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Abstract. In this article, we present two commands (cmi test and cmi interval)
to implement the testing and inference methods for conditional moment inequality
or equality models proposed in Andrews and Shi (2013, Econometrica 81: 609–
666). The cmi test command tests the validity of a finite number of conditional
moment equalities or inequalities. This test returns the value of the test statis-
tic, the critical values at significance levels 1%, 5%, and 10%, and the p-value.
The cmi interval command returns the confidence interval for a one-dimensional
parameter defined by intersection bounds. We obtain this confidence interval by in-
verting cmi test. All procedures implemented are uniformly asymptotically valid
under appropriate conditions (specified in Andrews and Shi [2013]).

Keywords: st0467, cmi test, cmi interval, conditional moment inequalities and
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1 Introduction

This article provides a brief introduction to conditional moment inequality or equality
testing and describes the new cmi test and cmi interval commands. The cmi test

command implements the testing procedure proposed in Andrews and Shi (2013) for
general moment inequality models, with a finite number of conditional moment re-
strictions and a finite-dimensional parameter. The cmi interval command returns
confidence intervals for a one-dimensional parameter bounded above or below by a fi-
nite number of conditional moments by inverting the testing procedure proposed in
Andrews and Shi (2013).

The package we describe is not intended for computing confidence intervals for θ,
unless the setting is the one associated with cmi interval. Computing confidence
intervals in a general setting requires numerically sketching out the set of θ values for
which cmi test returns an acceptance. Simple grid-search algorithms for this task
become exponentially more costly as the dimension of θ increases. Other commonly
used statistical software packages offer more efficient algorithms, but we are not aware
of their implementation in Stata.

c© 2017 StataCorp LLC st0467
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Null hypotheses arise frequently in econometrics in the form of conditional moment
inequalities or equalities, for example, when testing the sign of the conditional average
treatment effect, when certain incomplete models lead to conditional moment inequal-
ity or equality restrictions on parameters, and when testing the fundamental assump-
tions for the local average treatment-effect estimator (see Mourifié and Wan [2014]).
Andrews and Shi (2013) first transform the conditional moment inequalities or equali-
ties into a large number of unconditional moment inequalities or equalities, then con-
struct a test statistic based on these unconditional moment inequalities or equalities.
The resulting test is uniformly asymptotically valid and consistent against all fixed
alternatives. Chernozhukov, Lee, and Rosen (2013) and Lee, Song, and Whang (2013)
propose two main alternatives to the Andrews and Shi (2013) test, both based on non-
parametric estimators of the conditional moment inequalities or equalities.1 All three
tests are consistent and do not dominate one another in terms of power. In practice,
one may choose a test based on computational feasibility or implement more than one
test for more robust conclusions.

The commands we describe offer a rich set of options to allow the user to fine tune
the procedure. However, in most applications, the default options—as recommended in
Andrews and Shi (2013)—work well without much user input.

We use the following notation throughout this article: �a� denotes the largest integer
less than or equal to a, and �a� denotes the smallest integer larger than or equal to a.

2 Framework

2.1 Parameter inference based on conditional moment inequalities
and equalities

Consider an independent and identically distributed sample {Wi}ni=1. Let Xi be a
vector of instrumental variables, which is a subvector of Wi. Conditional moment
inequality and equality models are

E{mj(Wi, θ0)|Xi} ≥ 0 for j = 1, . . . , p

E{mj(Wi, θ0)|Xi} = 0 for j = p+ 1, . . . , k, almost surely (1)

p and k are two nonnegative integers so that k ≥ p and m(·, θ0) := {m1(·, θ0), . . . ,
mk(·, θ0)}′ is a vector of moment functions of the observables that are known up to the
parameter θ0. The set Θ ⊆ Rdθ denotes the parameter space for θ0. The moment func-
tions need not depend on some elements of Wi, which makes those elements excluded
variables. The conditional moment inequality model arises in many modeling contexts.
We give an example later, and more examples are in Andrews and Shi (2013).

In a conditional moment inequality model, the parameter θ0 may or may not be point
identified. Thus a consistent point estimator for θ0 may or may not exist, and typical t

1. Commands for the procedure in Chernozhukov, Lee, and Rosen (2013) are introduced in Cher-
nozhukov et al. (2015).
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test-based confidence intervals do not apply. However, one can still test hypotheses on
the parameter, such as

H0 : θ0 = θ (2)

for a given value θ. Andrews and Shi (2013) propose—and the cmi test command
implements—a test of the above hypothesis. Testing this hypothesis amounts to testing
(1), with θ0 replaced by θ. The test is

φn(θ) = 1{Tn(θ) > cn(θ, 1− α)} (3)

where Tn(θ) is a test statistic, cn(θ, 1 − α) is a simulated critical value, and α is the
nominal level of the test.

