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Abstract. In this article, we describe the user-written gmentropylinear com-
mand, which implements the generalized maximum entropy estimation method
for linear models. This is an information-theoretic procedure preferable to its
maximum likelihood counterparts in many applications; it avoids making distribu-
tional assumptions, works well when the sample is small or covariates are highly
correlated, and is more efficient than its maximum likelihood equivalent. We give
a brief introduction to the generalized maximum entropy procedure, present the
gmentropylinear command, and give an example using the command.
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1 Introduction

In this article, we introduce a user-written command, gmentropylinear, for fitting a
linear model using generalized maximum entropy (GME) methods. GME estimation of
the linear regression model provides an alternative to traditional estimation methods
such as least-squares models or generalized linear models. Instead of minimizing squared
residuals or maximizing a likelihood function defined by the researcher, maximum en-
tropy methods select the linear model coefficients that are maximally informative, using
an entropy measure of information content. Maximum entropy estimation selects the
most conservative or noncommittal solution to the linear model. The GME linear model
developed by Golan, Judge, and Miller (1996) builds on this maximum entropy princi-
ple by introducing stochastic moments into the optimization problem. GME provides a
framework for fitting models that are robust to poor specification and to data that are
partial or incomplete.

2 GME linear model

Using maximum entropy prevents the econometrician from imposing moment conditions
that must be fulfilled on data that may be neither large nor well behaved.

The entropy measure used here is defined by Shannon (1948) as

H(p) ≡ −
∑
i

pi ln pi
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where pi is the probability of observing outcome i. Any base for the logarithm will
provide a viable entropy measure. Shannon (1948) used log base 2 for work with the
communication of bits of information, although the natural logarithm is commonly
used in econometric applications. When the full probabilistic distribution of a sample is
known, the entropy measure equals zero. However, when the distribution is completely
unknown, the probability distribution that imposes no priors on the data (but rather
only on the information contained within the data) is the uniform distribution whose
entropy measure equals the maximum value allowed, given by the entropy measure
described above. Thus maximizing entropy based on the sample’s information content
leads to selecting the least-informed distribution.

In GME, the probabilities entering the entropy measure are weights associated with
a vector of supports for both the parameters of the linear model (the β’s) and the error
terms. The maximum entropy criterion from Jaynes (1957a,b) is used to select the set
of probabilities, or weights, that is maximally informative but still consistent with the
empirical data. Golan, Judge, and Miller’s (1996) generalization of Jaynes’s maximum
entropy criterion to include stochastic moments of the data by additively including the
entropy of the error term into the objective function is implemented here.

Linear regressions are commonly used in economics to model the relationship be-
tween a variable of interest and a set of explanatory variables. The GME approach
loosens the assumptions of many alternative linear model estimation techniques, such
as least squares, and imposes minimal distributional assumptions. Golan, Judge, and
Perloff (1996) and Golan, Judge, and Miller (1996) have used Monte Carlo simulations
to demonstrate that GME discrete choice and linear models provide more stable param-
eter estimates as collinearity of the covariates increases than their maximum likelihood
or least-squares counterparts.

The linear GME model recovers probability distributions for the coefficients and the
error terms. These probability distributions make use of the available sample infor-
mation. The GME method for linear models is developed by Golan, Judge, and Miller
(1996, 85), and the discussion below draws from that source.

To recover probability distributions, one must reparameterize the coefficients and
the error terms. The generic version of the linear model to be fit is

Y = Xβ + ε

where Y is a (T × 1) matrix and X is a (T × K) matrix. The linear GME model
reparameterizes both the β and the ε in the generic linear model as the expected
values of a random variable defined on a probability distribution. Each coefficient in
the GME framework has a bounded support space zk, associated with the kth variable,
which is symmetrically built around zero and weighted by the vector pk to reflect
that the econometrician may not have prior knowledge to incorporate into the support
space. Alternative support spaces not built around zero are allowable if, for example,
the econometrician has prior knowledge of the value of β. This would be similar in
principle to the generalized cross entropy approach, where the probability weights are
informed by prior knowledge rather than the supports. Both zk and pk are (M × 1)
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matrices. These weights must be in probability form; as such, their sum is equal to one
(a requirement that will enter the system through the constraints). The coefficients are
thus

