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Abstract. In this article, I describe the xtdpdqml command for the quasi–
maximum likelihood estimation of linear dynamic panel-data models when the
time horizon is short and the number of cross-sectional units is large. Based
on the theoretical groundwork by Bhargava and Sargan (1983, Econometrica 51:
1635–1659) and Hsiao, Pesaran, and Tahmiscioglu (2002, Journal of Econometrics
109: 107–150), the marginal distribution of the initial observations is modeled as
a function of the observed variables to circumvent a short-T dynamic panel-data
bias. Both random-effects and fixed-effects versions are available.
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1 Introduction

The estimation of linear dynamic panel-data models has become increasingly popular in
the last decades. When the time horizon is short, ordinary least-squares or generalized
least-squares (GLS) estimators for random-effects or fixed-effects models that condition
on the initial observations yield biased estimates because of the correlation of the lagged
dependent variable with the combined error term.1 An analytical expression of this bias
in fixed-effects models has been obtained by Nickell (1981).

Quasi–maximum likelihood (QML) estimation can circumvent this bias by modeling
the unconditional likelihood function instead of conditioning on the initial observations.
While this requires additional assumptions about the marginal distribution of the ini-
tial observations, the QML estimators are an attractive alternative to other estimation
approaches in terms of efficiency and finite-sample performance if all the assumptions
are satisfied. Some of those assumptions can be easily tested within the QML framework
by means of a likelihood-ratio test if they lead to nested models.

In this article, I describe the new command xtdpdqml, which provides an easy-to-use
implementation of the QML estimators by Bhargava and Sargan (1983) for the dynamic
random-effects model and by Hsiao, Pesaran, and Tahmiscioglu (2002) for the dynamic
fixed-effects model. Their estimators are extended to accommodate unbalanced panel

1. In Stata, these least-squares estimators for the random-effects and fixed-effects models are imple-
mented in the command xtreg.
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1014 QML estimation of linear dynamic panel models

data, provided that the sample selection is nonsystematic. Standard errors that are ro-
bust to cross-sectional heteroskedasticity are available following Hayakawa and Pesaran
(2015). Both QML estimators can be characterized as limited-information maximum-
likelihood estimators that are special cases of a structural equation modeling or full-
information maximum-likelihood approach with many cross-equation restrictions. For
the latter, Williams, Allison, and Moral-Benito (2015) recently presented the similarly
named command xtdpdml, which builds on Stata’s sem feature.2

When the first two moments of the model are correctly specified, the QML estimators
are consistent with potentially sizable efficiency benefits. Yet there is a trade-off between
efficiency and robustness. In particular, the QML approach discussed here would turn
inconsistent if the explanatory variables (other than the lagged dependent variable)
are no longer strictly exogenous with respect to the idiosyncratic error component, or if
there is remaining serial correlation that is not captured by the first-order autoregressive
term.3

In empirical research, using instrumental variables in the context of generalized
method of moments (GMM) is the predominant estimation technique to cope with this
problem, in part because of the availability of user-friendly estimation commands in
standard statistics software. In Stata, the Arellano and Bond (1991) “difference GMM”
estimator is implemented in the command xtabond, and the “system GMM” exten-
sions by Arellano and Bover (1995) and Blundell and Bond (1998) are implemented in
the command xtdpdsys. Both commands are wrappers for the more flexible xtdpd

command, which performs the actual computations. A much respected user-written
command with full flexibility and many additional options is xtabond2, described in
detail by Roodman (2009).

While GMM estimation is very attractive because of its flexibility and ease of im-
plementation, other promising methods remain underrepresented in empirical work.
Aside from the QML approach, the bias-correction procedures proposed by Kiviet (1995),
Bun and Kiviet (2003), and Everaert and Pozzi (2007), among others, can be a more
efficient alternative in dealing with the endogeneity of the lagged dependent variable.
Bruno (2005) and De Vos, Everaert, and Ruyssen (2015) provide the user-written im-
plementations xtlsdvc and xtbcfe, respectively. Both obtain biased estimates first and
subsequently remove the bias based on analytical bias expressions or with a bootstrap
procedure. In contrast, the QML and GMM approaches are designed to avoid the bias in
the first place.