We can then invert the test to construct a confidence set (CS) for θ0. The CS is
defined as

CSn(1− α) = {θ ∈ Θ : φn(θ) = 0}
The standard way to compute this CS is to consider many grid points in Θ, compute
φn(θ) at each grid point, and collect the values for which φn(θ) = 0.2

In some cases, it is of interest to test a null hypothesis of the form

E{mj(Wi)|Xi} ≥ 0 for j = 1, . . . , p

E{mj(Wi)|Xi} = 0 for j = p+ 1, . . . , k, almost surely (4)

which does not depend on a parameter θ, where m(·) := {m1(·), . . . ,mk(·)}′ is a vector
of known functions of the observables and Wi, Xi, k, and p are as above. For exam-
ple, this arises when one is interested in the sign of a conditional average treatment
effect or the shape of a dose–response function, as discussed in examples 2.1 and 2.2 in
Lee, Song, and Whang (2013). Testing the hypothesis in (4) is the same as testing (2)
in the model in (1). One just replaces m(·, θ) with m(·); consequently, the test in (3)
does not depend on θ.

Now, we briefly describe a conditional average treatment-effect example of the testing
problem in (4). Let D be a binary treatment variable, which equals 1 if treated and
0 if untreated. Let Y be the outcome variable. In the potential-outcome notation,
Y = DY (1)+ (1−D)Y (0), where Y (1) is the treated outcome observable only if D = 1
and Y (0) is the untreated outcome observable only if D = 0. Let X be a vector
of covariates. Suppose that D is randomly assigned, with each individual receiving
treatment with a known probability p. We can then express the average conditional
treatment effect, given X, as follows:

E{Y (1)− Y (0)|X} = E

{
DY

p
− (1−D)Y

1− p

∣∣∣∣X}
2. You can combine cmi test with any grid-search algorithm to complete this task. Usually, this

grid search is computationally costly when the dimension of the parameter space is large. One
way to circumvent the computational burden is applying a response surface algorithm for global
optimization introduced by Kaido, Molinari, and Stoye (2016). You can implement this algo-
rithm using a MATLAB toolbox called “DACE”, which is publicly available. So far, we are not
aware of whether this algorithm can be used with Stata commands. For details of “DACE”, see
http://www2.imm.dtu.dk/projects/dace/.
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Suppose the researcher wants to test whether the average treatment effect is negative
for individuals at all X values. In the framework above, this problem can be written as
testing the null hypothesis

H0 : E{mj(W)|X} ≥ 0

where j = 1,W = (Y,D,X), and m1(W) = −{(DY )/p}+ [{(1−D)Y }/(1− p)].

2.2 Confidence intervals based on intersection bounds

The cmi interval command computes the CS for the special, but popular case that
the parameter θ0 is one dimensional, and the moment inequalities provide intersection
bounds for this parameter, so the CS of θ0 is an interval. The cmi interval command
combines a one-dimensional grid-search algorithm with cmi test to compute this inter-
val. Specifically, the command applies when the conditional moment inequality model
is

E{ρu,j(Wi)− θ0|Xi} ≥ 0 for j = 1, . . . , ku

E{θ0 − ρ�,j(Wi)|Xi} ≥ 0 for j = 1, . . . , k� (5)

where θ0 is a real-valued parameter and ρu,j(·) and ρ�,j(·) are known functions of the
observables. The upper bounds for θ0 are E{ρu,1(Wi)|Xi}, . . . , E{ρu,ku

(Wi)|Xi}, and
the lower bounds are E{ρ�,1(Wi)|Xi}, . . . , E{ρ�,k�

(Wi)|Xi}. It is easy to see that (5)
is a special case of (1), with p = ku + k�, k = p, and

mj(Wi, θ0) =

{
ρu,j(Wi)− θ0 for j = 1, . . . , ku
θ0 − ρ�,j−ku

(Wi) for j = ku + 1, . . . , ku + k�

The cmi interval command allows one or more upper bounds, ρu,j(Wi), to be identical
to some lower bounds, ρ�,j′(Wi).