β = Zp =

⎡⎢⎢⎣
z′1 0 . 0
0 z′

2 . 0
. . . .
0 0 . z′K

⎤⎥⎥⎦
⎡⎢⎢⎣

p1

p2

.
pK

⎤⎥⎥⎦ (1)

where Z is a (K ×KM) matrix and p is a weight vector of dimension KM × 1. There
are M supports for each coefficient, and each support is associated with a probability
weight. The support space recommended by Golan, Judge, and Miller (1996) is sym-
metric around zero and can be widened as needed to ensure that the true value for β
lies inside the support space. Consequently, the product of these matrices is (K × 1),
and for any particular k, the coefficient is equal to

βk =
∑
m

zkmpkm

Similarly, the error terms must also be parameterized as follows:

ε ≡ Vw =

⎡⎢⎢⎣
v′
1 0 . 0
0 v′

2 . 0
. . . .
0 0 . v′

T

⎤⎥⎥⎦
⎡⎢⎢⎣

w1

w2

.
wT

⎤⎥⎥⎦ (2)

Thus an individual observation’s error term is equal to

εt =
∑
j

wtjvj

where wtj is the set of proper probabilities for each t and w is the (TJ × 1) vec-
torization of w. It is common to build the error support using the three-sigma rule
v = (−3σ̂Y , 0, 3σ̂Y ), where σ̂Y is the sample standard deviation for the dependent vari-
able Y (Pukelsheim 1994). The linear model under the reparameterization done by
Golan, Judge, and Miller (1996) becomes

Y = XZp+Vw

The entropy term is maximized subject to the requirements of the proper probability
distributions for pkm and wtj and the T information-moment constraints of the linear
model (because Y is (T × 1), all T information moments, or data points, enter through
the constraints). Therefore, the Lagrangian is

L = −p′ lnp−w′ lnw + λ′ (XZp+Vw −Y)

+δ′ {1K − (IK ⊗ 1′
M )p}

+γ′ {1T − (IT ⊗ 1′
J)w}
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where 1K is a (K × 1) vector of ones; the same holds for the other subscripts. The
gradient of the Lagrangian is taken with respect to the Lagrangian parameters (λ, δ,
and γ) and the probabilities (p and w). The solutions for p and w are

p̂km =

exp

(
−zkm

∑
t
λ̂txtk

)
∑
m

exp

(
−zkm

∑
t
λ̂txtk

) ≡
exp

(
−zkm

∑
t
λ̂txtk

)
Ωk

(
λ̂
) (3)

and

ŵtj =
exp
(
−λ̂tvj

)
∑
j

exp
(
−λ̂tvj

) ≡
exp
(
−λ̂tvj

)
Ψt

(
λ̂
) (4)

The β’s and ε’s can be recovered by substituting p and w into (1) and (2). However,
a more efficient way to solve for the β’s is to solve the unconstrained dual formulation
of the problem, which is a function of the λ’s. The resulting function is referred to as
the minimal value function by Golan, Judge, and Miller (1996).

max
p,w

H(p,w) = min
λ

{∑
t

ytλt +
∑
k

lnΩk(λ) +
∑
t

lnΨt(λ)

}

= min
λ

[∑
t

ytλt +
∑
k

ln

{∑
m

exp

(
−zkm

∑
t

λtxtk

)}]

+
∑
t

ln

⎧⎨⎩∑
j

exp (−λtvj)
⎫⎬⎭

Minimizing with respect to λ solves the dual formulation and provides the optimal
λ’s, which are subsequently used to solve for the optimal p’s and w’s [(3) and (4)].
These, in turn, are the weights associated with the support space, which generates the
parameters and the errors. Although this approach appears more roundabout, it offers
greater efficiencies because there are only T λ’s to estimate rather than a combination
of KM p’s and TJ w’s. The gmentropylinear command optimizes the dual uncon-
strained model using the Newton–Raphson method, following the implementation in
Cameron and Trivedi (2010). All analyses conducted by the authors have rapidly con-
verged using this procedure.