2. Note the missing q in the command name xtdpdml compared with the xtdpdqml command discussed
in this article. The names are constructed by combining Stata’s xt prefix for panel-data commands,
dpd as an abbreviation for dynamic panel data, and ml or qml for the full-information maximum-
likelihood or the QML method, respectively.

3. While in principal the QML estimators can be extended to include higher-order lags of the depen-
dent variable, this requires additional modeling effort and is not implemented in xtdpdqml.
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In applied work, the robustness of the estimates obtained with different methods al-
lows an assessment of the reliability of the model’s specification assumptions. The new
estimation command presented in this article extends the ready-to-use methodological
toolkit for the estimation of short-T dynamic panel-data models. It also supports spec-
ification testing, in particular the familiar Hausman (1978) test to differentiate between
the random-effects and the fixed-effects models.

The remainder of this article is organized as follows. Section 2 outlines the dynamic
random-effects and the dynamic fixed-effects models. Section 3 describes the syntax and
options of the xtdpdqml command, and section 4 does the same for available postes-
timation commands. An example is discussed in section 5. Section 6 concludes the
article. Methodological details are relegated to an online appendix.4

2 Dynamic panel-data model

Consider the following linear panel-data model with first-order autoregressive dynamics:

yit = λyi,t−1 + x′
itβ + f ′iγ + εit εit = ui + eit (1)

where xit is a Kx × 1 vector of time-varying variables and fi is a Kf × 1 vector of time-
invariant variables. The sample is observed for i = 1, 2, . . . , N cross-sectional units and a
short number of t = 1, 2, . . . , Ti consecutive time periods, with Ti ≥ 2 possibly different
across units but without gaps.5 The initial observations yi0 and xi0 are observed as
well. The combined error term εit consists of a time-invariant unit-specific component
ui and an idiosyncratic component eit. The latter is assumed to be independent and
identically distributed (i.i.d.) with mean 0 and variance σ2

e .

2.1 Dynamic random-effects model

Under the random-effects assumption, the unit-specific intercepts ui are i.i.d. random
variables with mean 0 and variance σ2

u.
6 In particular, they are assumed to be uncor-

related with the exogenous regressors xit and fi. Nevertheless, the estimation of model
(1) with least-squares techniques conditional on the initial observations is inconsistent
when the time horizon is fixed. By construction of the model, the lagged dependent
variable yi,t−1 is correlated with the time-invariant unit-specific error component ui, and
this is therefore also true for the initial observations yi0. To account for this correlation
with a likelihood approach, we need to specify the joint distribution of all observations
yi = (yi0, yi1, . . . , yiTi

)′, conditional on the strictly exogenous regressors xit and fi.
However, (1) is not sufficient to define the marginal distribution of yi0 because of the
unobserved yi,−1.

4. The online appendix is available at http://www.kripfganz.de.
5. The command xtdpdqml automatically drops units with gaps from the estimation sample.
6. The mean 0 assumption is without loss of generality when we include a constant term in the set of

time-invariant variables fi.
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Unrestricted initial observations

Instead of assuming yi0 to be exogenous, Bhargava and Sargan (1983) advocate the
following representation for the initial observations:

yi0 =

T∗∑
s=0

x′
isπx,s + f ′iπf + νi0 (2)

where πx,s (s = 1, 2, . . . , T ∗) and πf are additional parameter vectors to be estimated.
When the panel dataset is balanced—that is, when Ti = T ∗ for all i—all available
observations of the right-hand-side variables can be used in the projection (2). With
unbalanced panel datasets, as a computationally straightforward way, I suggest to use as
many forward-looking periods as are available for the shortest panel, T ∗ = min(Ti), such
that (2) is well defined for all units i. With Var(νi0) = σ2

0 , a suitable parameterization
for the covariance between the error terms of the initial observations and the subsequent
periods is Cov(νi0, εit) = φσ2

0 , where both φ and σ2
0 can be treated as free parameters.

