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Abstract. xsmle is a new user-written command for spatial analysis. We con-
sider the quasi–maximum likelihood estimation of a wide set of both fixed- and
random-effects spatial models for balanced panel data. xsmle allows users to han-
dle unbalanced panels using its full compatibility with the mi suite of commands,
use spatial weight matrices in the form of both Stata matrices and spmat objects,
compute direct, indirect, and total marginal effects and related standard errors
for linear (in variables) specifications, and exploit a wide range of postestimation
features, including the panel-data case predictors of Kelejian and Prucha (2007,
Regional Science and Urban Economics 37: 363–374). Moreover, xsmle allows
the use of margins to compute total marginal effects in the presence of nonlinear
specifications obtained using factor variables. In this article, we describe the
command and all of its functionalities using simulated and real data.

Keywords: st0470, xsmle, spatial analysis, spatial autocorrelation model, spatial
autoregressive model, spatial Durbin model, spatial error model, generalized spa-
tial panel random-effects model, panel data, maximum likelihood estimation

1 Introduction

It is widely recognized that sample data collected from geographically close entities are
not independent but spatially correlated, which means observations of closer units tend
to be more similar than observations of further units (Tobler 1970).1 Spatial clustering,
or geographic-based correlation, is often observed for economic and sociodemographic
variables such as unemployment, crime rates, house prices, per-capita health expen-
ditures, and so on (Ollé 2003, 2006; Moscone and Knapp 2005; Revelli 2005; Kostov
2009; Elhorst and Fréret 2009; Elhorst, Piras, and Arbia 2010; Moscone, Tosetti, and
Vittadini 2012). Theoretical models usually recognize the existence of spatial spillovers,

1. Note that nonspatial structured dependence may also be observed. In these cases, measures of
geographical proximity are replaced by measures of similarity, allowing one to investigate peer ef-
fects through social or industrial networks (LeSage and Pace 2009; Bramoullé, Djebbari, and Fortin
2009).

c© 2017 StataCorp LLC st0470
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which decline as distance between units increases; empirically, spatial panel-data models
have become a popular tool for measuring such spillovers.

As far as we know, while both R and MATLAB offer a large suite of functions to
estimate spatial panel-data models (Millo and Piras 2012; LeSage and Pace 2009)—
with the notable exception represented by the accompanying code of Kapoor, Kelejian,
and Prucha (2007)—Stata’s capabilities include a wide set of commands designed to
deal only with cross-sectional data (Drukker et al. 2013; Drukker, Prucha, and Raci-
borski 2013a,b). We developed the xsmle command to estimate a wide range of spatial
panel-data models using Stata. In particular, xsmle allows users to estimate both
fixed-effects (FE) and random-effects (RE) spatial autoregressive (SAR) models, spatial
Durbin models (SDMs), spatial error models (SEMs), FE spatial autocorrelation (SAC)
models, and generalized spatial RE (GSPRE) models. For spatial autoregressive (SAR)
and SDMs with FE, xsmle also allows a dynamic specification by implementing the
bias-corrected maximum likelihood approach described in Yu, de Jong, and Lee (2008).
Among other interesting features, xsmle allows users to i) use spatial weight matrices
created through the spmat command of Drukker et al. (2013); ii) compute direct, indi-
rect, and total marginal effects; iii) compute both clustered and Driscoll–Kraay standard
errors; iv) test whether an FE or RE model is appropriate using a robust Hausman test;
v) and exploit a wide range of predictors, extending to the panel-data case estimators
of Kelejian and Prucha (2007).

The rest of this article is organized as follows. In section 2, we present a brief review
of spatial panel-data models that can be estimated with xsmle. Section 3 documents
xsmle syntax and its main options, while section 4 illustrates its main features using
simulated and real datasets. The last section concludes.

2 Spatial panel-data models

Here we summarize spatial panel-data models, focusing on those that can be estimated
with xsmle. Note that xsmle is primarily designed to deal with balanced panel data in
which n units are observed for exactly T periods. We will turn to unbalanced panels in
section 4.1, where we show how to handle these by exploiting the official Stata mi suite
of commands.

In what follows, we denote the n× 1 column vector of the dependent variable with
yt and the n× k matrix of regressors with Xt, where t = 1, . . . , T indicating time peri-
ods. For each cross-section, W is the n× n matrix describing the spatial arrangement
of the n units, and each entry wij ∈ W represents the spatial weight associated to units i
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and j.2 To exclude self-neighbors, the diagonal elements wii are conventionally set equal
to zero. Note that xsmle allows the use of two different formats for the weight matrix;
that is, W can be a Stata matrix or an spmat object. This allows the user to leverage
the capabilities of other Stata commands that allow the creation and management of
weight matrices, such as spmat, spatwmat (Pisati 2001), or spwmatrix (Jeanty 2010).
Furthermore, xsmle automatically takes care of the longitudinal nature of the data.
Hence, users need to provide only the cross-sectional n×n weight matrix to fit a specific
model.

xsmle allows users to fit the following models:

SAR model. The basic equation for the SAR model is

yt = ρWyt +Xtβ + μ+ εt t = 1 . . . , T

It is assumed that μ ∼ N(0, σ2
μ) in the RE case, while μ is a vector of parameters

to be estimated in the FE variant. The standard assumptions—that εit ∼ N(0, σ2
ε )

and E(εitεjs) = 0 for i �= j or t �= s—apply in this case.

SDM. This model is a generalization of the SAR model, which also includes spatially
weighted independent variables as explanatory variables,

yt = ρWyt +Xtβ +WZtθ + μ+ εt

where M is a matrix of spatial weights that may or may not be equal to W. This
model can be further generalized by using Zt �= Xt.

SAC model. This model (alternatively referred to as the SAR with spatially autocorre-
lated errors, SAC) extends the SAR model by allowing for a spatially autocorrelated
error,

yt = ρWyt +Xtβ + μ+ νt

νt = λMνt + εt

where M is a matrix of spatial weights that may or may not be equal to W. The
literature focuses on the FE variant of this specification because the RE variant can
be written as a special case of the SAR specification.

2. Two sources of locational information are generally exploited. First, the location in Cartesian
space (for example, latitude and longitude) is used to compute distances among units. Second, the
knowledge of the size and shape of observational units allows the definition of contiguity measures.
For example, one can determine which units are neighbors in the sense that they share common
borders. Thus the former source points toward the construction of spatial distance matrices, while
the latter is used to build spatial contiguity matrices. Note that the aforementioned sources of
locational information are not necessarily different. For instance, a spatial contiguity matrix can
be constructed by defining units as contiguous when they lie within a certain distance; on the other
hand, by computing the coordinates of the centroid of each observational unit, one can obtain
approximated spatial distance matrices using the distances between centroids. More details are
available in LeSage and Pace (2009).
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SEM. The SEM focuses on SAC in the error term, as in

yt = Xtβ + μ+ νt

νt = λMνt + εt

This is a special case of the SAC model, but it is also a special case of the SDM.

GSPRE. This model can be represented as

yt = Xtβ + μ+ νt

νt = λMνt + εt

μ = φWμ+ η

This is a generalization of the SEM, in which the panel effects, represented by the
vector μ, are spatially correlated. The vectors μ and εt are assumed to be indepen-
dently normally distributed errors, so the model is necessarily an RE specification
with μ = (I− φW)−1η and νt = (I− λW)−1εt. There are various special cases of
the general specification, with (a) λ �= φ �= 0, (b) λ = 0, (c) φ = 0, (d) λ = φ.

In addition to the distinction between the FE and RE, there is a separate distinction
between static and dynamic specifications. The aforementioned models are all static in
that they involve contemporaneous values of the dependent and independent variables.
xsmle also allows the estimation of SAR and SDM models, such as

yt = τyt−1 + ψWyt−1 + ρWyt +Xtβ + μ+ εt

where the lagged (in time) dependent variable or the lagged (in both time and space)
dependent variable can be included in the specification.

2.1 Estimation

Various methods of fitting spatial panel models have been proposed. Broadly, they
fall into two categories: i) generalized method of moments and ii) quasi–maximum
likelihood (QML) estimators. All models that can be fit using xsmle fall into the second
category. A synopsis guide with all estimable models and their features is reported in
table 1.3 The gain from programming gradients is large, so v1 evaluators are used for all
but one of the specifications. The exception is the RE SEM, whose likelihood function
involves a transformation using the Cholesky factors of a rather complicated matrix
containing the parameters to be estimated, so the matrix differentiation is extremely
messy.