2.1 Asymptotic variance of the GME estimator

Mittelhammer, Cardell, and Marsh (2013) develop the asymptotic theory and inference
for the linear GME estimator.1 The authors state that the GME estimator is asymptot-
ically and normally distributed with a variance–covariance matrix given by

1. See Mittelhammer, Judge, and Miller (2000) for a full derivation of the asymptotic properties of
the model.
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V̂ar
(
β̂
)
=
σ̂2
λ

(
β̂
)

ζ2
(
β̂
) (X′X)

−1

where

σ̂2
λ

(
β̂
)
=

1

T

T∑
t=1

λ2t

and

ζ2
(
β̂
)
=

⎡⎢⎣ 1

T

T∑
t=1
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J∑

j=1

v2jwtj −
⎛⎝ J∑

j=1

vjwtj

⎞⎠2
⎫⎪⎬⎪⎭

−1⎤⎥⎦
2

The variance of the estimators, because it is asymptotically normally distributed,
can be used for hypothesis testing on the values of β.

3 The gmentropylinear command

This command fits a linear model using the GME principle. The syntax reflects stan-
dard linear regression syntax in Stata, with one exception. Unlike the discrete choice
version of the GME model, gmentropylogit (Corral and Terbish 2015), users must pro-
vide the parameter support space for the β’s in the gmentropylinear command. The
support space for the error terms is set by default to a dimension of three, and it is
equally and symmetrically built around zero using the three-sigma rule as suggested
by Golan, Judge, and Miller (1996). However, the command allows the user to specify
an alternative error support space in both dimension and values. The β coefficient
support space is a K ×M matrix, where K is the number of covariates including the
constant (estimation without the constant term is also allowed) and M is the num-
ber of supports. Although some packages for the GME linear model in other software
build parameter support spaces around ordinary least-squares (OLS) estimates of the
model, we recommend a support space that is symmetric around zero instead. When
sample sizes are small, and a wide support space around zero is built, the GME esti-
mator is usually a better estimator than the OLS (Mittelhammer, Cardell, and Marsh
2013). Golan, Judge, and Miller (1996, 109) note that although the GME solution is
consistent, it is still likely to suffer from small-sample bias. Nevertheless, in simula-
tions, it still has lower mean square errors than traditional methods. If the user has
prior knowledge about the true β’s, a narrow support around this prior knowledge will
provide a far better fit than its OLS counterpart, particularly in small sample sizes
(Mittelhammer, Cardell, and Marsh 2013). Thus the GME’s quality is dependent upon
the supports chosen. Nevertheless, wide supports built around zero usually outperform
their OLS counterparts.

One of GME’s principal advantages is that it provides the solution least commit-
ted to potentially wrong specification assumptions (aside from linearity). Building the
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support space from potentially mistaken prior OLS estimates will push the GME result
toward the OLS result by adding information from the OLS specification into the entropy
maximization problem. As Golan, Judge, and Miller (1996) note, a wider support space
increases the impact of the data, while a tighter support space increases the impact of
the support. The support space is generated simply by defining an appropriate matrix:

matrix matname = matrix expression

Once a matrix for the β support has been specified, the user can proceed with the
command:

gmentropylinear depvar
[
indepvars

] [
if
] [

in
]
, support(matrix)[

sigmavalue(#) endpoint(#) lambda(string) wmat(string) residual(string)

nosigma nocons
]

The support(matrix) component of the command identifies the matrix defining
the support space for the coefficients and must be provided by the user as a ma-
trix. support() is required. The gmentropylinear command provides various op-
tions. Although the specification of the coefficient support is required, the support
for the error terms is constructed by the command. However, the user can modify
the number of support spaces and decide whether to use the three-sigma rule. The
endpoint(#) option tells the gmentropylinear command how many supports are
used in the estimation for the error term. The default for the error supports is to
use the empirical three-sigma rule, with J = 3. Thus the default error space for each
observation is v = (−3σ̂Y , 0, 3σ̂Y ). The sigmavalue() option is used to specify the
sigma endpoint; the default is sigmavalue(3). If the user specifies sigmavalue(4),
then v = (−4σ̂Y , 0, 4σ̂Y ). The use of the empirical σ can also be overridden with the
nosigma option. Therefore, if the user specifies sigmavalue(4) and nosigma, then
v = (−4, 0, 4). Finally, the user can adjust the number of supports (J). This is done
with the endpoint() option; the default is endpoint(3). Regardless of the number of
supports specified, the command will always adjust this to be odd numbered.

Several options return estimates from the model, including lambda(), which returns
the estimated λ’s, wmat(), which returns the estimated w, and residual(), which
returns the residuals. One can also suppress the constant term with the nocons option.