We use a censored data example like that in Andrews and Shi (2014) to illustrate
the model in (5). Let D be a binary variable indicating data censorship and X be a
covariate vector. Let Y ∗ be a variable subject to censoring; that is, we observe it only
when D = 1. Let θ0 denote the conditional cumulative distribution function (c.d.f.) of
Y ∗ given X evaluated at a certain point, y0. Then, θ0 is bounded by the inequalities in
(5) with ku = k� = 1, and

ρu,1(W) = 1{Y ≤ y0, D = 1}+ 1{D = 0} (6)

ρ�,1(W) = 1{Yi ≤ y0, Di = 1} (7)

We illustrate the implementation of both commands using this example in section 6
below.

3 Detailed procedures

In this section, we describe the detailed procedures from Andrews and Shi (2013) that
the commands implement. Section 3.1 summarizes the steps in section 9 of Andrews and
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Shi (2013), and section 3.2 describes the algorithm to compute the confidence interval
for the intersection bound model in (5).

3.1 Basic testing procedure

Test statistics

Now we describe the testing procedure that cmi test implements. Although we focus
on testing the hypothesis in (2) for the model in (1), we can also apply the procedure to
the hypothesis in (4). Following Andrews and Shi (2013), we transform the conditional
moment restrictions in (1) into unconditional moment restrictions before using them to
construct the test statistic. The instrumental functions are functions of the instrumental
variables, Xi. The ones we use are countable hypercubes on standardized Xi. We define
the standardized Xi variables first. The standardized Xi, denoted Xo

i , is

Xo
i = Φ

{
Σ̂

−1/2
X,n

(
Xi −Xn

)}
where Xn = n−1

∑n
i=1 Xi ∈ Rdx , Σ̂X,n = n−1

∑n
i=1(Xi −Xn)(Xi −Xn)

′, and Φ(x) =
{Φ(x1), . . . ,Φ(xdx

)}′. The function Φ(·) denotes the standard normal c.d.f. and x =
(x1, . . . , xdx

)′.

The instrumental functions are

ga,r(X
o
i ) = 1{Xo

i ∈ ×dx
u=1[(au − 1)/(2r), au/(2r)]} (8)

where a = (a1, . . . , adx
)′ ∈ {1, 2, . . . , 2r}dx and r = 1, 2, 3, . . .. In the implementation,

we consider only r = 1, 2, . . . , r1,n for a positive integer r1,n. The cmi test command
uses �n1/(2dx)/2� as r1,n by default and allows the user to opt for a different positive
integer.

Next, we compute the sample average of the unconditional moment functions for
each j = 1, . . . , k and each (a, r) described above. For notational simplicity, in the
discussion below, we suppress the possible dependence of mj(Wi, θ) on θ throughout.
We have

mn,j(ga,r) = n−1
n∑

i=1

mj(Wi)ga,r(X
o
i )

We also compute the sample variance, σ̂2
n,j(ga,r), ofmj(Wi)ga,r(X

o
i ). Because σ̂

2
n,j(ga,r)

could be zero for some (a, r), we also compute the variance, σ̂2
n,j , of the conditional

moment function, mj(Wi), to regularize σ̂2
n,j(ga,r). We use the regularized variance

σ2
n,j(ga,r) = σ̂2

n,j(ga,r) + εσ̂2
n,j

in the test statistic. The regularization parameter ε is 0.05 in cmi test by default,
and the user is allowed to set it to a different small positive number by specifying the
epsilon() option. We then construct the test statistic that combines the information
in all of these sample moments. After constructing the test statistic, we construct the
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critical value cn(1 − α). There are two versions of the critical value. One is based on
the asymptotic approximation, and the other is based on the bootstrap. The command
implements the former by default. The bootstrap version can be activated by selecting
the boot option. The test statistic and critical values are described next.

By default, cmi test uses summation (sum) to aggregate over j for each (a, r) and
uses Cramér–von Mises-type aggregation over (a, r), which yields the following test
statistic,

Tn = n

r1,n∑
r=1

∑
a∈{1,...,2r}dx

(
p∑

j=1

[
mn,j(ga,r)
σn,j(ga,r)

]2
−
+

k∑
j=p+1

(
mn,j(ga,r)
σn,j(ga,r)

)2)
(r2 + 100)(2r)dx

(9)

where the negative part function [x]− = max{0,−x}. By specifying the sfunc() and ks

options, cmi test allows the user to choose from the Cramér–von Mises max statistic,
the Kolmogorov–Smirnov sum statistic, or the Kolmogorov max statistic.3 Choosing
max instead of sum replaces the expression in the large brackets in the numerator with

max

{
max

j=1,2,...,p

[
mn,j(ga,r)

σn,j(ga,r)

]2
−
, max

j=p+1,p+2,...,k

(
mn,j(ga,r)