3. Elhorst (2010a) suggests that the computation time required to carry out full maximum likelihood
estimation can be reduced by transforming variables in a way that permits the likelihood function
to be concentrated so the estimation can be carried out in two steps. In translating his routines
to Mata, we found that using a concentrated likelihood tended to increase both the number of
iterations and the time required to fit the models.
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For dynamic models, that is, those including a time-lagged dependent variable, a
time and space-lagged dependent variable, or both, xsmle implements only the FE vari-
ant of the SAR and SDM models using the bias-corrected QML approach described by
Yu, de Jong, and Lee (2008), which is consistent when both n → ∞ and T → ∞. The
command starts by constructing maximum likelihood estimates, treating the aforemen-
tioned lagged variables as exogenous regressors. Bias corrections are then computed for
each of the coefficients and used to adjust the initial maximum likelihood estimates.

For each model, the default asymptotic variance–covariance (VC) matrix of the coef-
ficients is obtained from the observed information matrix.4 Angrist and Pischke (2009)
emphasize the potential dangers of this approach for datasets for which there may be
unknown serial correlation in the errors within each panel unit. To our knowledge,
there are no established methods of computing robust standard errors for spatial panel-
data models. Mimicking the derivation of robust standard errors for nonspatial panel
models, xsmle implements two different approaches: i) one-way clustered standard er-
rors and ii) Driscoll and Kraay (1998) standard errors. As in other panel-data official
Stata commands, specifying vce(robust) is equivalent here to specifying vce(cluster

panelvar), where panelvar is the variable that identifies the panels.

As for the Driscoll–Kraay standard errors, the xsmle implementation is based on
Hoechle’s (2007) xtscc command. The Driscoll–Kraay approach provides a specific
variant of the Newey–West robust covariance estimator computed using the Bartlett
kernel and a time series of scores’ cross-sectional averages.5

In our test runs, the differences between the asymptotic and robust standard errors
are usually small, but we have not focused on cases with small values of n and T .
In principle, it would be useful to include a bootstrap estimator for the VC matrix.
Unfortunately, there is a major barrier to applying standard bootstrap methods in this
case. The crucial assumption for resampling is that the errors for the observations or
units from which each sample is drawn should be independent. For panel or clustered
data, this means the resampling is based on panel units or clusters. For spatial panels,
our base model assumes the observations for different panel units are correlated over
space for any given period t. It follows that resampling based on panel units cannot
be reconciled with the hypothesis of spatial interactions in the relationships of interest.
As an alternative, we could use time periods as the resampling unit, but this will be
valid only if there is no serial correlation within panels. Further, for many applications
of spatial panel estimation, the value of T is considerably smaller than n, so large
sample assumptions of bootstrap statistics do not apply. Statisticians have developed
bootstrap methods for spatial data but at the cost of imposing substantial restrictions
on the extent of spatial interactions that can be examined. The methods have tended
to focus on regular lattices, but they can be applied to spatial data for fairly small
economic units such as counties and labor market areas.

4. A variant obtained from the outer product of the gradients is also available by specifying vce(opg).

5. The bandwidth for the kernel is specified with a default value of floor{4(T/100)2/9} if no value is
specified.
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Direct, indirect, and total marginal effects

Because spatial regression models exploit the complicated dependence structure between
units, the effect of an explanatory variable’s change for a specific unit will affect the unit
itself and, potentially, all other units indirectly. This implies the existence of direct,
indirect, and total marginal effects. With the exception of the SEM and the GSPRE

models, and only if the effects option is specified, these effects are computed using
the formulas reported in table 2. The command automatically distinguishes between
short- and long-run marginal effects when a dynamic spatial model is fit.
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Note that the analytical results reported in table 2 are valid only for linear (in
variables) specifications. Thus, by default, a “factor variables” specification will block
the computation of these effects.6 Nonetheless, in these cases, xsmle allows for the use
of margins to at least compute total marginal effects. As described in section 4.1, xsmle
also computes the standard errors of marginal effects using Monte Carlo simulation (the
default) or the Delta method.

Robust Hausman test

A classical question in panel-data empirical analyses refers to the choice between FE

and RE variants (when both can be estimated). An answer to this question can be given
using the Hausman (1978) statistic,

ξ̂ = δ̂
′
V̂−1

0 δ̂ (1)

where δ̂ = (β̂FE − β̂RE) is the difference between the FE and RE estimates and V̂0 is

an estimate of the VC matrix of δ̂. The asymptotic distribution of (1) under the null
hypothesis of no systematic difference between the two sets of estimates is χ2 with c
degrees of freedom, with c being usually the size of the estimated parameter vector.
This test can be easily implemented in Stata using the official hausman command.
However, one of the common issues with spatial panel-data models is that the Hausman
specification test often fails to meet its asymptotic assumptions, especially in small
samples. This is because, under the alternative hypothesis, V̂0 = V̂FE − V̂RE is not
ensured to be positive definite. xsmle allows users to overcome this issue because it

directly accounts for Ĉov(β̂FE, β̂RE); that is, V̂0 = V̂FE + V̂RE − 2Ĉov(β̂FE, β̂RE). In

particular, xsmle estimates V̂0 through DŴ0D
′, where D = (Ic,−Ic) and Ic denotes

the identity matrix of size c. The joint VC matrix, Ŵ0, is consistently estimated using
the following sandwich formula,

Ŵ0 =

(
HFE O
O HRE

)−1(
SFE,FE SFE,RE

SRE,FE SRE,RE

)(
HFE O
O HRE

)−1

with

Ĥp = − 1

n

n∑
i=1

∂2Lpi

(
β̂p

)
∂β ∂β′ , p = FE,RE

Ŝpq =
1

n

n∑
i=1

∂Lpi

(
β̂p

)
∂δ

∂Lqi

(
β̂q

)
∂β′ , p, q = FE,RE

where Ĥ−1
FE(ŜFE,FE)Ĥ

−1
FE and Ĥ−1

RE(Ŝ¯RE,RE)Ĥ
−1
RE are the cluster–robust VC matrices of

β̂FE and β̂RE, where the cluster is represented by the panel unit. Note that the hausman
option is allowed only for static models.

6. We thank an anonymous referee for bringing this point to our attention. Like other Stata estima-
tion commands, xsmle cannot recognize nonlinear specifications not based on factor variables, for
example, user-defined second-order terms or interactions.
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3 The xsmle command

The xsmle command is written using the optimize() suite of functions and the opti-
mization engine used by ml. It shares the same features of all Stata estimation com-
mands. Stata 10.1 is the earliest version that can run xsmle. Only analytic weights
(aweight) are allowed, but the declared weights variable must be constant within each
unit of the panel. xsmle supports the mi prefix but does not support the svy prefix.
Factor variables are allowed if Stata 11 (or later) is used to run the command.

One major prerequisite for using the command concerns the construction of the n×n
matrix of spatial weights. This matrix can be a Stata matrix or spmat object, and it
may follow any spatial weighting scheme, though it is usual to normalize spatial weights
so either the row or column sums are equal to one.7 xsmle does not allow the use
of time-varying weight matrices. This means that the weights matrix is forced to be
the same for each cross-section, and xsmle will automatically replicate it for all time
periods. This could be a limitation, especially in long panels, so a possible extension to
xsmle may provide the option to read multiple (time-varying) weight matrices. Note
that the maximum dimension of a single Stata matrix depends on Stata’s flavor: 40×40
(Small), 800×800 (IC), and 11000×11000 (SE or MP). To overcome this limitation, one
must specify bigger matrices as spmat objects. A second requirement for xsmle is that
the data must be tsset or xtset by the panel and time variables before the command
is executed.8

The basic xsmle syntax is the following:

xsmle depvar
[
indepvars

] [
if
] [

in
] [

weight
] [

, options
]

The default is the RE SAR model. A description of the main estimation and postesti-
mation options is provided below. A full description of all available options is provided
in the xsmle help file.

3.1 Main options for xsmle

Options common to all models

model(name) specifies the spatial model to be fit. name may be sar for the SAR model,
sdm for the SDM, sac for the SAR with spatially autocorrelated errors model, sem for
the SEM, or gspre for the GSPRE model. The default is model(sar).

7. It is not assumed that W is symmetric, but (I−ρW) must be nonsingular. This implies conditions
on the eigenvalues of W discussed extensively in the literature (for example, see LeSage and Pace
[2009, chap. 3]).

8. This avoids the necessity of adding syntax to specify the panel and time variables. However, there
is a corollary that should be noted. The natural way of organizing spatial panel data for estimation
purposes is to stack each panel unit for period t = 1 followed by panel units for t = 2, and so on.
Thus xsmle internally sorts the dataset by time and panel unit but restores the original sorting on
exit.
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vce(vcetype) specifies how to estimate the VC matrix corresponding to the parameter
estimates. The standard errors reported in the estimation results table are the square
root of the variances (diagonal elements) of the VC estimator. vcetype may be one
of the following:

oim uses the observed information matrix.

opg uses the sum of the outer product of the gradients.

robust is the synonym for clustered sandwich estimator, where clustvar is the pan-
elvar.

cluster clustvar specifies the clustered sandwich estimator.

dkraay # specifies the Driscoll–Kraay robust estimator. # is the maximum lag used
in the calculation.

robust is the synonym for vce(cluster panelvar).

cluster(clustvar) is the synonym for vce(cluster clustvar).

constraints(constraints); see [R] estimation options.

level(#) sets the confidence level for confidence intervals; the default is level(95).

postscore saves observation-by-observation scores in the estimation results list.

posthessian saves the Hessian corresponding to the full set of coefficients in the esti-
mation results list.

display options: vsquish, baselevels, allbaselevels; see [R] estimation options.

