on the last line. For more information on Bootstrap,
see http://getbootstrap.com.

By default, webdoc does not load Bootstrap’s JavaScript plugins. Specify the
jscript suboption if you want to use Bootstrap elements that require JavaScript.

B. Jann 7

webdoc will then add code at the end of the document to load the relevant plugins
(also see http://getbootstrap.com/getting-started/#template).

Unless the selfcontained suboption is specified, webdoc includes the Boot-
strap CSS and JavaScript plugins using links pointing to the minified files at
https://www.bootstrapcdn.com. Specify selfcontained to copy the nonmini-
fied versions of the files into your document (this will increase the file size of your
document by about 150 KB or, if jscript is specified, by about 500 KB). For
larger projects, it may make sense to provide a copy of the CSS and JavaScript
files at your website and include them in your HTML pages using local links.

If the bstheme option is omitted, a minimum set of CSS definitions resulting in
a plain look will be included in the header of the document.

include(filename) adds the contents of filename to the HTML header. The contents
of filename will be included within the <head> tag after the definitions requested
by the bstheme() option.

stscheme(stscheme options) specifies the look of the Stata output sections. This
has an effect on sections containing Stata output only, not on sections containing
Stata code. That is, sections created by the cmdlog option (see below) will not
be affected by stscheme(). Note that, currently, webdoc does not tag errors
and links in the Stata logs, so these elements will appear as regular output.
stscheme options are the following:

standard, studio, classic, desert, mountain, ocean, or simple selects one
of Stata’s built-in color schemes (see the preferences dialog of Stata’s Results
window; you can right-click on the Results window to open the dialog box).

bg(color), fg(color), rfg(color), cfg(color), rbf, and cbf affect the appear-
ances of the different elements in the Stata output, where color is a CSS color
specification (see http://www.w3schools.com/colors/default.asp). These options
override the corresponding settings from the built-in schemes. bg() specifies the
background color, fg() the default foreground color (that is, the color of stan-
dard output), rfg() the color of results (typically the numbers in the output),
and cfg() the color of input (the commands). Furthermore, use rbf and cbf to
request bold font for results and input/commands, respectively.

lcom italicizes and shades comments in the Stata output.[
no
]
logall specifies whether to include the output of all Stata commands in the output

document. The default is nologall; that is, include the output selected only by
webdoc stlog (see section 2.5). Specify logall if you want to log all output. When
logall is specified, webdoc do will insert appropriate webdoc stlog and webdoc

stlog close commands automatically at each /*** ***/ block and at each webdoc

command (but not at webdoc stlog oom and webdoc stlog cnp). Empty lines (or
lines that contain white space only) at the beginning and end of each command
section will be skipped.

stlog options sets the default behavior of webdoc stlog. See section 2.5 for details.

8 Creating HTML or Markdown documents using webdoc

gropts(graph options) specifies default options to be passed through to webdoc graph.
See section 2.6 for details. Updating gropts() in repeated calls to webdoc init will
replace the option as a whole.[

no
]
logdir

[
(path)

]
specifies where to store the Stata output log files. The default is

nologdir, in which case the log files are stored in the same directory as the output
document, using the name of the output document as a prefix for the names of
the log files; also see the prefix() option below. The logdir option without an
argument causes the log files to be stored in a subdirectory with the same name as
the output document. The logdir(path) option causes the log files to be stored
in subdirectory path, where path is a relative path starting from the folder of the
output document.

grdir(path) specifies an alternative subdirectory to be used by webdoc graph for stor-
ing the graph files, where path is a relative path starting from the folder of the output
document. The default is to store the graphs in the same directory as the log files.

dodir(path) specifies an alternative subdirectory to be used by webdoc stlog for stor-
ing the do-files requested by the dosave option (see below), where path is a relative
path starting from the folder of the output document. The default is to store the
do-files in the same directory as the log files.[

no
]
prefix

[
(prefix)

]
specifies the prefix for the automatic names of the Stata output

log files and graphs. The names are constructed as prefix#, where # is a counter
(1, 2, 3, etc.). The noprefix option omits the prefix; the prefix option without an
argument causes basename to be used as the prefix, where basename is the name
of the output document without a path; the prefix(prefix) option causes prefix to
be used as the prefix. The default prefix is empty if logdir or logdir(path) is
specified; otherwise, the default prefix is equal to basename (note that reinitializing
logdir may reset the prefix). Furthermore, the prefix will be ignored if a custom
name is provided when calling webdoc stlog (see section 2.5). The suffix of the
physical log files on disk is always .log.[

no
]
stpath

[
(path)

]
specifies how the path for linking files in the output document is

to be constructed (stpath() has no effect on where the log files and graphs are stored
in the file system). If stpath is specified without an argument, then the path of the
output document (to be precise, the path specified in docname when initializing the
output document) is added to the include-path. Alternatively, specify stpath(path)
to add a custom path. The default is nostpath.

2.3 Including HTML or Markdown code

After initializing the output document, use

/*** text ***/

B. Jann 9

to include a section of HTML or Markdown code. text can contain any text, including
multiple lines and paragraphs. The opening tag of an HTML or a Markdown section,
/***, must be at the beginning of a line (possibly preceded by white space) and must
be followed by at least one blank or a line break; the closing tag, ***/, must be at
the end of a line (possibly followed by white space) and must also be preceded by at
least one blank or a line break. The provided text will be passed through to the output
document as is, that is, without expanding Stata macros (although see section 3.10).
However, you can use the webdoc substitute command to define a set of substitutions
that will be applied to the text. The syntax of webdoc substitute is

webdoc substitute
[
from to

[
from to ...

]] [
, add

]
The substitutions defined by webdoc substitute will be applied to all subsequent /***
***/ blocks until a new set of substitutions is defined or until the substitutions are
turned off by calling webdoc substitute without arguments. To extend an existing set
of substitution definitions, specify webdoc substitute with the add option.

A single line of HTML or Markdown code can also be written to the document using
the following:

webdoc write textline

or

webdoc put textline

Stata macros in textline will be expanded before writing the line to the output document.
The difference between webdoc write and webdoc put is that webdoc put includes a
new-line character at the end of the line, whereas webdoc write omits the new-line
character so more text can be added to the same line. Furthermore, to copy the contents
of an external file to the output document, type

webdoc append filename
[
, substitute(from to

[
from to . . .