Restricted initial observations

Assuming |λ| < 1 and that the initial observations are generated by the same data-
generating process as the remaining observations, we can motivate (2) also by iterating
the process continuously backward in time:

yi0 = λmyi,−m +

m−1∑
s=0

λsx′
i,−sβ +

1− λm

1− λ
f ′iγ +

1− λm

1− λ
ui +

m−1∑
s=0

λsei,−s (3)

If the process for yit started far away in the past, m → ∞, then the first term λmyi,−m

eventually vanishes. Further assuming stationarity of the exogenous regressors, we can
project their past and unobserved occurrences, xi,−s for all s > 0, on the observed values
of xis (s = 0, 1, . . . , T ∗) and fi to obtain the initial-observations representation proposed
by Bhargava and Sargan (1983). Equation (2) can thus be seen as a way to obtain an
optimal prediction for the systematic part of yi0 conditional upon the observed values of
the exogenous variables.7 Notice that under these additional assumptions the second-to-
last term in (3) implies a restriction on the covariance between the initial observations
and the unit-specific effects, namely, φσ2

0 = σ2
u/(1 − λ), that can be incorporated into

the log-likelihood function to obtain more efficient estimates.

Now reconsider model (1) without exogenous time-varying regressors xit (while still
allowing for time-invariant regressors fi). Assuming again that the process started in
the infinite past and that |λ| < 1, we obtain

yi0 =
1

1− λ
f ′iγ +

1

1− λ
ui +

∞∑
s=0

λsei,−s

7. As m → ∞, the coefficients πf in (2) are equal to γ/(1−λ) plus a second component that depends
on the unknown projection parameters. Unless fi does not help to explain the unobserved xi,−s

such that this second component disappears, we can ignore the restriction on the first component
and treat πf as a free parameter vector. Similar arguments apply to πx,s.
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A comparison with (2) reveals the parameter restrictions πf = γ/(1 − λ), σ2
0 =

σ2
u/(1− λ)2 + σ2

e/(1− λ2), and φσ2
0 = σ2

u/(1− λ).8 Because the model with restricted
initial observations is nested in the unrestricted model, the validity of these stationarity
assumptions can be tested with a likelihood-ratio test.9

QML estimation

For balanced panel data, Bhargava and Sargan (1983) set up the log-likelihood func-
tion for the system of equations consisting of (1) for all time periods t ≥ 1 and the
initial-observations (2) for period t = 0. Under the usual regularity assumptions, the
log-likelihood function is well behaved and can be maximized with a gradient-based
optimization technique.10 For such an iterative optimization procedure, appropriate
starting values are needed. They can be taken from any initial consistent estimator
such as a GMM or minimum distance estimator.11

2.2 Dynamic fixed-effects model

The random-effects assumption that rules out any correlation between the unobserved
unit-specific effects and the exogenous regressors is often too restrictive. A first step in
dealing with this issue is to remove the unit-specific error component by a first-difference
transformation,

Δyit = λΔyi,t−1 +Δx′
itβ +Δeit (4)

where the transformed error term now exhibits negative first-order serial dependence,
Cov(Δeit,Δei,t−1) = −σ2

e . The transformation also removes all time-invariant regres-
sors fi from the model.

8. The coefficients πf and the variance σ2
0 are no longer confounded by projections of unobserved on

observed variables. Compare with Hsiao, Pesaran, and Tahmiscioglu (2002) for the autoregressive
model with a constant term only. Conceptually, time-invariant regressors are no different than the
constant term here. With the xtdpdqml command, the restrictions can be imposed by the option
stationary; see section 3.2. However, the assumption |λ| < 1 is not enforced, which may lead to
contradictory results.

9. The stationarity assumptions are sufficient for (2) to be a valid initial condition for consistent
estimation of the parameters of interest. However, (2) without the parameter restrictions also
remains valid under alternative assumptions, for example, if λ ≥ 1 but the process was initialized
in the finite past; see Bhargava and Sargan (1983).

10. Maximization algorithms supported by xtdpdqml are Stata’s modified Newton–Raphson algorithm,
technique(nr); the Davidon–Fletcher–Powell algorithm, technique(dfp); the Broyden–Fletcher–
Goldfarb–Shanno algorithm, technique(bfgs); and combinations of them. See Gould, Pitblado,
and Poi (2010) for details. Further options for controlling the optimization procedure are avail-
able; see section 3.2. The unrestricted and restricted log-likelihood functions and their analytical
first-order and second-order derivatives are documented for unbalanced panel data in the online
appendix.