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log,

from(init specs), tolerance(#), ltolerance(#), nrtolerance(#),
nonrtolerance; see [R] maximize. These options are seldom used.

Options for the SAR model

wmatrix(name) specifies the weight matrix for the SAR term. name can be a Stata
matrix or an spmat object. This matrix can be standardized or not. wmatrix() is
required.

re uses the random-effects estimator; re is the default.

fe uses the fixed-effects estimator.

type(type option
[
, leeyu

]
) specifies fixed-effects type. type option may be ind for

individual-fixed effects, time for time-fixed effects, or both for time- and individual-
fixed effects. The leeyu suboption transforms the data according to Lee and Yu
(2010).

dlag(dlag) defines the structure of the spatiotemporal model. When dlag is equal to 1,
only the time-lagged dependent variable is included; when dlag is equal to 2, only
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the space-time-lagged dependent variable is included; when dlag is equal to 3, both
the time-lagged and space-time-lagged dependent variables are included.

noconstant suppresses the constant term in the model. It is used only for the re

estimator.

effects computes direct, indirect, and total effects and adds them to e(b).

vceeffects(vcee type
[
, nsim(#)

]
) sets how the standard errors for the direct, indi-

rect, and total effects are computed. vcee type may be dm for delta method standard
errors, sim[, nsim(#)] for Monte Carlo standard errors, where nsim(#) sets the
number of simulations for the LeSage and Pace (2009) procedure, or none for no
standard errors.

hausman performs the robust Hausman test, automatically detecting the alternative
estimator. The test is computed estimating the VC matrix of the difference between
fe and re estimators as in White (1982). It is allowed only for static models.

Options for the SDM model

wmatrix(name) specifies the weight matrix for the SAR term. name can be a Stata
matrix or an spmat object. This matrix can be standardized or not. wmatrix() is
required.

dmatrix(name) specifies the weight matrix for the spatially lagged regressors; the de-
fault is to use the matrix specified in wmat(name). name can be a Stata matrix or
an spmat object. This matrix can be standardized or not.

durbin(varlist) specifies the regressors that have to be spatially lagged; the default is
to lag all independent variables in varlist.

re uses the random-effects estimator; re is the default.

fe uses the fixed-effects estimator.

type(type option
[
, leeyu

]
) specifies fixed-effects type. type option may be ind for

individual-fixed effects, time for time-fixed effects, or both for time- and individual-
fixed effects. The leeyu suboption transforms the data according to Lee and Yu
(2010).

dlag(dlag) defines the structure of the spatiotemporal model. When dlag is equal to 1,
only the time-lagged dependent variable is included; when dlag is equal to 2, only
the space-time-lagged dependent variable is included; when dlag is equal to 3, both
time-lagged and space-time-lagged dependent variables are included.

noconstant suppresses the constant term in the model. It is used only for the re

estimator.

effects computes direct, indirect, and total effects and adds them to e(b).
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vceeffects(vcee type
[
, nsim(#)

]
) sets how the standard errors for the direct, indi-

rect, and total effects are computed. vcee type may be dm for delta method standard
errors, sim[, nsim(#)] for Monte Carlo standard errors, where nsim(#) sets the
number of simulations for the LeSage and Pace (2009) procedure, or none for no
standard errors.

hausman performs the robust Hausman test, automatically detecting the alternative
estimator. The test is computed estimating the VC matrix of the difference between
fe and re estimators as in White (1982). It is allowed only for static models.

Options for the SAC model

wmatrix(name) specifies the weight matrix for the SAR term. name can be a Stata
matrix or an spmat object. This matrix can be standardized or not. wmatrix() is
required.

ematrix(name) specifies the weight matrix for the SAC error term. name can be a Stata
matrix or an spmat object. This matrix can be standardized or not. ematrix() is
required.

fe uses the fixed-effects estimator.

type(type option
[
, leeyu

]
) specifies fixed-effects type. type option may be ind for

individual-fixed effects, time for time-fixed effects, or both for time- and individual-
fixed effects. The leeyu suboption transforms the data according to Lee and Yu
(2010).

effects computes direct, indirect, and total effects and adds them to e(b).

vceeffects(vcee type
[
, nsim(#)

]
) sets how the standard errors for the direct, indi-

rect, and total effects are computed. vcee type may be dm for delta method standard
errors, sim[, nsim(#)] for Monte Carlo standard errors, where nsim(#) sets the
number of simulations for the LeSage and Pace (2009) procedure, or none for no
standard errors.

Options for the SEM model

ematrix(name) specifies the weight matrix for the SAC error term. name can be a Stata
matrix or an spmat object. This matrix can be standardized or not. ematrix() is
required.

re uses the random-effects estimator; re is the default.

fe uses the fixed-effects estimator.

type(type option
[
, leeyu

]
) specifies fixed-effects type. type option may be ind for

individual-fixed effects, time for time-fixed effects, or both for time- and individual-
fixed effects. The leeyu suboption transforms the data according to Lee and Yu
(2010).
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noconstant suppresses the constant term in the model. It is used only for the re

estimator.

hausman performs the robust Hausman test, automatically detecting the alternative
estimator. The test is computed estimating the VC matrix of the difference between
fe and re estimators as in White (1982). It is allowed only for static models.

Options for the GSPRE model

wmatrix(name) specifies the weight matrix for the SAC RE. name can be a Stata matrix
or an spmat object. This matrix can be standardized or not. wmatrix() is required.

ematrix(name) specifies the weight matrix for the SAC error term. name can be a
Stata matrix or an spmat object. This matrix can be standardized or not.

re uses the random-effects estimator.

error(error options) defines the random-effect error structure with error options =
1, . . . , 4. In particular, error(1) (the default) for φ �= λ �= 0, error(2) for φ �= 0
and λ = 0, error(3) for φ = 0 and λ �= 0 (SEM model), and error(4) for φ = λ.

noconstant suppresses the constant term in the model. It is used only for the re

estimator.

3.2 Postestimation command after xsmle

After an xsmle estimation, the predict command can be used to compute predicted
values. Moreover, predict allows postestimation of FE or RE. The methods imple-
mented in this command are the panel-data extension of those available in Kelejian
and Prucha (2007) and Drukker, Prucha, and Raciborski (2013b). See section 4.1 for
details.

Syntax for predict

The syntax of the command is the following:

predict
[
type

]
newvar

[
if
] [

in
] [

, rform full limited naive xb a noie
]

Options for predict

rform, the default, calculates predicted values from the reduced-form equation, yit =
(In − ρW)−1(xitβ + αi).

full calculates predicted values based on the full information set. This option is avail-
able only with model(sac).
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limited calculates predicted values based on the limited information set. This option
is available only with model(sac).

naive calculates predicted values based on the observed values of yit = ρWyit+xitβ+αi.

xb calculates the linear prediction including the FE or RE xitβ + αi.

a estimates αi, the FE, or RE. With FE models, this statistic is allowed only with
type(ind).

noie excludes the estimated αi, the FE, or RE from the prediction.