σn,j(ga,r)

)2
}

Choosing the Kolmogorov–Smirnov sum statistic instead of the Cramér–von Mises max
statistic replaces

∑r1,n
r=1(

∑
a∈{1,...,2r}dx )/{(r2 + 100)(2r)dx} in (9) with

max
(a,r):a∈{1,...,2r}dx ,r=1,...,r1,n

Asymptotic critical values

The asymptotic approximation version of the critical value is a simulated quantile of a
statistic (denoted by TAsy

n ), defined the same as Tn, except with mn,j(ga,r) replaced by

n−1/2{νn,j(ga,r) + ϕn,j(ga,r)}
where {νn,j(ga,r)}j,a,r is a Gaussian random vector that approximates the distribution of
(n1/2 [mn,j(ga,r)− E{mj(Wi)ga,r(X

o
i )}])j,a,r and ϕn,j(ga,r) is the generalized moment

selection (GMS) function that approximates n1/2E{mj(Wi)ga,r(X
o
i )} and selects the

binding moment restrictions.

Specifically, the command simultaneously draws the k
∑r1,n

r=1(2r)
dx dimensional vec-

tor {νn,j(ga,r)}j=1,...,k,a∈{1,...,2r}dr ,r=1,...,r1,n from a multivariate normal distribution.
The multivariate normal distribution has mean zero, and its variance–covariance ma-
trix is the empirical variance–covariance matrix of

{mj(Wi)ga,r(X
o
i )}j=1,...,k,a∈{1,...,2r}dr ,r=1,...,r1,n

3. The commands do not incorporate the quasilikelihood-ratio statistic discussed in Andrews and Shi
(2013), because that statistic requires carrying out a quadratic optimization operation many times.
We are not aware of a fast quadratic optimization routine in Stata.
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Many draws are taken, and each is used to compute a draw of TAsy
n . The command

then computes the empirical 1−α quantile of the sample of TAsy
n values obtained. This

quantile is cn(1 − α). By default, the number of draws is set to 5,001, and the seed of
the random-number generator is set to 10,000. You can change these by specifying the
rep() and seed() options.

The GMS function, ϕn,j(ga,r), is

ϕn,j(ga,r) =

{
σ̂n,jBn if κ−1

n n1/2mn,j(ga,r)/σn,j(ga,r) > 1
0 otherwise

where Bn and κn are two user-chosen tuning parameters that, in the asymptotic thought
experiment, should satisfy κn → ∞, κn/n

1/2 → 0, Bn → ∞, and Bn/κn → 0 as n→ ∞.
By default, the command uses the recommended choices from Andrews and Shi (2013):
κn =

√
0.3 log n and Bn =

√
0.4 log n/ log log n.

Bootstrap critical values

The bootstrap version of the critical value is a simulated quantile of a statistic (denoted
by TBoot

n ) defined in the same way as Tn, except with mn,j(ga,r)/σn,j(ga,r) replaced by

n−1/2{νBoot
n,j (ga,r) + ϕn,j(ga,r)}
σBoot
n,j (ga,r)

{νBoot
n,j (ga,r)}j,a,r is a bootstrap approximation of (n1/2[mn,j(ga,r) − E{mj(Wi)ga,r(

Xo
i )}])j,a,r, ϕn,j(ga,r) is the GMS function described above, and σBoot

n,j (ga,r) is a bootstrap
version of σn,j(ga,r).

Specifically, the command first randomly draws n observations with replacement
from the sample {Wi}ni=1. These n observations, denoted {W∗

i }ni=1, form a bootstrap
sample, which is used to compute one draw of νBoot

n,j (ga,r) and σ
Boot
n,j (ga,r). The draw of

νBoot
n,j (ga,r) is

n1/2
{
m∗

n,j(ga,r)−mn,j(ga,r)
}

where we compute m∗
n,j(ga,r) using the same procedure as that for mn,j(ga,r), except

with {W∗
i } (and its subvector {X∗

i }) replaced by {Wi} (and its subvector {Xi}). We
compute the draw of σBoot

n,j (ga,r) using the same procedure as that for σn,j(ga,r), except
with {W∗

i } (and its subvector {X∗
i }) replacing {Wi} (and its subvector {Xi}). We then

use these to compute one draw of TBoot
n . By repeating the process, we take many TBoot

n

draws, with cn(1−α) defined as the 1−α empirical quantile of these draws. By default,
the number of draws is set to 5,001, and the seed of the random-number generator is
set to 10,000. You can change these by specifying the rep() and seed() options.