11. By default, the xtdpdqml command uses GMM estimates for the coefficients λ, β, and γ. Starting
values for the initial-observations parameters are obtained from a separate ordinary least-squares
estimation, and starting values for the variance parameters σ2

u, σ
2
e , σ

2
0 , and φ are calculated based

on the estimated residuals. Alternative starting values may be specified with the from() and
initval() options. See section 3.2 and the online appendix for further details.
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Maximum likelihood estimation of the transformed model (4) conditional on the
initial observations under i.i.d. normally distributed disturbances eit is equivalent to
GLS estimation. As demonstrated by Bun and Kiviet (2006), the GLS estimator is in-
variant to the model transformation in balanced panels and equals the least-squares
dummy-variables estimator. Because of the correlation of the initial observations Δyi1
with the transformed error term, such a conditional likelihood approach is inconsis-
tent when the time horizon is fixed. Again, specifying the joint distribution of Δyi =
(Δyi1,Δyi2, . . . ,ΔyiTi

)′ conditional on the strictly exogenous regressors xit can address
this problem.12

Unrestricted initial observations

Similarly to the random-effects model, Hsiao, Pesaran, and Tahmiscioglu (2002) pro-
pose the following feasible representation for the initial observations of the transformed
model:

Δyi1 = b+

T∗∑
s=1

Δx′
isπs + νi1 (5)

with T ∗ = min(Ti) as before. A useful parameterization for the variance of the initial-
observations projection error turns out to be Var(νi1) = ωσ2

e , where ω can be treated as
a free parameter. The projection error further satisfies the properties Cov(νi1,Δei2) =
−σ2

e and Cov(νi1,Δeit) = 0 for t = 3, 4, . . . , Ti.

Restricted initial observations

To motivate (5), we can apply the same idea as in the random-effects model. Assuming
that the initial observations are generated by the same data-generating process as the
subsequent observations, we can iterate the process continuously backward to obtain

Δyi1 = λmΔyi,1−m +
m−1∑
s=0

λsΔx′
i,1−sβ +

m−1∑
s=0

λsΔei,1−s (6)

Further assuming that the strictly exogenous regressors xit are trend or first-difference
stationary, Hsiao, Pesaran, and Tahmiscioglu (2002) project the unobserved terms,
Δxi,1−s for all s > 0, on the current and observed realizations of the transformed
regressors, Δxis, s = 1, 2, . . . , T ∗. Under the stationarity assumption, |λ| < 1 and
m → ∞, the first term λmΔyi,1−m vanishes. The resulting initial-observations rep-
resentation is again (5) but with the restriction b = 0, provided that in addition the
exogenous regressors are stationary in levels (or integrated of order 1 without drift).

12. In contrast to the argument by Hsiao, Pesaran, and Tahmiscioglu (2002), the estimator is incon-
sistent if the regressors are weakly exogenous (predetermined) because of the serial correlation of
the transformed errors.
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Finally, consider a situation without time-varying regressors xit. With |λ| < 1 and
m → ∞, (6) simplifies to

Δyi1 =

∞∑
s=0

λsΔei,1−s

A comparison with (5) reveals the restrictions b = 0 and ω = 2/(1 + λ).13

QML estimation

Hsiao, Pesaran, and Tahmiscioglu (2002) provide the log-likelihood function in the case
of balanced panel data for the system of equations formed by (4) for the time periods
t ≥ 2 and (2) for t = 1. It can again be maximized with an iterative procedure. As
in the random-effects model, appropriate starting values may be obtained from initial
consistent estimates.14

3 The xtdpdqml command

The xtdpdqml command has standard Stata syntax known from other estimation com-
mands. The lagged dependent variable is added automatically to the set of regressors.15

Several options are available to specify the precise model and to control the optimization
process. The default is to fit a fixed-effects model.

13. With xtdpdqml, the restrictions on b and ω can be imposed by the option stationary; see section 3.2.
However, the assumption |λ| < 1 is not enforced. Hsiao, Pesaran, and Tahmiscioglu (2002) also
consider the alternative assumption that the process started from a finite period in the past with
identical expected changes in the initial endowments across all units i and without requiring that
|λ| < 1. In this case, the intercept b is still allowed to be nonzero and ω = 2(1 + λ2m−1)/(1 + λ)
can be treated as a free parameter as long as m is unknown and identical for all i.