4 Examples

4.1 Simulated data

In this section, we use simulated data to illustrate the xsmle command’s estimation
capabilities, focusing on model selection, prediction, and estimation in the presence of
missing data.9 In particular, we consider the following FE SDM model,

yit = 0.3
n∑

j=1

wijyjt + 0.5x1it − 0.3x2it − 0.2x3it + 0.3
n∑

j=1

wijx1it

+ 0.6

n∑
j=1

wijx2it + 0.9

n∑
j=1

wijx3it + μi + εit (2)

where the nuisance parameters (μi) are drawn from an independent and identically
distributed (i.i.d.) standard Gaussian random variable. To allow for dependence between
the unit-specific effects and the regressors, we generate the latter as follows,

xkit = 0.4μi + (1− 0.42)1/2 zkit (3)

where zkit is standard Gaussian with k = 1, 2, 3. The sample size is set to 940 (n = 188
and T = 5) observations.10

Let us begin by importing a first-order spatial contiguity matrix of the Italian local
health authorities using the spmat command:

. use ASL_contiguity_mat_ns.dta

. spmat dta W W*, replace

The spmat dta command allows users to store an spmat object called W in the Stata
memory. Notice that, to fit a model using xsmle, one must use the spatial weight matrix
as a Stata matrix or an spmat object. The following spmat entry allows users to easily
summarize the W object:

9. We report the code used for each example in the sj examples simdata.do accompanying file.
10. The chosen cross-sectional dimension (n = 188) depends on the dimension of the used weight

matrix, a contiguity matrix of the Italian local health authorities.
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. spmat summarize W, links

Summary of spatial-weighting object W

Matrix Description

Dimensions 188 x 188
Stored as 188 x 188

Links
total 906

min 1
mean 4.819149
max 13

As can be seen, the imported spatial matrix consists of 188 cross-sectional units with
at least 1 neighbor, with about 4.8 contiguous units on average. Because xsmle does not
make this transformation automatically, the next step consists in the row-normalization
of the W object. This can easily be performed using the following:

. spmat dta W W*, replace normalize(row)

In particular, the syntax for fitting an FE SDM is

. xtset id t
panel variable: id (strongly balanced)
time variable: t, 1 to 5

delta: 1 unit

. xsmle y x1 x2 x3, wmat(W) model(sdm) fe type(ind) nolog
Warning: All regressors will be spatially lagged

SDM with spatial fixed-effects Number of obs = 940

Group variable: id Number of groups = 188
Time variable: t Panel length = 5

R-sq: within = 0.3852
between = 0.3705
overall = 0.3635

Mean of fixed-effects = 0.0314

Log-likelihood = -1204.1194

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

Main
x1 .5456416 .034473 15.83 0.000 .4780758 .6132075
x2 -.2798453 .0356246 -7.86 0.000 -.3496683 -.2100224
x3 -.1896873 .0356751 -5.32 0.000 -.2596093 -.1197654

Wx
x1 .3093954 .0716979 4.32 0.000 .16887 .4499207
x2 .5063665 .0759508 6.67 0.000 .3575057 .6552273
x3 .9072591 .0748364 12.12 0.000 .7605825 1.053936

Spatial
rho .2274947 .0425135 5.35 0.000 .1441699 .3108196

Variance
sigma2_e .7500305 .0347637 21.58 0.000 .6818948 .8181661
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. estimates store sdm_fe

When the fe option is specified, xsmle fits a model with a unit-specific FE. This
means that, in the example above, we might omit the type(ind) option.11 The latter
allows users to specify alternative forms for the FE: type(time) allows for time FE,
while type(both) specifies both time and unit FE. In the case of SDM, xsmle also
allows users to specify a different set of spatially lagged explanatory variables through
the durbin(varlist) option. As the warning message reports, the default is to lag all
independent variables in varlist.

To simplify the task of producing publication-quality tables, xsmle reports labeled
estimation results. The Main equation contains the β vector, the Wx equation reports
(only for SDM) the θ vector, the Spatial equation reports the spatial coefficients (in
this case ρ), and the Variance equation reports ancillary parameters as the variance of
the error (σ2

ε in this case).12

Even if we already know the FE SDM is correctly specified in this example, we might
be interested in testing the appropriateness of a RE variant using the official Stata
hausman command:

11. The nolog option is seldom used and allows users to omit the display of the log-likelihood function
iteration log. xsmle allows users to use all maximize options available for ml estimation commands
(see help maximize) plus the additional postscore and posthessian options, which report the
score and the hessian as an e() matrix. Note that the usual limit for matrix dimension does apply
in this case.

12. Notice that for models other than SDM, the ancillary equations will be different following the
specific parametrization used.
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. xsmle y x1 x2 x3, wmat(W) model(sdm) re type(ind) nolog
Warning: Option type(ind) will be ignored
Warning: All regressors will be spatially lagged

SDM with random-effects Number of obs = 940

Group variable: id Number of groups = 188
Time variable: t Panel length = 5

R-sq: within = 0.3671
between = 0.5567
overall = 0.4429

Log-likelihood = -1461.5464

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

Main
x1 .6278704 .0383441 16.37 0.000 .5527173 .7030236
x2 -.1595226 .0402597 -3.96 0.000 -.2384301 -.0806151
x3 -.0807422 .0400913 -2.01 0.044 -.1593197 -.0021648

_cons .0214849 .0669073 0.32 0.748 -.109651 .1526208

Wx
x1 .3042129 .0784076 3.88 0.000 .1505368 .4578889
x2 .5215032 .0805461 6.47 0.000 .3636356 .6793707
x3 .9631849 .0813256 11.84 0.000 .8037896 1.12258

Spatial
rho .2558274 .040904 6.25 0.000 .175657 .3359977

Variance
lgt_theta -.0751917 .1284863 -0.59 0.558 -.3270202 .1766369
sigma2_e .9648846 .0515123 18.73 0.000 .8639224 1.065847

. estimates store sdm_re

. hausman sdm_fe sdm_re, eq(1:1 2:2 3:3)

Coefficients
(b) (B) (b-B) sqrt(diag(V_b-V_B))

sdm_fe sdm_re Difference S.E.

comp1
x1 .5456416 .6278704 -.0822288 .
x2 -.2798453 -.1595226 -.1203227 .
x3 -.1896873 -.0807422 -.1089451 .

comp2
x1 .3093954 .3042129 .0051825 .
x2 .5063665 .5215032 -.0151366 .
x3 .9072591 .9631849 -.0559257 .

comp3
rho .2274947 .2558274 -.0283326 .011587
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b = consistent under Ho and Ha; obtained from xsmle
B = inconsistent under Ha, efficient under Ho; obtained from xsmle

Test: Ho: difference in coefficients not systematic

chi2(7) = (b-B)´[(V_b-V_B)^(-1)](b-B)
= -75.83 chi2<0 ==> model fitted on these

data fails to meet the asymptotic
assumptions of the Hausman test;
see suest for a generalized test

In this example, the Hausman statistic fails to meet its asymptotic assumptions. This
problem can be overcome by adding the hausman option to the estimation command:

. xsmle y x1 x2 x3, wmat(W) model(sdm) fe type(ind) hausman nolog
Warning: All regressors will be spatially lagged

... estimating random-effects model to perform Hausman test

SDM with spatial fixed-effects Number of obs = 940

Group variable: id Number of groups = 188
Time variable: t Panel length = 5

R-sq: within = 0.3852
between = 0.3705
overall = 0.3635

Mean of fixed-effects = 0.0314

Log-likelihood = -1204.1194

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

Main
x1 .5456416 .034473 15.83 0.000 .4780758 .6132075
x2 -.2798453 .0356246 -7.86 0.000 -.3496683 -.2100224
x3 -.1896873 .0356751 -5.32 0.000 -.2596093 -.1197654

Wx
x1 .3093954 .0716979 4.32 0.000 .16887 .4499207
x2 .5063665 .0759508 6.67 0.000 .3575057 .6552273
x3 .9072591 .0748364 12.12 0.000 .7605825 1.053936

Spatial
rho .2274947 .0425135 5.35 0.000 .1441699 .3108196

Variance
sigma2_e .7500305 .0347637 21.58 0.000 .6818948 .8181661

Ho: difference in coeffs not systematic chi2(7) = 91.10 Prob>=chi2 = 0.0000

As expected, in this case, we strongly reject the null hypothesis, with a χ2 test
statistic equal to 91.10 and a p-value lower than 1%. Note that, if specified, the hausman
option automatically detects the alternative model, which in our example is the RE.

Another common task routinely undertaken by spatial practitioners is model selec-
tion. Following the strategy described in LeSage and Pace (2009) and Elhorst (2010b),
investigators should start with the SDM as a general specification and test for the alter-
natives. That is, we fit an SDM but would like to know whether it is the best model for
the data at hand. This kind of procedure can be easily implemented using xsmle. For



158 Spatial panel-data models using Stata

instance, one may be interested in testing for SAR or SEM specifications. Because the
SDM may be easily derived starting from a SEM, one can easily show that if θ = 0 and
ρ �= 0, the model is a SAR, while if θ = −βρ, the model is a SEM. After the estimation
of the SDM, these tests can be performed by exploiting the xsmle “equation-labeled”
vector of estimated coefficients and using the official Stata test and testnl commands
as follows:

. test [Wx]x1 = [Wx]x2 = [Wx]x3 = 0

( 1) [Wx]x1 - [Wx]x2 = 0
( 2) [Wx]x1 - [Wx]x3 = 0
( 3) [Wx]x1 = 0

chi2( 3) = 203.77
Prob > chi2 = 0.0000

. testnl ([Wx]x1 = -[Spatial]rho*[Main]x1) ([Wx]x2 = -[Spatial]rho*[Main]x2)
> ([Wx]x3 = -[Spatial]rho*[Main]x3)

(1) [Wx]x1 = -[Spatial]rho*[Main]x1
(2) [Wx]x2 = -[Spatial]rho*[Main]x2
(3) [Wx]x3 = -[Spatial]rho*[Main]x3

chi2(3) = 193.70
Prob > chi2 = 0.0000

Finally, because the SAC and SDM are nonnested, information criteria can be used
to test whether the most appropriate model is the SAC using the following:

. estimates restore sdm_fe
(results sdm_fe are active now)

. estat ic

Akaike´s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

sdm_fe 940 . -1204.119 8 2424.239 2463.006

Note: N=Obs used in calculating BIC; see [R] BIC note.
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and

. xsmle y x1 x2 x3, wmat(W) emat(W) model(sac) fe type(ind) nolog

SAC with spatial fixed-effects Number of obs = 940

Group variable: id Number of groups = 188
Time variable: t Panel length = 5

R-sq: within = 0.2208
between = 0.0007
overall = 0.0667

Mean of fixed-effects = 0.0831

Log-likelihood = -1290.9574

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

Main
x1 .4860935 .0415495 11.70 0.000 .4046579 .5675291
x2 -.3332588 .0370124 -9.00 0.000 -.4058019 -.2607158
x3 -.3039008 .0371472 -8.18 0.000 -.3767081 -.2310936

Spatial
rho -.134535 .1106866 -1.22 0.224 -.3514768 .0824067

lambda .4760945 .0877639 5.42 0.000 .3040804 .6481085

Variance
sigma2_e 1.073918 .0469018 22.90 0.000 .9819918 1.165844

. estat ic

Akaike´s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

. 940 . -1290.957 6 2593.915 2622.99

Note: N=Obs used in calculating BIC; see [R] BIC note.

In this case, all tests point toward an FE SDM. Finally, one may be interested in the
postestimation of the FE or predicted values of the outcome variable. In section 4.1,
we summarize the spatial predictors implemented in xsmle. They are the panel-data
extension of the predictors discussed in Kelejian and Prucha (2007), which range from
the suboptimal näıve predictor to the efficient minimum mean square error (MSE) full-
information predictor. Here we give some examples of the xsmle postestimation syntax.
For instance, to postestimate the FE once an FE spatial model has been fit, we type

. estimates restore sdm_fe
(results sdm_fe are active now)

. predict alphahat, a

Now, to immediately visualize the deviation between the true (simulated) and esti-
mated μi values, we may plot them using

. twoway (kdensity alpha, lpattern(dot) lwidth(*2))
> (kdensity alphahat, lpattern(dash)),
> legend(row(1) label(1 "True") label(2 "Estimated"))
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Figure 1. xsmle postestimation: predicted FE

The resulting plot is shown in figure 1. Similarly, we can obtain a reduced form and
näıve prediction of the outcome variable using (the resulting plot is shown in figure 2)

. predict yhat_rform
(option rform assumed)

. predict yhat_naive, naive

. twoway (kdensity y, lpattern(dot) lwidth(*2))
> (kdensity yhat_rform, lpattern(dash))
> (kdensity yhat_naive), legend(row(1) label(1 "True")
> label(2 "Reduced form") label(3 "Naive"))
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Figure 2. xsmle postestimation: reduced form and näıve predictors

Postestimation

In this section, we briefly discuss the predictors available in xsmle and replicate the
Kelejian and Prucha (2007) Monte Carlo study, extending it to the case of panel data.
Let us consider the following SAR with a SAC errors model,

yt = ρWyt +Xtβ + μ+ νt (4)

νt = λMνt + εt (5)

for which we use the same notation discussed in section 2. In this model, yit is deter-
mined as

yit = ρwi.yt + xitβ + μi + νit

νit = λmi.νt + εit

where, for t = 1, . . . , T , wi. and mi. are the ith rows of W and M, xit is the ith row of
Xt, νit and εit are the ith elements of νt and εt, μi is the ith element of μ, and wi.yt

and mi.νt denote the ith elements of the spatial lags Wyt and Mνt with wi.yt that
does not include yit. By making the same assumptions of Kelejian and Prucha (2007),
we have (see Kelejian and Prucha [2007] for more details on model assumptions)

νt ∼ N (0, σ2
εΣ

νt)

yt ∼ N (ξt, σ
2
εΣ

yt)
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with

ξt = (I− ρW)−1(Xtβ + μ)

Σνt = (I− λM)−1(I− λM′)−1

Σyt = (I− ρW)−1Σνt(I− ρW′)−1

We consider three information sets,

Λ1 = {Xt,W}
Λ2 = {Xt,W,wi.yt}
Λ3 = {Xt,W,yt,−1}, t = 1, . . . , T

where Λ3 is the full-information set containing all n− 1 observations on yt and Λ1 and
Λ2 are both subsets of Λ3. We consider the following four predictors of yit (denoted as

y
(p)
it with p = 1 . . . , 4),13

y
(1)
it = E(yit|Λ1)

= (I− ρW)−1
i. (Xtβ + μ)

y
(2)
it = E(yit|Λ2)

= ρwi.yt + xitβ + μi +
cov(νit,wi.yt)

var(wi.yt)
{wi.yt − E(wi.yt)}

y
(3)
it = E(yit|Λ3)

= ρwi.yt + xitβ + μi + cov(νit,yt,−i) {VC(yt,−i)}−1 {yt,−i − E(yt,−i)}
y
(4)
it = ρwi.yt + xitβ + μi

where

E(wi.yt) = wi.(I− ρW)−1(Xtβ + μ)

var(wi.yt) = σ2
εwi.Σ

ytw′
i.

cov(μi,wi.yt) = σ2
εΣ

νt
i. (I− ρW′)−1w′

i.

E(yt,−i) = St,−i(I− ρW)−1(Xtβ + μ)

VC(yt,−i) = σ2
εSt,−iΣ

ytS′
t,−i

cov(νit,yt,−i) = σ2
εΣ

νt
i. (I− ρW′)−1S′

t,−i

In the above expressions, (I − ρW)−1
i. and Σνt

i. denote the ith rows of (I − ρW)−1

and Σνt , respectively, while St,−i is the n− 1×n selector matrix identical to the n×n
identity matrix I, except that the ith row of I is deleted.

13. p = 1 indicates the reduced-form predictor, p = 2 indicates the limited-information predictor, p = 3
indicates the full-information predictor, and p = 4 indicates the näıve predictor.



F. Belotti, G. Hughes, and A. Piano Mortari 163

We now compare the above predictors in terms of predictive efficiencies, extending
the Kelejian and Prucha (2007) Monte Carlo design to FE models like the one reported
in (4)–(5). In particular, we consider the following FE SAC model,

yit = ρ
n∑

j=1

wijyjt + 0.5x1it + μi + νit

νit = λ

n∑
j=1

wijνjt + εit

where the nuisance parameters, μi, are drawn from an i.i.d. standard Gaussian random
variable, while the x1it regressor is generated according to (3). The simulation is based
on what Kelejian and Prucha (2007) describe as the “two ahead and two behind” weight
matrix, in which each unit is directly related to the two units immediately after it and
immediately before it in the ordering. The matrix is row normalized, and all of its
nonzero elements are equal to 1/4.14 As in Kelejian and Prucha (2007), we report
results for 25 combinations of ρ, λ = −0.9,−0.4, 0, 0.4, 0.9 and set σ2

ε = 1. The sample
size is set to 500 (n = 100 and T = 5) observations. Note that when ρ = 0, results refer
to the SEM.

Simulation results in terms of sample averages over i = 1, . . . , 100 and t = 1, . . . , 5

for MSE(y
(p)
it ) for p = 2, . . . , 4 are given in table 3.15 As expected, even in the panel-

data case, numerical results are fully consistent with the theoretical notions reported in
Kelejian and Prucha (2007): the biased naive predictor is the worst, especially when
ρ = λ = 0.9, while the full information predictor is always the best.

14. See Kelejian and Prucha (2007) for more details on the structure of this weight matrix. Clearly,
the results reported here depend on the structure of this matrix.