3.2 Confidence interval construction for intersection bound models

In this section, we describe the algorithm to construct a confidence interval for the
one-dimensional parameter in the model in (5).
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One-sided bound

If either ku or k� is zero, the model gives a one-sided bound for the parameter. In
this case, the command uses the following algorithm consisting of iterative steps, where
step (−1) is the preparation step, and for i ≥ 0, step (i) finds the confidence interval
bounds for θ0 up to the ith digit after the decimal point.

Step (-1). First, we set a preliminary lower (upper) bound of the confidence interval:

θ̂lb,pre = min
1≤j≤kl

min
i≤n

ρl,j(Wi)

θ̂ub,pre = max
1≤j≤ku

max
i≤n

ρu,j(Wi)

In addition, we define two auxiliary statistics:

θ̂lb,bound = max
1≤j≤kl

max
i≤n

ρl,j(Wi)

θ̂ub,bound = min
1≤j≤ku

min
i≤n

ρu,j(Wi)

Note that θ̂lb,pre (θ̂ub,pre) is a preliminary conservative lower (upper) bound for the

confidence interval. Meanwhile, θ̂lb,bound (θ̂ub,bound) is trivially contained in the
one-sided confidence interval and thus is greater (smaller) than the lower (upper)
bound. The following steps take advantage of these conservative bounds.

We explain the method for deriving the lower bound here. The upper bound
method is analogous.

Step (0). If the distance between �θ̂lb,pre� and �θ̂lb,bound� is 1, skip the current step,

let θ̂lb,0 = �θ̂lb,pre�, and move to the next step. Otherwise, consider grid points

on [�θ̂lb,pre�, �θ̂lb,bound�] with distance between adjacent grid points being d0 =

�max{(�θ̂lb,bound� − �θ̂lb,pre�)/20, 1}�. Apply cmi test for θ0 being each of these

grid points. Record the largest grid point rejected by the test as θ̂lb,0, and consider

grid points on [θ̂lb,0, θ̂lb,0 + d0] with the updated spacing between grids, d1 =
�max(d0/2, 1)�. Repeat until the distance equals 1. Record the smallest θ0 value

not rejected and subtract 1. Let the resulting number be θ̂lb,0.

Step (1). Apply cmi test for θ0 being each of the points θ̂lb,0, θ̂lb,0+0.1, . . . , θ̂lb,0+0.9.
Record the smallest point not rejected and subtract 0.1. Let the resulting number
be θ̂lb,1.

. . .

Step (i+1). Apply cmi test for θ0 being each of the points θ̂lb,i, θ̂lb,i + 10−(i+1), . . . ,

θ̂lb,i +9× 10−(i+1). Record the smallest point not rejected and subtract 10−(i+1).

Let the resulting number be θ̂lb,i+1.
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By default, the command iterates this algorithm up to the thousandth place [that
is, step (3)]. One can choose the number of iterations (that is, the accuracy of the
confidence interval) by specifying the deci() option.

Two-sided bound

When k� > 0 and ku > 0, the model gives two-sided bounds for the parameter θ0.
In this case, we first obtain two one-sided confidence intervals, each of confidence level
1−α/2. The two one-sided confidence intervals separately use the upper-bound and the
lower-bound moment inequalities. The algorithm then forms a preliminary two-sided
confidence interval (of nominal level 1 − α) by intersecting the two one-sided bounds.
If the two one-sided bounds do not intersect, cmi interval terminates and returns an
empty set. This implies that the model is rejected at the specified confidence level α
(the default is 95%).

Let θ̂lb,−1 and θ̂ub,−1 be the lower and upper bounds of the crude interval just
specified. We then obtain the Andrews and Shi (2013) confidence interval by applying
the following algorithm.

Step (0). Check the length of the crude interval. If it is less than 2, then skip step (0),

let θ̂lb,0 = θ̂lb,−1, θ̂ub,0 = θ̂ub,−1, and move to the next step. Otherwise, set

d0 = �max{(�θ̂ub,−1�−�θ̂lb,−1�)/20, 1}�, and apply cmi test using all inequalities
for each of the evenly spaced grid points (including the endpoints) with spacing

d0 on [�θ̂lb,−1�, �θ̂ub,−1�].

Case 1: If at least one grid point is not rejected, let θlb,d0
and θub,d0

denote the
smallest and the largest nonrejected points, respectively.

Case 2: If all points are rejected, find the grid point with the largest p-value
(denoted by θhigh,d0

) and let θlb,d0
= θub,d0

= θhigh,d0
.