14. The starting values used by the xtdpdqml command are obtained in a similar way to the random-
effects model. Details as well as analytical expressions of the unrestricted and restricted log-
likelihood functions and their respective derivatives for the case of unbalanced panel data are
documented in the online appendix.

15. xtdpdqml does not support higher-order autoregressive dynamics. Including distributed lags of the
exogenous regressors is straightforward by using Stata’s time-series lag operator L..
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3.1 Syntax

Fixed-effects model

xtdpdqml depvar
[
indepvars

] [
if
] [

in
] [

, fe projectionopt fe stationary

noconstant vce(vcetype) mlparams level(#) coeflegend noheader notable

first neq(#) display options from(init specs) storeinit(name)

initval(numlist) inititer(#) concentration method(method)

maximize options
]

where projectionopt fe is

projection(varlist
[
, leads(#) nodifference omit

]
)

Random-effects model

xtdpdqml depvar
[
indepvars

] [
if
] [

in
]
, re

[
projectionopt re stationary

noeffects noconstant vce(vcetype) mlparams level(#) coeflegend

noheader notable first neq(#) display options from(init specs)

storeinit(name) initval(numlist) method(method) maximize options
]

where projectionopt re is

projection(varlist
[
, leads(#) omit

]
)

3.2 Options16

Model

projection(varlist
[
, leads(#) nodifference omit

]
) specifies the exogenous vari-

ables that are used in the initial-observations projection. leads(#) restricts the
number of leads. The default is leads(.), which means that all available leads
are used. In the fixed-effects model, first differences of varlist are used unless
nodifference is specified. By default, all indepvars are used unless varlist is ex-
cluded with omit. You may specify as many sets of projection variables as you
need.17

stationary assumes that the process of depvar started in the infinite past, that the
autoregressive coefficient is less than unity in absolute value (which is not enforced),

16. Further information related to the available options can be found in the online appendix.
17. The projection() option specifies the right-hand-side variables of (2) or (5), respectively, as dis-

cussed in section 2. The default specifications are those suggested by Bhargava and Sargan (1983)
or Hsiao, Pesaran, and Tahmiscioglu (2002).
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and that all indepvars are stationary as well (in first differences if a fixed-effects
model is fit). As a consequence, the initial-observations parameters are restricted to
equal their long-run values if there are no time-varying indepvars , and the constant
term in the initial-observations equation is restricted to 0 (unless a random-effects
model with constant term is fit). By default, none of the parameter restrictions are
imposed.18

noeffects restricts the variance of the unit-specific error component in the random-
effects model to be 0.

noconstant; see [R] estimation options.19

SE/Robust

vce(vcetype) specifies the type of standard error reported, which includes types that
are robust to some kinds of misspecification (robust) and that are derived from
asymptotic theory (oim, opg); see [R] vce option.

vce(oim), the default, uses the observed information matrix.

vce(opg) uses the sum of the outer product of the gradient vectors. This option is
seldom used.

vce(robust) uses the sandwich estimator.

Reporting

mlparams reports all QML parameter estimates including the model coefficients, the
initial-observations coefficients, and the variance parameters. By default, only the
model coefficients are reported.

level(#); see [R] estimation options.

coeflegend; see [R] estimation options.

noheader suppresses display of the header above the coefficient table that displays the
number of observations.

notable suppresses display of the coefficient table.

first in combination with mlparams displays a coefficient table reporting results for
the first equation only and makes it appear as if only one equation was estimated.

neq(#) in combination with mlparams displays a coefficient table reporting results for
the first # equations. neq(1) is equivalent to first. neq(2) displays the model
coefficients and the initial-observations coefficients.

18. In the random-effects model, the stationary option enforces restrictions on the parameters πf ,
σ2
0 , and φ. In the fixed-effects model, it enforces restrictions on the parameters b and ω. The

respective restrictions depend on the inclusion of time-varying exogenous variables in the model;
see section 2.