15. Because the reduced-form predictor has by far the worst performance, we do not report its results.
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Table 3. Simulation results (MSEs)

ρ λ naive limited full α̂

−0.9 −0.9 1.441 0.488 0.308 0.398
−0.9 −0.4 0.931 0.547 0.464 0.263
−0.9 0 0.811 0.678 0.659 0.221
−0.9 0.4 0.940 0.932 0.913 0.244
−0.9 0.9 6.384 1.331 1.155 1.594
−0.4 −0.9 1.348 0.547 0.465 0.359
−0.4 −0.4 0.902 0.649 0.625 0.246
−0.4 0 0.809 0.764 0.761 0.224
−0.4 0.4 0.937 0.863 0.857 0.252
−0.4 0.9 6.362 0.856 0.849 1.586
0 −0.9 1.340 0.678 0.659 0.346
0 −0.4 0.887 0.764 0.761 0.240
0 0 0.803 0.793 0.792 0.220
0 0.4 0.937 0.765 0.762 0.257
0 0.9 6.019 0.702 0.660 1.548
0.4 −0.9 1.337 0.931 0.913 0.341
0.4 −0.4 0.885 0.863 0.857 0.233
0.4 0 0.811 0.765 0.762 0.229
0.4 0.4 0.966 0.673 0.651 0.274
0.4 0.9 5.541 0.659 0.518 1.445
0.9 −0.9 1.340 1.334 1.156 0.339
0.9 −0.4 0.887 0.857 0.849 0.230
0.9 0 0.805 0.702 0.660 0.215
0.9 0.4 1.445 0.659 0.518 0.758
0.9 0.9 8.150 1.127 0.391 2.250

On marginal effects

As already mentioned in section 2.1, a peculiar feature of spatial regression models is the
feedback process among spatially correlated units, which leads to the distinction between
direct, indirect, and total marginal effects. To show how to compute these effects using
xsmle, let us consider the data-generating process of the following dynamic FE SDM

model,

yit = τyit−1 + ψ
n∑

j=1

wijyjt−1 + 0.2
n∑

j=1

wijyjt + 0.5x1it − 0.3x2it − 0.2x3it

+ 0.3

n∑
j=1

wijx1it + 0.6

n∑
j=1

wijx2it + 0.9

n∑
j=1

wijx3it + μi + εit (6)
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where, as for the data-generating process reported in (2), the nuisance parameters are
drawn from an i.i.d. standard Gaussian random variable and the correlation between
unit-specific effects and regressors is obtained according to (3). The sample size is set
to 1,960 observations (n = 196 and T = 10) and τ = ψ = 0.3.16

As documented in section 3.1, xsmle allows the estimation of (6) by specifying the
dlag(3) option.17 By adding the effects option, one can use xsmle to compute direct,
indirect, and total effects:

. xsmle y x1 x2 x3, wmat(Wspmat) model(sdm) fe dlag(3) effects nolog
Warning: All regressors will be spatially lagged

Computing marginal effects standard errors using MC simulation...

Dynamic SDM with spatial fixed-effects Number of obs = 1764

Group variable: id Number of groups = 196
Time variable: t Panel length = 9

R-sq: within = 0.3876
between = 0.9108
overall = 0.8354

Mean of fixed-effects = 0.0708

Log-likelihood = -2396.3051

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

Main
y

L1. .278483 .0187886 14.82 0.000 .2416579 .315308

Wy
L1. .3371464 .0312009 10.81 0.000 .2759938 .3982989

x1 .471855 .0261821 18.02 0.000 .420539 .523171
x2 -.2774485 .0263341 -10.54 0.000 -.3290623 -.2258347
x3 -.1814445 .0268751 -6.75 0.000 -.2341187 -.1287704

Wx
x1 .3501276 .0516946 6.77 0.000 .2488081 .4514471
x2 .5557425 .0498404 11.15 0.000 .4580572 .6534278
x3 .9499813 .0503458 18.87 0.000 .8513054 1.048657

Spatial
rho .152554 .0287441 5.31 0.000 .0962165 .2088915

Variance
sigma2_e .9612217 .0291937 32.93 0.000 .9040031 1.01844

SR_Direct
x1 .4920234 .0251053 19.60 0.000 .4428179 .541229
x2 -.2567458 .0253696 -10.12 0.000 -.3064693 -.2070222
x3 -.1435512 .0251039 -5.72 0.000 -.1927539 -.0943484

16. We thank Jihai Yu for sharing his MATLAB code for creating the rook spatial weights matrix
used in this example. The original code has been translated into Mata for our purposes (see the
accompanying sj examples simdata.do file for details).

17. dlag(1) allows the estimation of (6), in which ψ = 0, while dlag(2) is the case in which τ = 0.
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SR_Indirect
x1 .4867733 .0582277 8.36 0.000 .372649 .6008975
x2 .5859261 .0604524 9.69 0.000 .4674416 .7044107
x3 1.052221 .0616699 17.06 0.000 .9313501 1.173092

SR_Total
x1 .9787967 .0683064 14.33 0.000 .8449185 1.112675
x2 .3291804 .0681426 4.83 0.000 .1956234 .4627374
x3 .9086697 .0672656 13.51 0.000 .7768315 1.040508

LR_Direct
x1 .8954026 .0504489 17.75 0.000 .7965245 .9942807
x2 -.2565021 .0444616 -5.77 0.000 -.3436452 -.1693589
x3 .0384557 .0470276 0.82 0.414 -.0537168 .1306282

LR_Indirect
x1 2.750811 .4462418 6.16 0.000 1.876193 3.625428
x2 1.485876 .2744933 5.41 0.000 .9478791 2.023873
x3 3.352583 .4749726 7.06 0.000 2.421653 4.283512

LR_Total
x1 3.646213 .4830534 7.55 0.000 2.699446 4.59298
x2 1.229374 .3028385 4.06 0.000 .6358214 1.822927
x3 3.391038 .5056929 6.71 0.000 2.399898 4.382178

When the effects option is specified, the marginal effects will be both displayed
and added to the estimated vector e(b). Given its dynamic nature, (6) implies both
short- and long-run effects (see table 2). In these cases, short-run effects are reported
under the three equations labeled SR Direct, SR Indirect, and SR Total, while long-
run effects are reported under LR Direct, LR Indirect, and LR Total.18 Equivalently,
short-run total effects can be obtained through margins using the following syntax:

. margins, dydx(*) predict(rform noie)

Average marginal effects Number of obs = 1,764
Model VCE : OIM

Expression : Reduced form prediction, predict(rform noie)
dy/dx w.r.t. : x1 x2 x3

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

x1 .9699528 .0681065 14.24 0.000 .8364665 1.103439
x2 .3283914 .0669413 4.91 0.000 .1971888 .459594
x3 .9068859 .0712236 12.73 0.000 .7672903 1.046481

18. Equation names follow Elhorst (2014) terminology on short- and long-run marginal effects.
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To ensure margins works, we added the noie’s xsmle postestimation option through
the predict() option of margins. As can be seen, the two procedures produce slightly
different results. This is because xsmle, by default, uses the Monte Carlo procedure
outlined in LeSage and Pace (2009). Hence, the point estimates (standard errors) are
averages (standard deviations) over the (default) 500 Monte Carlo replications. The
same point estimates can be obtained using xsmle with the vceeffects(none) option.19

. quietly xsmle y x1 x2 x3, wmat(Wspmat) model(sdm) fe dlag(3) effects
> vceeffects(none)

. estimates store dsdm_fe

. estout dsdm_fe, keep(SR_Total:) c(b)

dsdm_fe
b

SR_Total
x1 .9699528
x2 .3283914
x3 .9068859

Because the analytical formulas for direct, indirect, and total effects reported in
table 2 imply a linear (in variables) specification, xsmle suppresses the computation of
these effects when factor variables are specified, as shown in the example below:

. xsmle y c.x1##c.x1 c.x1#c.x2 c.x2 c.x3, wmat(Wspmat) model(sdm) fe dlag(3)
> effects nolog
Warning: All regressors will be spatially lagged

Warning: direct and indirect effects cannot be computed if factor variables
are specified option -effects- ignored. Notice that total effects

can be obtained using -margins-

Dynamic SDM with spatial fixed-effects Number of obs = 1764

Group variable: id Number of groups = 196
Time variable: t Panel length = 9

R-sq: within = 0.3929
between = 0.9122
overall = 0.8378

19. The vceeffects(none) option suppresses the computation of standard errors.
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Mean of fixed-effects = 0.0395

Log-likelihood = -2389.1429

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

Main
y

L1. .282856 .0187596 15.08 0.000 .2460878 .3196242

Wy
L1. .3418741 .0311604 10.97 0.000 .2808008 .4029474

x1 .4766421 .0261214 18.25 0.000 .4254451 .5278391

c.x1#c.x1 .0446299 .017106 2.61 0.009 .0111027 .0781571

c.x1#c.x2 -.0847021 .0243227 -3.48 0.000 -.1323737 -.0370306

x2 -.2720875 .0263194 -10.34 0.000 -.3236725 -.2205025
x3 -.1824236 .0267751 -6.81 0.000 -.2349018 -.1299453

Wx
x1 .3633111 .0517657 7.02 0.000 .2618521 .4647701

c.x1#c.x1 .0073658 .0327561 0.22 0.822 -.056835 .0715667

c.x1#c.x2 -.0608174 .0472681 -1.29 0.198 -.1534612 .0318264

x2 .5585988 .0496918 11.24 0.000 .4612047 .6559929
x3 .9484272 .0501452 18.91 0.000 .8501445 1.04671

Spatial
rho .1509144 .0287019 5.26 0.000 .0946597 .2071691

Variance
sigma2_e .9534039 .0289549 32.93 0.000 .8966533 1.010154

Nonetheless, when the specification includes factor variables, xsmle allows for the
use of margins to compute total marginal effects:

. margins, dydx(x1 x2 x3) predict(rform noie)
Warning: cannot perform check for estimable functions.