]
) drop(numlist)

]
where filename is the name (and path) of the file to be added. The contents of file-
name will be copied into the output document as is, at the position where webdoc

append is specified. If substitute() is specified, all occurrences of from will be re-
placed by to. Include from and to in double quotes if they contain spaces. For example,
to replace “@title” by “My Title” and “@author” by “My Name”, you could type
substitute(@title "My Title" @author "My Name"). The drop() option causes
the specified lines to be omitted when copying the file.

10 Creating HTML or Markdown documents using webdoc

2.4 Adding a table of contents

An automatic table of contents (TOC) from the headings in the document can be gen-
erated by webdoc toc. The syntax of webdoc toc is

webdoc toc
[
levels

[
offset

]] [
, toc options

]
webdoc toc collects the HTML headings found in subsequent /*** ***/ blocks and
constructs a corresponding TOC (using lists). The TOC will be inserted into the
output document at the position where webdoc toc appears. The levels argument
specifies the desired number of levels to be considered. For example, webdoc toc 3 will
create a TOC with three levels from <h1> to <h3>. Furthermore, use the offset argument
to shift the highest level to be taken into account. For example, webdoc toc 3 1 will
use <h2>, <h3>, and <h4>; webdoc toc 2 4 will use <h5> and <h6>. offset must be
an integer between 0 and 5; the default is 0. levels must be an integer between 1 and
6− offset ; the default is 3. toc options are the following:

numbered specifies that section numbers be added to the headings and entries in the
TOC. The numbers added to the headings will be tagged by <span class=

"heading-secnum">; the numbers in the TOC will be tagged by <span class=

"toc-secnum">.

md specifies that Markdown headings be taken into account. By default, HTML headings
only, that is, lines starting with <h1> to <h6>, are collected. If md is specified, lines
starting with # to ###### are also treated as headings. In any case, a heading will
be detected only if it starts at the beginning of the line (save white space in the case
of HTML tags). When webdoc constructs an entry in the TOC, only the text that
follows on the same line will be taken into account.

2.5 Including Stata output

If the logall option is specified with webdoc do or webdoc init, output from all Stata
commands will automatically be added to the HTML document. Alternatively, select
the output to be included using the webdoc stlog command. The syntax of webdoc
stlog is

webdoc stlog
[
name

] [
, stlog options

]
commands ...

webdoc stlog close

where webdoc stlog opens the log, commands are the Stata commands to be logged,
and webdoc stlog close closes the log. name is the name to be used for the log file
(possibly including a relative path). If name is omitted, an automatic name is used (see
the prefix() option in section 2.2 for details). Alternatively, you may type

B. Jann 11

webdoc stlog
[
name

]
using dofile

[
, stlog options

]
where dofile is the name (and path) of an external do-file that contains the Stata com-
mands to be logged. Furthermore, to include just the output of a single command
(without input), you can type

webdoc stlog
[
name

] [
, stlog options

]
: command

(note that webdoc stlog close is not needed after the using form or the colon form
of webdoc stlog). stlog options are the following:

linesize(#) sets the line width (number of characters) to be used in the output log.
must be an integer between 40 and 255. The default is to use the current set

linesize setting; see [R] log.[
no
]
do specifies whether to run the Stata commands. The default is do; that is, run

the commands. Type nodo to skip the commands and not write a new log file.
nodo is useful if the Stata commands have been run before and did not change. For
example, specify nodo if the Stata output is complete and you want to work on the
text without having to rerun the Stata commands. Be aware that the automatic
names of Stata output sections change if the order of Stata output sections changes.
That is, nodo should be used only if the order did not change or if a fixed name was
assigned to the Stata output section. An exception is if nodo is used together with
the cmdlog option (see below). In this case, the log file will always be re-created
(because running the commands is not necessary to re-create the log file).[

no
]
log specifies whether the Stata output is to be logged and included in the output

document. The default is log; that is, log and include the Stata output. If you
type nolog, the commands will be run without logging. nolog does not appear to
be particularly useful, because you could simply include the corresponding Stata
commands in the do-file without using webdoc stlog. However, nolog may be
helpful in combination with the nodo option. It provides a way to include unlogged
commands in the do-file that will not be executed if nodo is specified. Furthermore,
nolog can be used to deselect output if the logall option has been specified.[

no
]
cmdlog specifies whether to print a plain copy of the Stata code instead of us-

ing a Stata output log. The default is nocmdlog; that is, include a Stata output
log. If you type cmdlog, only a copy of the commands without output will be
included (note that the commands will still be executed; add the nodo option if
you want to skip running the commands). cmdlog is similar to nooutput (see
below). A difference is that nooutput prints “. ” at the beginning of each com-
mand, whereas cmdlog displays a plain copy of the commands. Furthermore, cmdlog
can be combined with nodo to include a copy of the commands without executing
the commands. Tag <pre class="stcmd"><code> will be used to start a cmdlog

section in the output document. Other Stata output sections will be started by
<pre class="stlog"><samp>. cmdlog is not allowed with the colon form of webdoc
stlog.

12 Creating HTML or Markdown documents using webdoc[
no
]
dosave specifies whether to store a copy of the commands in an external do-file.

The default is nodosave; that is, do not store a do-file. The name of the Stata
output section is used as the name for the do-file (with suffix .do). The do-files
will be stored in the same location as the log files unless an alternative location is
specified using the dodir() option. All webdoc commands will be stripped from the
do-file.[

no
]
output specifies whether to suppress command output in the log. The default is

output; that is, display the output. If nooutput is specified, set output inform is
applied before running the commands and, after closing the log, set output proc

is applied to turn output back on (see [P] quietly). nooutput has no effect if cmdlog
is specified. Furthermore, nooutput has no effect if specified with the using form or
the colon form of webdoc stlog.[

no
]
matastrip specifies whether to strip the Mata opening and ending commands from

the Stata output. The default is nomatastrip; that is, retain the Mata opening and
ending commands. If you type matastrip, the mata or mata: command invoking
Mata and the subsequent end command exiting Mata will be removed from the log.
matastrip has an effect only if the Mata opening command is the first command in
the output section.[

no
]
cmdstrip specifies whether to strip command lines (input) from the Stata output.