19. If the constant is suppressed by the noconstant option, an intercept is still included in the marginal
distribution of the initial observations unless the stationary option is specified as well.
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display options : noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(%fmt),
pformat(%fmt), sformat(%fmt), and nolstretch; see [R] estimation options.

Maximization

from(init specs) specifies initial values for the coefficients; see [R] maximize. By de-
fault, initial values are taken from GMM estimation; see [XT] xtdpd.20

storeinit(name) stores the initial GMM estimation results; see [R] estimates store.

initval(numlist) specifies initial values for the variance parameters. In the fixed-effects
model, at most two numbers are allowed. The first entry refers to the variance of
the idiosyncratic error component, σ2

e , and the second entry refers to the initial-
observations variance relative to that of the idiosyncratic component, ω. By default,
the first parameter is computed from the residuals given the initial coefficient values,
and the last parameter is computed from the first-order condition of the maximiza-
tion problem given all other parameters. In the random-effects model, at most four
numbers are allowed. The first entry refers to the variance of the unit-specific er-
ror component, σ2

u; the second entry refers to the variance of the idiosyncratic error
component, σ2

e ; the third entry refers to the initial-observations variance, σ2
0 ; and the

fourth entry refers to the covariance of the initial observations with the unit-specific
error component relative to the initial-observations variance, φ. Missing values are
allowed to request the default initialization.21 This option is seldom used.

inititer(#) specifies the number of iterations used to update the initial values be-
fore maximizing the log-likelihood function of the transformed fixed-effects model.
inititer(0), the default, uses the initial values for the coefficients and variance
parameters as specified with the from() and initval() options. inititer(1)

starts the maximization with the minimum distance estimates given the estimate
of the initial-observations variance parameter from the previous step. From the sec-
ond iteration onward, the analytical first-order condition for the initial-observations
variance parameter is evaluated at the parameter values from the previous iteration
step. Subsequently, new minimum distance estimates are obtained for the other
parameters given the updated value of the initial-observations variance parameter.

concentration specifies that the concentrated log-likelihood function of the trans-
formed fixed-effects model with the initial-observations variance as single parameter
should be maximized. All other parameter estimates are obtained from the analyti-
cal first-order conditions given the optimal value of the initial-observations variance
parameter. By default, maximization is done over all parameters simultaneously.

20. Initial one-step GMM estimates are obtained with GMM-type instruments for the lagged dependent
variable, as proposed by Arellano and Bond (1991), and with standard instruments for the strictly
exogenous regressors in the first-differenced equation. If applicable, standard instruments for time-
invariant regressors are added to the level equation in the random-effects model, as suggested by
Arellano and Bover (1995).

21. See the online appendix for the formula used to compute the default initial values.
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A concentrated log-likelihood function is not available with the stationary option
when the model is a pure autoregressive process without additional indepvars .

method(method) specifies the evaluator method for the log-likelihood function, where
method is one of d0, d1, or d2 (or the respective long form); see [R] ml. The default
is method(d2). This option is seldom used.

maximize options : technique(algorithm spec), iterate(#),
[
no
]
log, showstep,

showtolerance, tolerance(#), ltolerance(#), nrtolerance(#), and
nonrtolerance; see [R] maximize. These options are seldom used. Supported
algorithm specs are nr, dfp, and bfgs (and combinations). iterate(0) may be
used to evaluate the log-likelihood function at the initial parameter values.

3.3 Stored results

xtdpdqml stores the following in e():

Scalars
e(N) number of observations e(k eq) number of equations in e(b)
e(N g) number of groups e(ll) log likelihood
e(g min) smallest group size e(rank) rank of the Hessian matrix
e(g avg) average group size from the ml optimization
e(g max) largest group size e(ic) number of iterations
e(k aux) number of ancillary e(converged) 1 if converged, 0 otherwise

parameters in e(b) e(stationary) 1 if option stationary specified

Macros
e(cmd) xtdpdqml e(ivar) variable denoting groups
e(cmdline) command as typed e(tvar) variable denoting time
e(depvar) name of dependent variable e(properties) b V
e(vce) vcetype specified in vce() e(predict) program used to implement
e(vcetype) title used to label Std. Err. predict
e(ml method) type of ml method e(model) re or fe