Average marginal effects Number of obs = 1,764
Model VCE : OIM

Expression : Reduced form prediction, predict(rform noie)
dy/dx w.r.t. : x1 x2 x3

Delta-method
dy/dx Std. Err. z P>|z| [95% Conf. Interval]

x1 .9952611 .0683488 14.56 0.000 .8613 1.129222
x2 .3278821 .0665554 4.93 0.000 .1974359 .4583284
x3 .9021512 .0707735 12.75 0.000 .7634377 1.040865
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xsmle also offers the opportunity to compute standard errors using the Delta method
through the vceeffetcs(dm) option.20

. xsmle y x1 x2 x3, wmat(Wspmat) model(sdm) fe dlag(3) effects vceeffects(dm)
> nolog
Warning: All regressors will be spatially lagged

Computing marginal effects standard errors using delta-method...

Dynamic SDM with spatial fixed-effects Number of obs = 1764

Group variable: id Number of groups = 196
Time variable: t Panel length = 9

R-sq: within = 0.3876
between = 0.9108
overall = 0.8354

Mean of fixed-effects = 0.0708

Log-likelihood = -2396.3051

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

Main
y

L1. .278483 .0187886 14.82 0.000 .2416579 .315308

Wy
L1. .3371464 .0312009 10.81 0.000 .2759938 .3982989

x1 .471855 .0261821 18.02 0.000 .420539 .523171
x2 -.2774485 .0263341 -10.54 0.000 -.3290623 -.2258347
x3 -.1814445 .0268751 -6.75 0.000 -.2341187 -.1287704

Wx
x1 .3501276 .0516946 6.77 0.000 .2488081 .4514471
x2 .5557425 .0498404 11.15 0.000 .4580572 .6534278
x3 .9499813 .0503458 18.87 0.000 .8513054 1.048657

Spatial
rho .152554 .0287441 5.31 0.000 .0962165 .2088915

Variance
sigma2_e .9612217 .0291937 32.93 0.000 .9040031 1.01844

SR_Direct
x1 .4889378 .0262506 18.63 0.000 .4374875 .5403881
x2 -.2566706 .0262086 -9.79 0.000 -.3080385 -.2053026
x3 -.144119 .02613 -5.52 0.000 -.1953328 -.0929052

SR_Indirect
x1 .481015 .058585 8.21 0.000 .3661905 .5958395
x2 .585062 .0580324 10.08 0.000 .4713206 .6988034
x3 1.051005 .0630431 16.67 0.000 .9274428 1.174567

20. While using the Delta method ensures the results do not depend on stochastic variability, it is a
more computationally intensive procedure.
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SR_Total
x1 .9699528 .0681065 14.24 0.000 .8364665 1.103439
x2 .3283914 .0669413 4.91 0.000 .1971888 .459594
x3 .9068859 .0712236 12.73 0.000 .7672903 1.046481

LR_Direct
x1 .8860048 .0680006 13.03 0.000 .7527261 1.019283
x2 -.25736 .0472579 -5.45 0.000 -.3499839 -.1647362
x3 .0347029 .0566012 0.61 0.540 -.0762334 .1456392

LR_Indirect
x1 2.659826 .5536009 4.80 0.000 1.574789 3.744864
x2 1.457852 .2844823 5.12 0.000 .9002767 2.015427
x3 3.280576 .5347181 6.14 0.000 2.232548 4.328604

LR_Total
x1 3.545831 .6090295 5.82 0.000 2.352155 4.739507
x2 1.200492 .3154343 3.81 0.000 .582252 1.818732
x3 3.315279 .5776118 5.74 0.000 2.183181 4.447377

Unbalanced panels

Missing data can pose major problems when fitting econometric models because it is
unlikely that missing values are missing completely at random. Most important here is
that xsmle generally cannot handle unbalanced panels. A strategy to address this issue
without relying on more complex econometric approaches is by multiple imputation,
that is, the process of replacing missing values by multiple sets of plausible values. This
section provides a simple example in which xsmle is used together with mi, Stata’s suite
of commands dealing with multiple data imputation, to overcome the hurdle. Let us
consider the same data-generating process reported in (2). The following syntax allows
users to randomly assign 5% missing values to the x1it covariate:

21

. set seed 12345

. replace x1 = . if uniform()<0.05
(49 real changes made, 49 to missing)

The first step is to declare the dataset as an mi dataset using mi set. Data must be
mi set before other mi commands can be used. In this example, we choose the wide

style. The second step is to register (declare) the variables with missing values using
the mi register command:

. mi set wide

. mi register imputed x1

21. As usual, a good practice to obtain reproducible results is to set the seed of Stata’s pseudorandom
number generator using the command set seed #, where # is any number between 0 and 231−1.
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We then use mi impute regress to fill in x1’s missing values using the linear re-
gression method with the z covariate as the predictor.22 The add(50) option specifies
the number of imputations to be added (currently, the total number of imputations
cannot exceed 1,000).

. mi impute regress x1 = z, add(50) rseed(12345)

Univariate imputation Imputations = 50
Linear regression added = 50
Imputed: m=1 through m=50 updated = 0

Observations per m

Variable Complete Incomplete Imputed Total

x1 891 49 49 940

(complete + incomplete = total; imputed is the minimum across m
of the number of filled-in observations.)

After mi impute has been executed, 50 new variables # x1 (with # = 1, . . . , 50)
are added to the dataset, each representing an imputed version of x1. Finally, we type

. mi estimate, dots post: xsmle y x1 x2 x3, wmat(W) model(sdm) fe type(ind) nolog

Imputations (50):
.........10.........20.........30.........40.........50 done

Multiple-imputation estimates Imputations = 50
SDM with spatial fixed-effects Number of obs = 940

Average RVI = 0.0452
Largest FMI = 0.1304

DF adjustment: Large sample DF: min = 2,908.95
avg = 126,717.41
max = 516,684.95

Model F test: Equal FMI F( 8,205401.9) = 130.14
Within VCE type: OIM Prob > F = 0.0000

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

Main
x1 .509667 .0367065 13.88 0.000 .4377079 .581626
x2 -.2737751 .0363977 -7.52 0.000 -.3451134 -.2024368
x3 -.1947675 .036523 -5.33 0.000 -.2663518 -.1231832

Wx
x1 .2788079 .0769524 3.62 0.000 .1279211 .4296947
x2 .5316003 .0779399 6.82 0.000 .3788391 .6843615
x3 .8991836 .0768688 11.70 0.000 .748522 1.049845

Spatial
rho .2471005 .042971 5.75 0.000 .1628754 .3313257

Variance
sigma2_e .7751222 .0364928 21.24 0.000 .7035961 .8466484

22. See help mi impute for details on the available imputation methods. The z covariate is a standard
Gaussian random variable specifically designed to be correlated with x1. See the code reported in
the sj examples simdata.do file for details.
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to exploit xsmle to fit the FE SDM using the 50 imputed versions of the x1 variable.
In this way, both the coefficients and standard errors will be adjusted for the between-
imputations variability according to the combination rules given in Rubin (1987). We
replicated the same exercise by assigning (at random) a higher percentage (10% and
20%) of missing values to the x1 covariate. To offer an example in which the multiple
imputation strategy directly affects the ρ parameter value, we used the same strategy,
assigning 5%, 10%, and 20% missing values to the dependent variable.23

The upper panel of table 4 reports the results for the case in which x1 is the missing
variable. As expected, the bias affecting the β1 parameter increases when the number of
imputed values grows. The same is true for the ρ parameter when the missing values are
in the dependent variable (lower panel of table 4). Note that even if these are not the
results of a Monte Carlo simulation, the effect of missing values is seemingly stronger
on ρ than β1.

Table 4. Summary of estimation results by % of missing values†

Missing x1

No missing 5% missing 10% missing 20% missing
β1 0.546 0.510 0.471 0.425

(0.034) (0.037) (0.040) (0.043)

Missing y

No missing 5% missing 10% missing 20% missing
ρ 0.227 0.192 0.171 0.103

(0.043) (0.047) (0.053) (0.060)

† Standard errors in parentheses. True values: β1 = 0.5, ρ = 0.3.