The default is nocmdstrip; that is, retain the command lines. Specify cmdstrip to
delete the command lines. Specifically, all lines starting with “. ” (or “: ” in Mata)
and subsequent lines starting with “> ” will be removed. cmdstrip has no effect if
cmdlog is specified.[

no
]
lbstrip specifies whether to strip line-break comments from command lines in

the Stata output. The default is nolbstrip; that is, do not strip the line-break
comments. Specify lbstrip to delete the line-break comments. Specifically, “ ///”
at the end of lines starting with “. ” or of subsequent lines starting with “> ” will
be removed.[

no
]
gtstrip specifies whether to strip continuation symbols from command lines in

the Stata output. The default is nogtstrip; that is, do not strip the continuation
symbols. Specify gtstrip to delete the continuation symbols. Specifically, “> ” at
the beginning of command lines that were broken by a line-break comment will be
replaced by white space. gtstrip has no effect if cmdlog is specified.[

no
]
ltrim specifies whether to remove indentation of commands (that is, whether to

remove white space on the left of commands) before running the commands and
creating the log. The default is ltrim; that is, remove indentation. The amount of
white space to be removed is determined by the minimum indentation in the block
of commands. ltrim has no effect on commands called from an external do-file by
webdoc stlog using.

B. Jann 13

mark(strlist) adds the <mark> tag to all occurrences of the specified strings, where strlist
is

string
[
string ...

]
Enclose string in double quotes if it contains blanks; use compound double quotes if
it contains double quotes.

tag(matchlist) applies custom tags to all occurrences of the specified strings, where
matchlist is

strlist = begin end
[
strlist = begin end ...

]
and strlist is

string
[
string ...

]
strlist specifies the strings to be tagged, begin specifies the start tag, and end specifies
the end tag. Enclose an element in double quotes if it contains blanks; use compound
double quotes if the element contains double quotes.[

no
]
plain specifies whether to omit markup in the log file. The default is noplain;

that is, annotate the log file with HTML tags. In particular, input (commands) will
be tagged using , results will be tagged using <span class=

"stres">, and comments will be tagged using (if cmdlog
is specified, only comments will be tagged). Specify plain to omit the HTML tags.[

no
]
raw specifies whether to omit markup in the log file and retain special charac-

ters. The default is noraw; that is, annotate the log file with HTML tags (see the
plain option above) and replace characters <, >, and & by their HTML equivalents
<, >, and &. Specify raw to omit the HTML tags and retain the special
characters.[

no
]
custom specifies whether to use custom code to include the log file in the output

document. The default is nocustom; that is, use standard code to include the log.
Specify custom if you want to skip the standard code, and be careful including the
log yourself.[

no
]
keep specifies whether the external log file will be kept. The default is keep; that

is, keep the log file so nodo can be applied later. Type nokeep if you want to erase
the external log file.[

no
]
certify specifies whether to compare the current results with the previous ver-

sion of the log file (if a previous version exists). The default is nocertify. Specify
certify if you want to confirm that the output did not change. In case of a dif-
ference, webdoc will stop execution and display an error message. certify has no
effect if nolog or cmdlog is specified or if a help file is processed (see the sthlp

option below).[
no
]
sthlp

[
(subst)

]
specifies whether to treat the provided file as a Stata help file.

This is allowed only with webdoc stlog using. By default, files with an .hlp or
.sthlp suffix are treated as help files; all other files are treated as do-files. Type

14 Creating HTML or Markdown documents using webdoc

nosthlp or sthlp to override these defaults. Files treated as help files are translated
by undocumented log webhtml (or, if plain or raw is specified, by translate with
the smcl2log translator) and are not submitted to Stata for execution. Unless plain
or raw is specified, text markup and help links are preserved. Internal help links
(that is, links pointing to the processed help file) will be converted to appropriate
internal links in the output document; other help links will be converted to links
pointing to the corresponding help file at http://www.stata.com/. In addition, you
may provide custom substitutions in sthlp(subst), where subst is a space-separated
list (from to

[
from to . . .

]
). The custom substitutions will be applied before con-

verting the internal links and the stata.com links (unless plain or raw is specified,
in which case no substitutions will be applied). The help links written by log

webhtml are constructed as . Hence, you could, for ex-
ample, type sthlp(/help.cgi?mycommand mycommand.html) to convert the help
links for mycommand to links pointing to the local page mycommand.html.

The nolog, cmdlog, and dosave options are not allowed in help-file mode. Fur-
thermore, contents options such as nooutput, cmdstrip, or matastrip will have no
effect. However, you may use nodo to prevent reprocessing the help file or custom
to use custom-inclusion code. By default, the included help file will be wrapped by
a <pre class="sthlp"> tag.

nostop allows continuing execution even if an error occurs. Use the nostop option if
you want to log output from a command that returns an error. The nostop option
is allowed only with webdoc stlog using.

Furthermore, among the commands to be logged, you can use

webdoc stlog oom command

to suppress the output of a specific command and display an “output omitted” message
instead, or you can type

webdoc stlog quietly command

to suppress the output of a command without inserting an “output omitted” message,
and you can type

webdoc stlog cnp

to insert a “continued on the next page” message and a page break (page breaks are
ignored in the screen display of an HTML page, but they affect the print version of the
page). The “output omitted” message is produced by

(output omitted)

B. Jann 15

and the page break is produced by

(continued on next
page)

The class attribute is set so you can use stylesheets to affect the appearance of these
messages. For example, including

<style type="text/css">
.stoom, .stcnp { font-style: italic; }
@media screen { .stcnp { display: none; } }

</style>

in the header of the output document will use italics for the messages and suppress the
“continued on next page” message in screen display (where page breaks have no effect).

Within or after a Stata output section, you can use the webdoc local command
to define local macros that will be backed up on disk. This is useful if you want to
include specific results in your text and want to ensure that the results will be available
in later runs when suppressing the Stata commands using the nodo option. The syntax
of webdoc local is

webdoc local name definition

where possible definitions follow the same syntax as Stata’s local command; see
[P] macro. The locals will be backed up in a library that has the same name as
the Stata output section (using file suffix .stloc). Each output section has its own
library, so the names of the locals can be reused between sections.

The defined locals will be expanded in subsequent /*** ***/ blocks up until the
next webdoc stlog command. Alternatively, you can write the locals to your document
using webdoc put or webdoc write. See the example in section 3.10 below.