For both cases, let d1 = �max(d0/2, 1)�. Consider evenly spaced grid points
(including endpoints) with spacing d1 on [θlb,d0

−d0, θlb,d0
] and also those on

[θub,d0
, θub,d0

+ d0]. Apply cmi test using all inequalities for each of these
grids. Repeat the checks in case 1 and case 2 above, and define θlb,d1

and
θub,d1

analogously to θlb,d0
and θub,d0

, respectively. Iterate this step until

dJ = 1, then let [θ̂lb,0, θ̂ub,0] = [θlb,dJ
− dJ , θub,dJ

+ dJ ]. This interval is the
Andrews and Shi (2013) confidence interval accurate up to the integer level.
If you desire higher accuracy, move on to the next step.

. . .

Step (i+1). If θ̂ub,i− θ̂lb,i ≤ 2×10−(i+1), let θ̂lb,i+1 = θ̂lb,i, θ̂ub,i+1 = θ̂ub,i and move to
the next step. Otherwise, consider evenly spaced grid points with spacing 10−(i+1)

on the intervals [θ̂lb, θ̂lb+10−i] and [θ̂ub−10−i, θ̂ub] (including endpoints). Apply
cmi test for θ0 being each of these grid points.
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Case 1: If at least one point is not rejected, let θlb,j and θub,j denote the smallest
and the largest such point, respectively.

Case 2: If all points are rejected, find the point with the largest p-value (denoted
by θhigh,i+1), and let θlb,i+1 = θub,i+1 = θhigh,i+1.

Let [θ̂lb,i+1, θ̂ub,i+1] = [θlb,i+1−10−i−1, θub,i+1+10−i−1]. This interval is the
Andrews and Shi (2013) confidence interval with accuracy up to 10−i−1. If
you desire higher accuracy, move on to the next step.

Iterate until the desired accuracy is reached. cmi interval iterates this algo-
rithm up to the thousandth place by default. The user can set the accuracy level
differently with deci().

Remark. If the confidence interval is narrower than the smallest grid, for example,
10−k (10−3 in the default setup), cmi interval finds a grid point with the highest

p-value, θ̂p, and returns [θ̂p − 10−k, θ̂p + 10−k] as the confidence interval. One
may adjust the last digit of the confidence interval with deci() or by rescaling
mu,j(Wi) and m�,j(Wi) by multiplying all of them by an appropriate power of
10 to get a more accurate confidence interval.

4 The cmi test command

4.1 Syntax

The syntax of cmi test is as follows:

cmi test (
[
cmi vars

]
) (
[
cme vars

]
) indepvars

[
if
] [

in
] [

, rnum(#) hd boot

ks sfunc(#) epsilon(real) kap(real) bn(real) rep(#) seed(#) simul
]

4.2 Description

cmi test implements the test described in section 3.1 for the hypothesis in (2) and
the model in (1) [or the hypothesis in (4)]. To use this command, one first gener-
ates variables that equal m1(Wi, θ), . . . ,mk(Wi, θ) for observations i = 1, . . . , n [or
m1(Wi), . . . ,mk(Wi) for observations i = 1, . . . , n]. The first p are cmi vars, and the
next k − p are cme vars. The command allows cmi vars or cme vars to be empty. The
variables in Xi are indepvars.

As described in section 3.1, cmi test uses countable hypercubes as the collection
of instrumental functions. They are constructed according to (8) above by default.
That choice is fine when the number of indepvars is three or fewer. When the di-
mension of indepvars is greater than three, the number of cubes may be too large,
resulting in long computation time. The command allows an alternative method for
high-dimensional independent variables. The user can select the hd option to choose
this method. This option implements the method described in the last paragraph of
section 9 of Andrews and Shi (2013).
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4.3 Options

rnum(#) sets a scalar indicating the minimum side-edge lengths. The default is the
smallest integer greater than ndx/2/2, where dx is the dimension of indepvars.

hd uses an alternative method for high-dimensional independent variables. This option
is designed for three or more covariates; see the previous subsection for details.

boot lets the user turn on the bootstrap option. If the user does not specify this
option, the command computes the critical value based on a Gaussian asymptotic
approximation.

ks uses the Kolmogorov–Smirnov-type statistic. The default is the Cramér–von Mises-
type statistic.

sfunc(#) sets the function S to specify the form of the test statistic. sfunc(1) yields
the modified method of moments or sum function, and sfunc(3) yields the max
function. The default is sfunc(1).

epsilon(real) sets the regularization parameter ε for the sample variances. The default
is epsilon(0.05).