Besides the estimates of the coefficients and their standard errors, gmentropylinear
provides the final entropy for the model as well as the normalized signal entropy:

S(p̂) =

−∑
k

∑
j

pkj ln pkj

K lnM

The normalized entropy for the noise parameters is also included as follows:

S(ŵ) =

−∑
t

∑
j

wtj lnwtj

T ln J
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The pseudo-R2, measuring goodness of fit within the sample analyzed, follows from
the following normalized entropy metric:

Pseudo-R2 = 1− S (p̂ )

The normalized entropy measure scales the estimated entropy by the maximum
possible entropy of a problem with the provided number of variables, elements of the
support space, and observations. The maximum possible entropy occurs only when the
distribution of probabilities over the pm’s and the wj ’s is uniform and departs from this
maximum entropy point only when the moment constraints are included (Soofi 1992).
The data, which enter through the moment constraints, add information that reduces
uncertainty and pushes the solution away from the uniform distribution. As its name
suggests, the normalized entropy figure can be compared across analyses and ranges
between zero and one.

4 Example

The following example uses the gmentropylinear command to estimate the (logged)
price of a car in Stata’s auto.dta. Price is estimated here as a function of miles per
gallon, weight, and whether the car is foreign. First, the parameter support matrix
(support()) is defined. This is a (K ×M) matrix, where K = 4, because there are
three coefficients and a constant term to estimate. In this case, M = 5, although other
dimensions are admissible. Running the estimation without a constant is also possible
with the nocons option.
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. sysuse auto
(1978 Automobile Data)

. generate lnprice=ln(price)

. matrix support=(-1,-.5,0,.5,1)\(-1,-.5,0,.5,1)\(-5,-2.5,0,2.5,5)\
> (-5,-2.5,0,2.5,5)

. gmentropylinear lnprice mpg weight foreign, support(support) sigmavalue(3)
> endpoint(3) wmat(err) residual(error) lambda(lambda)
Iteration 1: Entropy = 87.735061
Iteration 2: Entropy = 82.8903845
Iteration 3: Entropy = 82.3891972
Iteration 4: Entropy = 82.3207142
Iteration 5: Entropy = 82.3199698
Iteration 6: Entropy = 82.3199698
Iteration 7: Entropy = 82.3199698

Generalized Maximum Entropy (Linear) Number of obs = 74
Degrees of freedom = 3
Model Entropy = 82.3
Pseudo R2 = 0.2133
Signal entropy = 0.7867
Noise entropy = 0.9503

lnprice Coef. Std. Err. z P>|z| [95% Conf. Interval]

mpg .0455501 .0107623 4.23 0.000 .0244564 .0666437
weight .0008686 .0000915 9.50 0.000 .0006893 .0010478
foreign .7168477 .0991786 7.23 0.000 .5224612 .9112342

_cons 4.824633 .4896719 9.85 0.000 3.864894 5.784372

Finally, gmentropylinear stores the following in e():

Scalars
e(N) number of observations
e(df m) model degrees of freedom
e(entropy) final entropy for the model
e(int entropy) initial entropy
e(pseudoR2) pseudo-R2

e(sign entropy) normalized entropy for the signal
e(noise entropy) normalized entropy for the noise

Macros
e(depvar) name of dependent variable
e(properties) b V

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimators
e(esupport) error support space specified
e(betaprobs) coefficient parameter support space

Functions
e(sample) marks estimation sample
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5 Conclusion

In this article, we described the user-written gmentropylinear command, which pro-
vides users with a GME alternative for fitting linear models. GME estimation is partic-
ularly advantageous when estimation is performed on small datasets or when the user
is unsure about the appropriate model specification and would like to find the max-
imally noncommittal solution. The GME approach shrinks the joint entropy distance
between the data being analyzed and an assumption of uniform priors where there is
complete uncertainty about the underlying distribution. Implementing a dual uncon-
strained model allows for equal emphasis to be placed on the precision of the estimates
as well as on prediction, where the estimated probabilities yield the distribution of the
parameters of interest (the error and coefficient estimates) up to the M − 1 moment
for the coefficient and the J − 1 moment for the error term (Golan, Judge, and Perloff
1996). This approach also benefits from being robust to collinearity. As with other
robust estimators, discrete support spaces for the parameters (coefficients and errors)
must be specified. The command outlined here generates GME estimates derived from
user-specified parameter supports and error supports that are provided either by the
user or by the defaults.
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