2.6 Including graphs

webdoc graph exports the current graph and includes the appropriate code in the output
document to display the graph. webdoc graph can be specified within a webdoc stlog

section or directly after webdoc stlog close. If webdoc graph is specified within a
webdoc stlog section, the graph is included in the output document before the Stata
output; if webdoc graph is specified after webdoc stlog close, the graph is included
after the Stata output. Furthermore, if webdoc graph is used outside a webdoc stlog

section while logall is on, the graph will be placed at the position in the output where
the webdoc graph command occurs. In general, if nodo is on, no graph will be exported,
and only the include code will be written to the output document. The syntax of webdoc
graph is

webdoc graph
[
name

] [
, graph options

]

16 Creating HTML or Markdown documents using webdoc

name specifies the name to be used for the graph. If name is omitted, the name of the
webdoc stlog section is used to name the graph (possibly suffixed by a counter if the
webdoc stlog section contains more than one webdoc graph command). graph options
are the following:

as(fileformats) sets the output formats. The default is as(png). See [G-2] graph ex-
port for available formats. A further, currently undocumented format available since
Stata 14 is as(svg) (scalable vector graphics). Multiple formats may be specified
as in, for example, as(png pdf), in which case webdoc graph will create multiple
graph files. The first format will be used for the image in the output document.

name(name) specifies the name of the Graph window to be exported. The default is to
export the topmost graph.

width(#) specifies the physical width of the graph in pixels. The default is width(500)
unless height() is specified. If height() is specified, the appropriate width is
determined from the graph’s aspect ratio. width() has an effect only if the output
format is .png or .tiff.

height(#) specifies the physical height of the graph (in pixels). The default height is
determined from the graph’s aspect ratio. height() has an effect only if the output
format is .png or .tiff.

override options modifies how the graph is converted. See [G-2] graph export for
details.

alt(string) provides an alternative text for the image to be added to the tag
using the “alt” attribute. The default is to use the name of the graph as alternative
text. The alt() option has no effect if embedding an SVG using the hardcode

option.

title(string) provides a “tooltip” title for the image to be added to the tag
using the “title” attribute.

attributes(args) adds further attribute definitions to the tag. For example, to
set the display width of the graph to 50%, type attributes(width="50%").[

no
]
link

[
(fileformat)

]
specifies whether to add a link to the image pointing to the

graph file. Clicking on the image in the browser will then open the graph file. The
default is link; that is, add a link, unless hardcode is specified (see below), in
which case nolink is the default. The fileformat argument may be used to select the
file for the link if multiple output formats have been requested by the as() option.
For example, specifying link(pdf) together with as(svg pdf) will display the SVG

image and use the PDF for the link. The default is to use the first format for both
the image and the link.

B. Jann 17[
no
]
figure

[
(id)

]
specifies whether to enclose the image in a <figure> environment.

The default is figure; that is, use the figure tag. Type nofigure to omit the figure
tag. To add a custom ID to the figure tag, type figure(id). If id is omitted, webdoc
will add an automatic ID (constructed as fig-name, where name is the base name
of the graph).

caption(string) provides a caption for the figure using the <figcaption> tag.

cabove or cbelow specifies whether the caption is printed above or below the figure.
Only one of cabove and cbelow is allowed. cbelow is the default.[

no
]
hardcode specifies whether to embed the graph source in the output document.

This is supported only for .png and .svg. For .png, the graph file will be embedded
using Base64 encoding. For .svg, the SVG code will be copied into the output
document. The default is nohardcode; that is, include the graph using a link to the
external graph file.[

no
]
keep specifies whether the external graph file (and its Base64 variant) will be kept.

This is relevant only if hardcode has been specified. The default is keep; that is,
keep the graph files so nodo can be applied later. Type nokeep if you want to erase
the external graph files.[

no
]
custom specifies whether to use custom code to include the graph in the output

document. The default is nocustom, in which case webdoc graph writes code to
the output document to include the graph. Specify custom if you want to skip the
standard code, and be careful including the graph yourself.

2.7 Changing the HTML settings for Stata output and graphs

Parts of the HTML code written by webdoc can be customized by the webdoc set

command. The syntax of webdoc set is

webdoc set
[
setname

[
definition

]]
where setname is the name of the element you want to change. To restore the default
settings for all elements, type webdoc set without an argument. webdoc set has an
effect only if applied within a do-file processed by webdoc do. Furthermore, all settings
will be removed when webdoc do terminates. The elements you can modify, and their
default definitions, are in table 1.

18 Creating HTML or Markdown documents using webdoc

Table 1. HTML settings that can be changed by webdoc set

Description setname Default definition

Stata output section stlog <pre id="\‘id’" class="stlog"><samp>

stlog </samp></pre>

Stata code section stcmd <pre id="\‘id’" class="stcmd"><code>

stcmd </code></pre>

Stata help section sthlp <pre id="\‘id’" class="sthlp">

sthlp </pre>

Stata input tag stinp

stinp

Stata result tag stres

stres

Stata comment tag stcmt

stcmt

Output-omitted tag stoom (output omitted)

Continued on next stcnp <span class="stcnp"

page tag style="page-break-after:always">
(continued

on next page)

Figure tag figure <figure id="\‘macval(id)’">

figure </figure>

Figure caption fcap <figcaption>\‘macval(caption)’</figcaption>

Figure link tag flink

flink

Image tag img <img alt="\‘macval(alt)’"\‘macval(title)’ src="

img "\‘macval(attributes)’/>

Embedded SVG svg <span\‘macval(title)’\‘macval(attributes)’>

svg

Names without an underscore refer to opening tags (or opening and closing tags), and
names with an underscore refer to closing tags. As illustrated by the default settings,
some of the elements make use of local macros, with a leading backslash for delayed
expansion. An interesting additional macro that can be used in stlog/ stlog and
stcmd/ stcmd is ‘doname’, containing the name of the do-file that is generated if the
dosave option has been specified. For example, to provide a download link for the
do-file in the upper right corner of each output section, you could type the following:

webdoc set stlog <pre id="\`id´" class="stlog" /*
/style="position:relative;"><a href="\`doname´" /
*/style="position:absolute;top:5px;right:5px">[code]<samp>

SVG images embedded in the output document using the hardcode option will be
tagged by svg/ svg. For all other graphs, img/ img will be used.

B. Jann 19

2.8 Closing the output document and exiting the do-file

The syntax to stop writing to the output document is

webdoc close

webdoc do closes the output document automatically at the end of the do-file, so webdoc
close is usually not needed.

To cause webdoc do to exit a do-file, type

// webdoc exit

(without anything else on the same line). webdoc do will only read the do-file up to
this line.