Matrices
e(b) coefficient vector e(V) variance–covariance matrix of
e(ilog) iteration log (up to 20 the estimators

iterations) e(V modelbased) model-based variance; not
e(gradient) gradient vector always saved

Functions
e(sample) marks estimation sample

4 Postestimation commands

xtdpdqml supports many postestimation commands, including hausman, lrtest, nlcom,
predict, and test.22 Predictions are obtained in a similar way to Stata’s xtreg com-
mand. In addition, predict supports the computation of equation-level scores. As
a consequence, the suest command works after xtdpdqml, for example, to combine
estimation results from the random-effects and the fixed-effects models to perform a
generalized Hausman test.23

22. See help xtdpdqml postestimation for an extended list.
23. suest requires xtdpdqml to be used with option mlparams; see section 5 for an example.
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4.1 Syntax for predict

predict
[
type

]
newvar

[
if
] [

in
] [

, xb | stdp | ue | xbu | u | e equation(eqno)
]

predict
[
type

]
{stub∗ |newvar1 ... newvarq}

[
if
] [

in
]
, scores[

equation(eqno)
]

4.2 Options for predict

xb, the default, calculates the linear prediction from the fitted model; see [R] predict.
After xtdpdqml, fe mlparams, it calculates the linear prediction from the first-
differenced model.

stdp calculates the standard error of the linear prediction; see [R] predict.

ue calculates the prediction of ui + eit, the combined residual; see [XT] xtreg postes-
timation. This option is not available after xtdpdqml, fe mlparams.

xbu calculates the linear prediction including the unit-specific error component; see
[XT] xtreg postestimation. This option is not available after xtdpdqml, fe

mlparams.

u calculates the prediction of ui, the estimated unit-specific error component; see
[XT] xtreg postestimation. This option is not available after xtdpdqml, fe

mlparams.

e calculates the prediction of eit; see [XT] xtreg postestimation. After xtdpdqml,

fe mlparams, it calculates the prediction of Δeit, the first-differenced residual.

scores calculates the equation-level score variables; see [R] predict. This is the deriva-
tive of the log-likelihood function with respect to the linear prediction. Ancillary pa-
rameters make up separate equations. This option is available only after xtdpdqml,
mlparams without the stationary option.

equation(eqno) specifies the equation to which you are referring; see [R] predict.

5 Example

Let us now consider an example based on abdata.dta, which contains unbalanced labor
demand data for 140 companies in the United Kingdom during the period 1976–1984:

. webuse abdata

It is the dataset used by Arellano and Bond (1991) in their influential article on
GMM estimation of dynamic panel-data models. They estimate employment equations
to explain the logarithm of the number of employees (n). Strictly exogenous explana-
tory variables are the real wage (w), the gross capital stock (k), and the industry out-
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put (ys). For a concise presentation, I ignore the last variable, which Arellano and Bond
find to be statistically insignificant in their analysis, and I also refrain from includ-
ing distributed lags of the exogenous regressors. After losing one observation because
of the lagged dependent variable, we can include time dummies for the years from
1978 to 1984. As a first step, let us estimate a dynamic fixed-effects model with the
Hsiao, Pesaran, and Tahmiscioglu (2002) QML estimator, the default of xtdpdqml:

. xtdpdqml n w k yr1978-yr1984

Quasi-maximum likelihood estimation
Iteration 0: f(p) = 488.47979
Iteration 1: f(p) = 560.74524
Iteration 2: f(p) = 670.55622
Iteration 3: f(p) = 693.49986
Iteration 4: f(p) = 694.4841
Iteration 5: f(p) = 694.49228
Iteration 6: f(p) = 694.49228

Group variable: id Number of obs = 891
Time variable: year Number of groups = 140