kap(real) and bn(real) are two tuning parameters in the data-dependent GMS func-
tion ϕn(ga,r). The default for the former is (0.3 log n)1/2 and for the latter is
{(0.4 log n)/(log log n)}1/2.

rep(#) sets the number of repetitions for the critical value simulations. The default is
rep(5001).

seed(#) sets the random-number seed for the critical value simulations. The default
is seed(10000).

simul lets the user choose to leave the seed number for the critical value simulations
unset. Use this option when the command is inside a Monte Carlo simulation loop
to not interfere with the random-number generation process set for the Monte Carlo
simulation exercise.
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4.4 Stored results

cmi test stores the following in r():

Scalars
r(N) number of observations
r(stat) test statistic
r(pval) p-value
r(cv01) critical value for the 1% significance level
r(cv05) critical value for the 5% significance level
r(cv10) critical value for the 10% significance level
r(kappa) tuning parameter κn
r(B) tuning parameter Bn

r(epsilon) tuning parameter ε
r(rep cv) repetitions for critical values
r(a obs) average number of observations in the smallest cubes
r(r n) index for minimum side-edge lengths
r(ncube) number of cubes

Macros
r(cmd) cmi test

r(title) title in output
r(m ineq) varlist for conditional moment inequalities, if any
r(m eq) varlist for conditional moment equalities, if any
r(x) varlist for instrumental variables

5 The cmi interval command

5.1 Syntax

The syntax of cmi interval is as follows:

cmi interval (
[
lower bound vars

]
) (
[
upper bound vars

]
) indepvars

[
if
] [

in
][

, level(real) deci(#) rnum(#) hd boot ks sfunc(#) epsilon(real)

kap(real) bn(real) rep(#) seed(#) simul
]

5.2 Description

cmi interval constructs the confidence interval for the parameter in (5) by inverting
cmi test. The upper bound vars are ρu,1(Wi), . . . , ρu,ku

(Wi). The lower bound vars
are ρ�,1(Wi), . . . , ρ�,k�

(Wi). The indepvars are the elements of Xi.

5.3 Options

cmi interval accepts all the options that cmi test does. Two additional options are
available to cmi interval, which are the following:

level(real) sets the confidence level 1−α, where 1−α is the nominal confidence level.
The default is level(0.95).
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deci(#) sets the accuracy of the confidence interval bounds as measured by the number
of digits after the decimal point.

5.4 Stored results

cmi interval stores the following in r():

Scalars
r(N) number of observations
r(lbound) estimated lower bound (if any)
r(ubound) estimated upper bound (if any)
r(level) confidence level
r(ncube) number of cubes
r(kappa) tuning parameter κn
r(epsilon) tuning parameter ε
r(rep cv) repetitions for critical values
r(a obs) average number of observations in the smallest cubes
r(r n) index for minimum side-edge lengths
r(B) tuning parameter Bn

Macros
r(cmd) cmi interval

r(title) title in output
r(lbvar) varlist for conditional moment inequalities for the lower bound, if any
r(ubvar) varlist for conditional moment inequalities for the upper bound, if any
r(x) varlist for instrumental variables

6 Examples

In this section, we provide an example of estimating a conditional distribution with
censored data, which was introduced earlier in section 2.1. We use the data for male
employees who are not self-employed from the 15th round (year 2011) of the National
Longitudinal Survey of Youth 1997. From that dataset, we take the log hourly dollar
wage (Y), the dummy for college enrollment (D), the year of education of father (X1),
and the year of education of mother (X2). The number of observations is 2,054.

Let Y ∗
i be the natural logarithm of the potential wage after college enrollment. This

variable is observed only for those who actually enrolled in a college. Suppose that
the parameter of interest is θ0 ≡ FY ∗(y0), that is, the c.d.f. Y ∗

i evaluated at y0. The
parameter θ0 is then bounded by (5), with the bounding moment functions defined in
(6) and (7). See Andrews and Shi (2014) for details.