2.9 Stripping webdoc commands from a do-file

To clear a do-file from all webdoc commands, use

webdoc strip filename newname
[
, replace append

]
where filename is the name of the do-file to be stripped and newname is the name of the
file to be written to. The replace option replaces an existing file; the append option
appends the results to an existing file. webdoc strip removes all /*** ***/ blocks
and all webdoc commands from the do-file.

2.10 Stored results

webdoc init clears s(), and webdoc close stores the following in s():

Macros
s(docname) name of output document s(lbstrip) lbstrip or empty

(including absolute path) s(gtstrip) gtstrip or empty
s(basename) base name of output document s(noltrim) noltrim or empty

(excluding path) s(mark) contents of mark() option
s(path) (absolute) path of output s(tag) contents of tag() option

document s(custom) custom or empty
s(md) md or empty s(nokeep) nokeep or empty
s(logall) logall or empty s(certify) certify or empty
s(linesize) specified line width or empty s(gropts) default graph export options
s(nodo) nodo or empty s(logdir) subdirectory used for Stata log
s(nolog) nolog or empty files
s(cmdlog) cmdlog or empty s(grdir) subdirectory used for graphs
s(dosave) dosave or empty (if different from s(logdir))
s(plain) plain or empty s(dodir) subdirectory used for do-files
s(raw) raw or empty (if different from s(logdir))
s(nooutput) nooutput or empty s(prefix) prefix for automatic names
s(matastrip) matastrip or empty s(stpath) include-path to be used in the
s(cmdstrip) cmdstrip or empty output document

20 Creating HTML or Markdown documents using webdoc

webdoc stlog close and webdoc stlog using store the following in s():

Macros
s(name) name of the Stata output log s(nodo) nodo or empty

(including logdir() path) s(nolog) nolog or empty
s(name0) s(name) without logdir() path s(cmdlog) cmdlog or empty
s(filename) name of log file on disk s(dosave) dosave or empty

(including path and suffix) s(plain) plain or empty
s(filename0) s(filename) without suffix s(raw) raw or empty
s(webname) name of log file with include s(nooutput) nooutput or empty

path for use in output s(matastrip) matastrip or empty
document s(cmdstrip) cmdstrip or empty

s(webname0) s(webname) without suffix s(lbstrip) lbstrip or empty
s(id) ID of the log in the output s(gtstrip) gtstrip or empty

document s(noltrim) noltrim or empty
s(doname) name (and include-path) of s(mark) contents of mark() option

do-file s(tag) contents of tag() option
s(linesize) line width used for the output s(custom) custom or empty

log s(nokeep) nokeep or empty
s(indent) size of indentation s(certify) certify or empty

3 Examples

3.1 Basic usage

A simple do-file using webdoc might look as follows:

begin example1.do

webdoc init example1, replace logall plain

/***
<html>
<head><title>Example 1</title></head>
<body>
<h2>Exercise 1</h2>
<p>Open the 1978 automobile data and run a regression of price on
mileage using the <code>regress</code> command.</p>
***/

sysuse auto
regress price mpg

/***
</body>
</html>
***/

end example1.do

The logall option has been specified, so all Stata output is included in the HTML

document. (In addition, the plain option has been specified to omit HTML tags from
the Stata output, so the display of the HTML file below fits the page.) To process the
file, type

. webdoc do example1.do

B. Jann 21

This will create file example1.html with the following contents:

begin example1.html

<html>
<head><title>Example 1</title></head>
<body>
<h2>Exercise 1</h2>
<p>Open the 1978 automobile data and run a regression of price on
mileage using the <code>regress</code> command.</p>
<pre id="stlog-1" class="stlog"><samp>. sysuse auto
(1978 Automobile Data)

. regress price mpg

Source | SS df MS Number of obs = 74
-------------+---------------------------------- F(1, 72) = 20.26

Model | 139449474 1 139449474 Prob > F = 0.0000
Residual | 495615923 72 6883554.48 R-squared = 0.2196

-------------+---------------------------------- Adj R-squared = 0.2087
Total | 635065396 73 8699525.97 Root MSE = 2623.7

--
price | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+--
mpg | -238.8943 53.07669 -4.50 0.000 -344.7008 -133.0879

_cons | 11253.06 1170.813 9.61 0.000 8919.088 13587.03
--
</samp></pre>
</body>
</html>

end example1.html

Displaying the file in a browser would look like what is shown in figure 1.

22 Creating HTML or Markdown documents using webdoc

Figure 1. Output file example1.html displayed in a browser

3.2 Using Markdown

For simplified typing, you could also omit the HTML tags and use Markdown instead.
An example do-file might look as follows:

begin example1-md.do
webdoc init example1, replace logall plain md

/***
Exercise 1

Open the 1978 automobile data and run a regression of price on mileage
using the ‘regress‘ command.

***/

sysuse auto
regress price mpg

end example1-md.do

This will create a file, example1.md, that can then be converted to HTML using a
Markdown converter. For example, if you have Pandoc (see http://pandoc.org/), you
could type

. shell pandoc example1.md -s -o example1.html

to create an HTML file from example1.md. The -s option has been specified, so Pandoc
produces a standalone HTML file including a header and footer. The resulting file will
look about the same as the file shown in figure 1.

B. Jann 23

3.3 Changing the look of the HTML file

Use stylesheet specifications in the header of the HTML file to change the look of the
document in the browser. For example, using the following header definition would
create a file that displays like what is shown in figure 2:

begin example2.do

webdoc init example2, replace logall plain

/***
<!DOCTYPE html>
<html>
<head>

<title>Example 2</title>
<style>

body {
font-family: sans-serif; padding: 0 15px; max-width: 700px;

}
code {

background-color: #f2f2f2; border-radius: 3px; padding: 3px;
}
pre {

background-color: #f2f2f2;
border-radius: 3px; padding: 12px;

}
pre code {

background: transparent; padding: 0;
}

</style>
</head>
<body>
<h2>Exercise 1</h2>
<p>Open the 1978 automobile data and run a regression of price on
mileage using the <code>regress</code> command.</p>
***/

sysuse auto
regress price mpg

/***
</body>
</html>
***/

end example2.do

24 Creating HTML or Markdown documents using webdoc

Figure 2. Output file example2.html displayed in a browser

If you do not want to put together your own header (and footer), you can use the header
option of webdoc init to generate an automatic header, as in the following example:

begin example3.do

webdoc init example3, replace logall ///
header(title(Example 3) width(700px) stscheme(classic))

/***
<h2>Exercise 1</h2>
<p>Open the 1978 automobile data and run a regression of price on
mileage using the <code>regress</code> command.</p>
***/

sysuse auto
regress price mpg

end example3.do

In the example, title() specifies the text for the <title> tag in the document header,
width() sets the maximum page width, and stscheme(classic) selects the “Classic”
color scheme for the Stata output (see figure 3).