4.2 Real data

As an example of using spatial panel models with real data, we use a dataset on elec-
tricity usage at the state level in the United States. The data cover the 48 states in the
continental United States plus the District of Columbia for the period 1990–2010. The
data are drawn from the Electric Power Annual compiled by the Department of En-
ergy’s Energy Information Agency together with general economic, demographic, and
weather information from other U.S. statistical agencies, including the Bureau of Labor
Statistics and the Census Bureau.24

23. Interested readers can find the related Stata code in the accompanying sj examples simdata.do

file.
24. Interested readers can find the Stata code and data used for this application in the accompanying

sj empirical application.do, wstate rook.spmat, and state spatial dbf.dta files.
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The analysis focuses on the response of residential electricity demand to prices and
weather or climate conditions. The spatial dimension arises in at least two ways:

• Relative prices in neighboring states may influence decisions about the location
of economic activities and subsequently of the residence. Electricity prices in
California are high in comparison with prices in the Northwest and parts of the
Midwest, but one would expect that location decisions and thus electricity demand
will be more strongly influenced by prices in the Northwest than in the Midwest.
In modeling terms, this behavior may be manifested as a significant coefficient on
spatially weighted prices or on the spatially lagged dependent variable.

• Both weather and climate variables may serve as proxies for short- and long-term
regional influences on the location of economic activity, the energy efficiency of
buildings, and other determinants of electricity use. Given the physical capital
stock, annual variations in weather will affect electricity demand for air condi-
tioning or heating. Hence, it is interesting to determine whether local or regional
weather variables have a statistically distinct influence on electricity demand.

Note that the logic suggesting a role for spatial influences on electricity demand
in each state does not imply direct spatial interactions for the dependent variable,
as in cases where it is argued that policy decisions in one state—for example, taxes
on property—are influenced by decisions made by neighboring states. Instead, the
arguments reflect a combination of omitted variables that may be spatially correlated
plus the spatially distributed influence of variables that would be included in any model
of electricity demand.

Tables 5–7 summarize the results obtained when FE models are used to examine
residential demand for electricity using the log of residential consumption per person as
the dependent variable. Elhorst and others argue that FE models are more appropriate
for such data because the sample represents the complete population of U.S. continen-
tal states rather than a random sample drawn from that population. This claim is
supported by the evidence given in the last two lines of table 5, where all static RE

specifications are strongly rejected by the Hausman test. The models do not provide a
comprehensive analysis of factors that may influence demand, but they have been re-
fined to focus on key variables that explain changes in electricity demand over the last
two decades. For residential consumption, the large differences between the within and
between R2 statistics, other than for the models that include the lagged (in time) depen-
dent variable, confirm the importance of state FE associated with variables that are not
included in the analysis or that cannot be identified in this specification. Nonetheless,
the within R2 statistics, at least equal to 0.82, show that the models can account for a
large proportion of variation over time in electricity consumption for residential usage
by state. Weather variables, both heating and cooling degree days, have an important
influence on residential consumption, and so does the size of the housing stock.25

25. We test for alternative measures of income; the best indicator seems to be personal disposable
income adjusted for differences in the cost of living across states (using the ACCRA cost of living
index) and for changes in the CPI over time.
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Table 6. Residential electricity demand—test for model selection

χ2 p-value Akaike’s
information criterion

SAR versus dynamic SAR 414.26 0.000 .
SDM versus dynamic SDM 358.14 0.000 .
dynamic SAR versus dynamic SDM 15.82 0.000 .
SEM versus dynamic SDM 505.00 0.000 .
SAC . . −4201.0
dynamic SDM . . −4629.0
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Table 7. Direct, indirect, and total effects—residential electricity demand

dynamic dynamic
SAR SAR SDM SDM SAC

Long-run direct effects

Real personal income 0.210*** 0.082 0.223*** 0.096 0.214***
Real average residential price −0.247*** −0.359*** −0.307*** −0.401*** −0.249***
Housing units 0.775*** 0.375** 0.660*** 0.312* 0.775***
Cooling degree days 0.059*** 0.182*** 0.059*** 0.174*** 0.059***
Heating degree days 0.145*** 0.366*** 0.138*** 0.339*** 0.146***
Real average total price 0.020*** 0.026*

Long-run indirect effects

Real personal income 0.110*** 0.095 0.141*** 0.121* 0.109***
Real average residential price −0.130*** −0.417** −0.194*** −0.508** −0.126**
Housing units 0.406*** 0.435* 0.417*** 0.394 0.393*
Cooling degree days 0.031*** 0.211*** 0.038*** 0.221*** 0.030*
Heating degree days 0.076*** 0.424** 0.087*** 0.429** 0.074*
Real average total price 0.262*** 0.285*

Long-run total effects

Real personal income 0.321*** 0.177 0.364*** 0.217 0.323***
Real average residential price −0.377*** −0.777*** −0.502*** −0.909*** −0.375***
Housing units 1.180*** 0.809** 1.077*** 0.706* 1.168***
Cooling degree days 0.090*** 0.393*** 0.097*** 0.395*** 0.089***
Heating degree days 0.222*** 0.790*** 0.225*** 0.768*** 0.220***
Real average total price 0.282*** 0.311*

Short-run direct effects

Real personal income 0.033 0.040
Real average residential price −0.146*** −0.169***
Housing units 0.152* 0.131*
Cooling degree days 0.074*** 0.073***
Heating degree days 0.149*** 0.142***
Real average total price 0.004*

Short-run indirect effects

Real personal income 0.011 0.015
Real average residential price −0.048*** −0.062***
Housing units 0.050* 0.048
Cooling degree days 0.024*** 0.027***
Heating degree days 0.049*** 0.052***
Real average total price 0.075*

Short-run total effects

Real personal income 0.044 0.055
Real average residential price −0.194*** −0.231***
Housing units 0.203* 0.179
Cooling degree days 0.098*** 0.100***
Heating degree days 0.198*** 0.195***
Real average total price 0.079*

Significance levels: * p < 10%, ** p < 5%, and *** p < 1%
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Table 5 shows strong spatial interactions in residential consumption. The coefficients
of the spatially lagged dependent variable (ρ) and of the spatially weighted price are
highly significant and appear to have quite separate influences on consumption. Spatial
Durbin variables with coefficients not significantly different from zero have been dropped
from the model. The results in table 6 reinforce recommendations from LeSage and Pace
(2009) and Elhorst (2010a) that investigators should start with the SDM as a general
specification and test for the exclusion of variables for nested models using likelihood-
ratio tests; for the SAC model, we adopted the modified Akaike’s information criterion as
in Burnham and Anderson (2004). The positive ρ coefficient is consistent with omitted
regional factors that vary over time and affect residential consumption. The positive
coefficient on the spatially weighted average price in neighboring states indicates a clear
displacement effect by which an increase in electricity prices in one state encourages a
shift in demand from that state to neighboring states. That is an important constraint
on the impact of state programs to promote renewable energy or reduce CO2 emissions.
The coefficients on the lagged dependent variable are both highly significant in columns
(3) and (5) of table 5. The series within panel time are too short to carry out reliable
tests, but the coefficient on the lagged dependent variable is so far from one that it is
unlikely the equations have a unit root. The λ coefficient in the SEM column, (6), is
highly significant, but this specification is dominated by the SAC model in column (7).
The inclusion of the spatially lagged dependent variables reduces the estimate of λ from
0.39 to about 0.02 so that it is no longer significantly different from 0. Overall, the
results in table 5 together with the test reported in table 6 suggest that the dynamic
SDM (column 5) provides the best specification.

One of the reasons for studying such models is to fit the price elasticities of demand.
In the nonspatial specification, the elasticity is simply the coefficient of the log price.
As discussed in section 2, the marginal effect of price on electricity demand may differ
across states because of spatial interactions. The key difference between the direct and
total impacts is that the direct impact measures the impact of a unit change in variable
xk in state i on demand in state i averaged over all states. In contrast, the total impact
measures the impact of the same unit change in variable xk in all states on demand in
state i, again averaged over all states. xsmle displays values for the direct, indirect, and
total impact of changes in each of the independent variables. Unlike the values reported
in table 5, table 7 reports elasticities accounting for spatial feedback. Moreover, for
the SAR and SDM dynamic specifications, table 7 also distinguishes between short- and
long-run marginal effects. Note that marginal effects in static models have been labeled
as long run, but they should be compared with short-run effects from dynamic models
(see table 2). These additional results are consistent across all spatial specifications,
with the controls being significant and with the expected signs. The inclusion of the
time-lagged dependent variable makes the coefficient for the real personal income not
significant anymore and greatly reduces the elasticity of residential consumption with
respect to the other controls.



178 Spatial panel-data models using Stata

5 Conclusions

In this article, we described the new xsmle command, which can be used to fit an ex-
tensive array of spatial models for panel data. xsmle supports weight matrices in the
form of both Stata matrices and spmat objects, allows the computation of direct, indi-
rect, and total effects and related standard errors, and provides various postestimation
features for obtaining predictions, including the use of margins. Furthermore, xsmle
is fully compatible with the mi Stata suite of commands. We used simulated data to
illustrate xsmle estimation capabilities, focusing on model selection, prediction, and
estimation in the presence of missing data, and provided an empirical application based
on electricity usage data at the state level in the United States.
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