For the rest of the example, define θ0 = FY ∗{log(20)}. In other words, θ0 is the
percentage of the subpopulation (currently working, not self-employed male) whose
expected hourly wage is lower than $20 if he had enrolled in a college. We create two
variables defined by 1{Yi ≤ y0, Di = 1} and 1{Yi ≤ y0, Di = 1}+ 1{Di = 0}:

. use cmitest

. local y0 = log(20)

. generate lbound = (Y < `y0´) * D

. generate ubound = (Y < `y0´) * D + 1 - D
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6.1 cmi test

Suppose that the research question is whether 0.5 is the value of θ0. That is, we would
like to test

H0 : FY ∗{log(20)} = 0.5 (10)

Then, the researcher creates two conditional moment inequalities [(6) and (7)] by using
the following commands:

. local theta0 = 0.5

. generate CMI1 = `theta0´ - lbound

. generate CMI2 = ubound - `theta0´

cmi test results are

. cmi_test (CMI1 CMI2) ( ) X1 X2

Conditional Moment Inequalities Test Number of obs : 2054

<Variables>
Conditional Moment Inequalities : CMI1 CMI2
No Conditional Moment Equality
Instruments : X1 X2

<Methods>
Countable Hyper Cubes
Asymptotic Critical Value
Cramer-von Mises-type statistic / Sum function

<Results>
Test Statistic : 0.0331
Critical Value (1%) : 0.2347

(5%) : 0.1698
(10%) : 0.1446

p-value : 0.9882

. cmi_test (CMI1 CMI2) ( ) X1 X2, ks

Conditional Moment Inequalities Test Number of obs : 2054

<Variables>
Conditional Moment Inequalities : CMI1 CMI2
No Conditional Moment Equality
Instruments : X1 X2

<Methods>
Countable Hyper Cubes
Asymptotic Critical Value
Kolmogorov-Smirnov-type statistic / Sum function

<Results>
Test Statistic : 0.8413
Critical Value (1%) : 5.7807

(5%) : 4.1274
(10%) : 3.3612

p-value : 0.9438
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. cmi_test (CMI1 CMI2) ( ) X1 X2, sfunc(3) boot

Conditional Moment Inequalities Test Number of obs : 2054

<Variables>
Conditional Moment Inequalities : CMI1 CMI2
No Conditional Moment Equality
Instruments : X1 X2

<Methods>
Countable Hyper Cubes
Bootstrap Critical Value
Cramer-von Mises-type statistic / Max function

<Results>
Test Statistic : 0.0331
Critical Value (1%) : 0.2687

(5%) : 0.1840
(10%) : 0.1554

p-value : 0.9960

The first result shows the cmi test outcome with default options. The second result
uses the Kolmogorov–Smirnov-type statistic. The last result uses the max function in
the test statistic and uses the bootstrapped critical value. All three versions of the test
yield high p-values, indicating that 0.5 is not rejected even at significance level 10%.

Note that the example given here is for an inequalities-only model. If a model
contains conditional moment equalities, you should position variables representing those
equalities in the second parenthesis of the syntax.

6.2 cmi interval

Now we compute a confidence interval for θ0. In this example, the lbound and ubound

variables represent lower bound vars and upper bound vars, respectively. cmi interval

returns the following results:

. cmi_interval (lbound) (ubound) X1 X2

Conditional Moment Inequalities Interval Number of obs : 2054

<Variables>
Variables for the Lower Bound : lbound
Variables for the Upper Bound : ubound
Instruments : X1 X2

<Methods>
Countable Hyper Cubes
Asymptotic Critical Value
Cramer-von Mises-type statistic / Sum function

<Results>
.% confidence interval is:
( 0.413 , 0.621 )
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. cmi_interval (lbound) (ubound) X1 X2, sfunc(3)

Conditional Moment Inequalities Interval Number of obs : 2054

<Variables>
Variables for the Lower Bound : lbound
Variables for the Upper Bound : ubound
Instruments : X1 X2

<Methods>
Countable Hyper Cubes
Asymptotic Critical Value
Cramer-von Mises-type statistic / Max function

<Results>
.% confidence interval is:
( 0.413 , 0.621 )

. cmi_interval (lbound) ( ) X1 X2, deci(2) level(0.9)

Conditional Moment Inequalities Interval Number of obs : 2054

<Variables>
Variables for the Lower Bound : lbound
Variables for the Upper Bound :
Instruments : X1 X2

<Methods>
Countable Hyper Cubes
Asymptotic Critical Value
Cramer-von Mises-type statistic / Sum function

<Results>
.% confidence interval is:
( 0.42 , inf )

The first case uses the default options and yields the 95% confidence interval:
[0.413, 0.621]. The second case uses the max function for the test statistic and yields
almost the same result as the first case.

In the third case, we omit ubound. This case illustrates how to construct a one-sided
CS. Suppose only the lower bounds for the parameter exist [that is, ku = 0 in (5)]. When
we empty the second bracket of the syntax, the command gives a one-sided confidence
interval. The third case also activates the level(0.9) option. Thus the resulting
confidence level is 90%. It also activates deci(2), yielding results with accuracy up to
the second digit.
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