B. Jann 25

Figure 3. Output file example3.html displayed in a browser

By default, if the header() option is specified, webdoc writes a minimal header so the
page displays well on computer screens and mobile devices. Alternatively, you can use
the bstheme() suboption to include a Bootstrap CSS file (see http://getbootstrap.com/).
For example, the code below includes the “United” theme from http://bootswatch.com/
and picks Stata’s “Desert” scheme for the output (see figure 4 for the result).

begin example4.do

webdoc init example4, replace logall ///
header(title(Example 4) width(700px) stscheme(desert) bstheme(united))

/***
<h2>Exercise 1</h2>
<p>Open the 1978 automobile data and run a regression of price on
mileage using the <code>regress</code> command.</p>
***/

sysuse auto
regress price mpg

end example4.do

26 Creating HTML or Markdown documents using webdoc

Figure 4. Output file example4.html displayed in a browser

3.4 Contents of output sections

In the examples above, the logall option was specified to create output sections from
all Stata commands in the do-file. Alternatively, or in addition, you can use the webdoc
stlog command to select the output to be included. For example, if the logall option
has been specified, you could type

webdoc stlog, nolog
commands
webdoc stlog close

to skip creating an output section from commands. Furthermore, the webdoc stlog

command is useful if you want to apply different options to specific output sections.
The following example illustrates some of the available options (see figure 5 for the
result). Note that all options can also be specified with webdoc do or webdoc init to
set the default behavior. Furthermore, you can apply webdoc init repeatedly within a
do-file (without specifying an output document) to change the defaults between different
parts of the do-file.

begin example5.do

webdoc init example5, replace logall ///
header(title(Example 5) width(700px) stscheme(studio) bstheme)

/***

B. Jann 27

<h4>Options of webdoc stlog</h4>
<p>Default: input (commands) and output</p>
***/

webdoc stlog
display as txt "sqrt(2) = " /// this is a comment

as res sqrt(2)
webdoc stlog close

/***
<p><code>cmdstrip</code>: output without input</p>
***/

webdoc stlog, cmdstrip
display as txt "sqrt(2) = " /// this is a comment

as res sqrt(2)
webdoc stlog close

/***
<p><code>nooutput</code>: input without output</p>
***/

webdoc stlog, nooutput
display as txt "sqrt(2) = " /// this is a comment

as res sqrt(2)
webdoc stlog close

/***
<p><code>lbstrip</code> and <code>gtstrip</code>: remove line-break
comments and continuation symbols</p>
***/

webdoc stlog, lbstrip gtstrip
display as txt "sqrt(2) = " /// this is a comment

as res sqrt(2)
webdoc stlog close

/***
<p><code>cmdlog</code>: display code instead of results</p>
***/

webdoc stlog, cmdlog
display as txt "sqrt(2) = " /// this is a comment

as res sqrt(2)
webdoc stlog close

/***
<p><code>matastrip</code>: remove Mata begin and end commands</p>
***/

webdoc stlog, matastrip
mata:
sqrt(2)
end
webdoc stlog close

/***

***/

end example5.do

28 Creating HTML or Markdown documents using webdoc

Figure 5. Output file example5.html displayed in a browser

Note that webdoc stlog distinguishes between Stata output and Stata code. By
default, webdoc stlog displays Stata output, tagged by <pre class="stlog"><samp>.
However, if the cmdlog option is specified, webdoc stlog displays Stata code, tagged
by <pre class="stcmd"><code>. The color scheme chosen in header(stscheme())

applies only to sections of Stata output, not to code. Code is displayed using standard
settings, with shaded comments.1

3.5 Generating do-files from output sections

webdoc stlog has a dosave option that stores a do-file from the commands in the logged
output section. This is useful if you want to provide the commands in a downloadable
file. Here is a somewhat advanced example in which a Code button (with an arrow icon
from http://glyphicons.com/) is placed in the upper right corner of the Stata output
box (see figure 6):

1. To omit the shading of comments in code display, you can specify the plain option with webdoc

stlog. To apply comment shading in output display, add the lcom option in header(stscheme()).

B. Jann 29

begin example6.do

webdoc init example6, replace header(title(Example 6) width(700px) bstheme)

/***
<h2>Exercise 1</h2>
<p>Open the 1978 automobile data and run a regression of price on
mileage using the <code>regress</code> command.</p>
***/

webdoc put <div style="position:relative">
webdoc stlog, dosave

sysuse auto
regress price mpg

webdoc stlog close
webdoc put /*

/<a href="‘s(doname)’" class="btn btn-default btn-sm"/
/ style="position:absolute; top:10px; right:10px">/
//
*/ Code

webdoc put </div>

end example6.do

Figure 6. Output file example6.html displayed in a browser

If the user clicks on the Code button, a file containing the Stata commands opens.
The webdoc put command is used here to write the necessary code to generate the
button (an alternative would be to use webdoc set; see section 2.7). The Stata output
box is included in a <div style="position:relative"> tag so the button can be
positioned relative to the box. For information on the code generating the button,
see http://getbootstrap.com/css/#buttons; for the code to display the arrow icon, see
http://getbootstrap.com/components/#glyphicons.

30 Creating HTML or Markdown documents using webdoc

webdoc stlog close returns the name and relative path of the do-file in s(doname),
from where it can be provided to webdoc put. By default, the do-file is placed in the
same folder as the output document. Specify dodir(path) with webdoc do or webdoc
init to request a different location. Furthermore, if you want the do-file to have a
specific name, specify a name with webdoc stlog. For example, type

. webdoc stlog exercise1, dosave

to use the name exercise1.do for the do-file (the suffix will always be .do).

3.6 The nodo option

An indispensable option for larger projects is the nodo option. This option allows you
to recompile your document without rerunning the Stata commands. webdoc keeps the
log files from previous runs, so rerunning the Stata commands would be a waste of time
if the Stata commands did not change. Therefore, once the commands in a Stata output
section are set, type the following:

webdoc stlog, nodo

To apply nodo to all Stata output sections in the document, specify nodo with webdoc

init or webdoc do. To turn the commands back on in a specific section, type the
following:

webdoc stlog, do

Note that you can also turn commands on and off between different parts of the doc-
ument by applying the webdoc init command with the do or nodo option repeatedly
within the do-file.

Be aware that webdoc uses consecutive numbers to name the log files of the output
sections. Thus the name for a specific section will change if other (unnamed) sections
are added or deleted in preceding parts of the document. In this case, you may have
to rerun all output sections.2 Hence, if a specific Stata output section contains time-
consuming commands, it is always a good idea to assign a fixed name (that is, type
webdoc stlog name).

3.7 Graphs

To include a graph in the output document, simply type webdoc graph after the graph
has been created. webdoc graph will store the graph on disk and place an appropriate
 in the output document to display the graph. By default, a .png image with a
width of 500 pixels is produced. There are various options to change how the graph is
exported and how it is integrated into the output document. The following example

2. An exception are cmdlog output sections (see section 3.4 above), because the log files of these
sections will always be updated regardless if nodo is specified or not.

B. Jann 31

sets the physical width of the graph to 1,000 pixels, sets the display width to 100%,
provides a caption for the graph, and also sets a tooltip title.

begin example7.do

webdoc init example7, replace logall header(title(Example 7) width(700px))

/***
<h2>Exercise 1</h2>
<p>Open the 1978 automobile data and draw a scatterplot of price against
mileage using the <code>twoway</code> command and include a linear fit.</p>
***/

sysuse auto
twoway (scatter price mpg) (lfit price mpg)
webdoc graph, caption(Figure 1: Twoway plot of price by mileage) cabove ///

width(1000) title(price by mpg) attributes(width="100%")

end example7.do

Figure 7. Output file example7.html displayed in a browser

32 Creating HTML or Markdown documents using webdoc

Figure 7 displays the resulting file as it looks in a browser. If the user moves the
pointer to the graph, a tooltip containing price by mpg will be shown. Furthermore,
if the user clicks on the graph, the graph file will be opened. Note that webdoc graph

automatically creates a name for the graph (based on the name of the relevant Stata
output section). If you want your graph to have a specific name, you can type webdoc

graph name.

If, as in the example above, the logall option is specified, webdoc will stop the Stata
output section at the position of the webdoc graph command, insert the graph, and
then continue with a new output section. If you want to display a graph that has been
produced within an explicit webdoc stlog section, it is usually better to call webdoc
graph after the section has been closed. That is, type the following:

webdoc stlog
sysuse auto
twoway (scatter price mpg) (lfit price mpg)

webdoc stlog close
webdoc graph

Typing webdoc graph within a webdoc stlog section is allowed, but it will cause the
graph to be included in the HTML document before the output box.

The default for webdoc graph is to provide the image source in the form of a link to
the external graph file. However, you can also specify the hardcode option to directly
embed the image in the HTML document (this only works if the requested graph format
is .png or .svg). The hardcode option is useful if you want to share your HTML file
without having to copy around multiple files. Another use might be if you want to
embed a low-resolution graph in the HTML document and, at the same time, provide
a link to an external high-resolution graph file. This could be achieved by typing the
following:

webdoc graph, hardcode width(200) link
webdoc graph, custom width(1000)

The first webdoc graph command embeds a low-resolution graph (200 pixels wide)
in the HTML document and also includes a link to the external graph file. The second
webdoc graph command overwrites the external graph file with a high-resolution variant
(1,000 pixels wide) but does not include any code in the HTML document (because of
custom). If the user clicks on the image in the browser, the high-resolution graph will
be opened.

3.8 Tables

webdoc does not provide specific tools for producing tables. However, you can use other
programs such as listtex by Newson (2001) or esttab by Jann (2007) to write a table
in HTML format and then add the result to your HTML document using webdoc append.
Below is an example based on esttab (see figure 8 for the result). The procedure for
listtex or other commands would be similar.

B. Jann 33

begin example8.do

webdoc init example8, replace header(title(Example 8) width(700px))

/***
<h2>Explaining price</h2>

<p>Table 1 shows two regression models explaining the price of cars.</p>
***/

webdoc stlog, nolog
sysuse auto
regress price mpg weight
estimates store m1
regress price mpg weight foreign turn
estimates store m2
esttab m1 m2 using example8_tab1.html, replace label wide nomtitle ///

nostar b(2) align(right) width(500) title(Table 1: A regression table)
webdoc stlog close
webdoc append example8_tab1.html

end example8.do

Figure 8. Output file example8.html displayed in a browser

3.9 TOC

To generate a clickable TOC from the headings in your HTML document, you can use
the webdoc toc command. Simply include the webdoc toc command at the position
in the file where you want the TOC to appear. All relevant headings from this position
on will be collected to construct the TOC. By default, webdoc toc collects three levels
of headings, from <h1> to <h3>. To collect, say, four levels from <h2> to <h5>, you

34 Creating HTML or Markdown documents using webdoc

could type webdoc toc 4 1. The first number specifies the number of desired levels,
and the second specifies the offset (that is, how many upper levels to skip). To add
automatic section numbers to the headings and the entries in the TOC, you can specify
the numbered option. The numbers will be tagged (as class toc-secnum in the TOC and
as class heading-secnum in the headings), so they can be styled by CSS. Likewise, use
CSS definitions for the tag to affect the look of the TOC. To prevent the definitions
from being applied to other instances of in the document, it is a good idea to
wrap the TOC in its own class or include it in a <nav> tag and make the definitions
conditional on that. A somewhat advanced example is as follows (for the result, see
figure 9):

begin example9.do

webdoc init example9, replace header(title(Example 9) width(700px) bstheme)

/***
<style>
.toc ul { padding-left:0; list-style:none; font-weight:bold; }
.toc ul ul { font-weight:normal; }
.toc-secnum, .heading-secnum { float:left; min-width:45px; }
</style>
***/

/***
<h1>The title</h1>
<p>Some leading text.</p>

<h4>Contents</h4>
<div class="toc">
***/

webdoc toc 3 1, numbered

/***
</div>

<h2>A first section</h2>
<p>Some text.</p>
***/

/***
<h2>A second section</h2>
<p>Some text.</p>

<h3>A first subsection to the second section</h3>
<p>Some text.</p>

<h3>A second subsection to the second section</h3>
<p>Some text.</p>

<h4>A first subsection to the second subsection of the second section</h4>
<p>Some text.</p>
***/

/***
<h2>A final section</h2>
<p>Some text.</p>
***/

end example9.do

B. Jann 35

Figure 9. Output file example9.html displayed in a browser

3.10 Dynamic text

If you want to add results from a Stata output section to the text body, one approach
is to store the results as local macros and then insert the contents of these locals at
appropriate places in the text body using webdoc put or webdoc write. However,
these locals will no longer be available in later runs once the nodo option is applied. A
solution to this problem is the webdoc local command, which can be applied within
or after a Stata output section. The command can be used just like Stata’s regular
local command, but it maintains a backup of the locals on disk and restores them if

36 Creating HTML or Markdown documents using webdoc

needed. Furthermore, the local macros defined by webdoc local will be expanded in
subsequent /*** ***/ blocks (up until the next webdoc stlog command, which causes
the macro library to be reset). An example is as follows (see figure 10 for the compiled
result):

begin example10.do

webdoc init example10, replace header(title(Example 10) width(700px))

webdoc stlog
sysuse auto, clear
regress price weight

webdoc stlog close
webdoc local b = strofreal(_b[weight], "%9.3f")
webdoc local se = strofreal(_se[weight], "%9.3f")

/***
<p> As can be seen in the output above, the estimate for the effect
of weight on price is equal to ‘b’ (with a standard error of ‘se’).</p>
***/

end example10.do

Figure 10. Output file example10.html displayed in a browser

Alternatively, you may use webdoc write or webdoc put to write the locals to the
output document. That is, you could also type the following:

webdoc put <p> As can be seen in the output above, the estimate for the
webdoc put effect of weight on price is equal to `b´ (with a standard
webdoc put error of `se´).</p>

B. Jann 37

There is a slight difference between the two approaches: expansion in /*** ***/

blocks is based on the locals as stored on disk; webdoc write and webdoc put use the
current values of the locals.

4 Limitations

In general, you can work on a do-file containing webdoc commands in the same way
as you would work on another do-file. For example, if you submit the do-file to Stata
without applying webdoc do, Stata will process the do-file like any other do-file; the
/*** ***/ blocks containing HTML code will be ignored, and the webdoc commands
will do nothing. However, there are some limitations and technical issues that should
be kept in mind when working with webdoc:

• The $ character is used for global macro expansion in Stata. If you use webdoc

write or webdoc put to write text containing $, type \$ instead of $.

• webdoc do provides only limited support for the semicolon command delimiter
(see [P] #delimit). For example, do not use semicolons to delimit webdoc com-
mands. However, the semicolon command delimiter should work as expected if it
is turned on and off between /*** ***/ blocks and between webdoc commands.

• webdoc commands should always start on a new line with webdoc being the first
(noncomment) word on the line. For example, do not type

. quietly webdoc ...

or something similar.

• webdoc stlog cannot be nested. Furthermore, do not use webdoc do or webdoc
init within a webdoc stlog section.

• When processing a do-file, webdoc do does not parse the contents of a do-file that
is called from the main do-file using the do command (see [R] do). Thus, for
example, /*** ***/ blocks in such a file will be ignored. Use webdoc do instead
of do to include such a do-file.

• webdoc tries to create missing subdirectories using Mata’s mkdir() function; see
[M-5] chdir(). Usually, this works only if all intermediate directories leading to
the target subdirectory already exist. If mkdir() fails, you will need to create the
required directories manually prior to running webdoc.

5 References
Baum, C. F., N. J. Cox, and B. Rising. 2001. log2html: Stata module to produce

HTML log files. Statistical Software Components S422801, Department of Economics,
Boston College. https://ideas.repec.org/c/boc/bocode/s422801.html.

38 Creating HTML or Markdown documents using webdoc

Bruun, N. H. 2016a. log2markup: Stata module to transform a Stata text log into a
markup document. Statistical Software Components S458147, Department of Eco-
nomics, Boston College. https://ideas.repec.org/c/boc/bocode/s458147.html.

. 2016b. matrixtools: Stata module to build, present and style Stata matrices.
Statistical Software Components S458201, Department of Economics, Boston College.
https://ideas.repec.org/c/boc/bocode/s458201.html.

Haghish, E. F. 2014a. markdoc: Stata module for literate programming. Statistical
Software Components S457868, Department of Economics, Boston College.
https://ideas.repec.org/c/boc/bocode/s457868.html.

. 2014b. weaver: Stata module to produce dynamic reports in HTML, LATEX and
PDF. Statistical Software Components S457878, Department of Economics, Boston
College. https://ideas.repec.org/c/boc/bocode/s457878.html.

Jann, B. 2007. Making regression tables simplified. Stata Journal 7: 227–244.

. 2016. Creating LATEX documents from within Stata using texdoc. Stata Journal
16: 245–263.

Jeanty, P. W. 2010. hlp2html: Stata module to translate a list of Stata help files to
HTML. Statistical Software Components S457209, Department of Economics, Boston
College. https://ideas.repec.org/c/boc/bocode/s457209.html.

Newson, R. 2001. listtex: Stata module to list variables as rows of a TeX, HTML or word
processor table. Statistical Software Components S423201, Department of Economics,
Boston College. https://ideas.repec.org/c/boc/bocode/s423201.html.

. 2015. htmlutil: Stata module to provide utilities for writing hypertext markup
language (HTML) files. Statistical Software Components S458085, Department of
Economics, Boston College. https://ideas.repec.org/c/boc/bocode/s458085.html.

Quintó, L., S. Sanz, E. De Lazzari, and J. J. Aponte. 2012. HTML output in Stata.
Stata Journal 12: 702–717.

Rodŕıguez, G. 2015. “Weaving Stata Output and Annotations”.
http://data.princeton.edu/wws509/stata/weave.

Watson, I. 2004. tabout: Stata module to export publication quality cross-tabulations.
Statistical Software Components S447101, Department of Economics, Boston College.
https://ideas.repec.org/c/boc/bocode/s447101.html.

About the author

Ben Jann is a professor of sociology at the University of Bern, Switzerland. His research in-
terests include social science methodology, statistics, social stratification, and labor market
sociology. Recent publications include articles in Sociological Methodology, Sociological Meth-
ods and Research, the Stata Journal, Public Opinion Quarterly, and the American Sociological
Review.