Fixed effects Obs per group: min = 6
avg = 6.364286

(Estimation in first differences) max = 8

n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .7181159 .0349792 20.53 0.000 .6495579 .7866738

w -.4210157 .0512701 -8.21 0.000 -.5215034 -.3205281
k .2487324 .0255407 9.74 0.000 .1986736 .2987911

yr1978 -.0214489 .0149487 -1.43 0.151 -.0507478 .00785
yr1979 -.0319754 .0149372 -2.14 0.032 -.0612518 -.0026991
yr1980 -.0637126 .0148821 -4.28 0.000 -.092881 -.0345441
yr1981 -.1130657 .0150739 -7.50 0.000 -.14261 -.0835213
yr1982 -.0844508 .0160798 -5.25 0.000 -.1159666 -.052935
yr1983 -.0461928 .0197008 -2.34 0.019 -.0848057 -.0075798
yr1984 -.0115354 .0241271 -0.48 0.633 -.0588236 .0357528
_cons 1.74826 .1705756 10.25 0.000 1.413938 2.082582

The results are reported for the levels (1), even though the actual estimation is
performed on the first-differenced (4).24 For clarity of the main results, the default
output table does not include the additional coefficients from the initial-observations
projection (5) and the ancillary variance parameters. We can display the whole set of
parameter estimates with the mlparams option, suppressing for convenience the iteration
log with option nolog:

24. This is in line with the “difference GMM” estimation command xtabond. While the first-difference
transformation removes all time-invariant variables, xtdpdqml still reports a constant term for the
fixed-effects model in levels unless the noconstant or mlparams option is specified. It is obtained
with the two-stage approach proposed by Kripfganz and Schwarz (2015). The first-stage residuals

from the untransformed equation, yit − λ̂yi,t−1 − x′
itβ̂, are regressed on a constant term, and the

standard errors are appropriately corrected to account for the first-stage estimation error.
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. xtdpdqml n w k yr1978-yr1984, mlparams nolog

Quasi-maximum likelihood estimation

Group variable: id Number of obs = 891
Time variable: year Number of groups = 140

Fixed effects Obs per group: min = 6
avg = 6.364286
max = 8

D.n Coef. Std. Err. z P>|z| [95% Conf. Interval]

_model
n

LD. .7181159 .0349792 20.53 0.000 .6495579 .7866738

w
D1. -.4210157 .0512701 -8.21 0.000 -.5215034 -.3205281

k
D1. .2487324 .0255407 9.74 0.000 .1986736 .2987911

yr1978
D1. -.0214489 .0149487 -1.43 0.151 -.0507478 .00785

yr1979
D1. -.0319754 .0149372 -2.14 0.032 -.0612518 -.0026991

yr1980
D1. -.0637126 .0148821 -4.28 0.000 -.092881 -.0345441

yr1981
D1. -.1130657 .0150739 -7.50 0.000 -.14261 -.0835213

yr1982
D1. -.0844508 .0160798 -5.25 0.000 -.1159666 -.052935

yr1983
D1. -.0461928 .0197008 -2.34 0.019 -.0848057 -.0075798

yr1984
D1. -.0115354 .0241271 -0.48 0.633 -.0588236 .0357528

_initobs
w

D1. .1745629 .0835193 2.09 0.037 .010868 .3382578
FD. .4866594 .1160984 4.19 0.000 .2591107 .714208

F2D. .234992 .0921914 2.55 0.011 .0543001 .4156838
F3D. .180422 .0831649 2.17 0.030 .0174218 .3434222
F4D. .1587507 .0822884 1.93 0.054 -.0025316 .3200329
F5D. .1828358 .0801948 2.28 0.023 .025657 .3400147

k
D1. .2516903 .0514379 4.89 0.000 .1508739 .3525068
FD. -.0759983 .0442764 -1.72 0.086 -.1627784 .0107819

F2D. .0345647 .0402481 0.86 0.390 -.0443201 .1134496
F3D. .0426643 .0416536 1.02 0.306 -.0389754 .1243039
F4D. .0180357 .0354471 0.51 0.611 -.0514394 .0875108
F5D. .1373772 .0420249 3.27 0.001 .0550099 .2197445
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yr1978
D1. .0472505 .0347851 1.36 0.174 -.0209269 .115428
FD. .0336196 .0205327 1.64 0.102 -.0066237 .073863

_cons .0034106 .0211468 0.16 0.872 -.0380363 .0448575

/_sigma2e .0107403 .0005952 .0095737 .011907
/_omega 1.219196 .0690326 1.083894 1.354497

. estimates store fe

The first equation in the output table, labeled model, reports again the main co-
efficients of interest but now highlights the first-difference transformation. The second
equation, labeled initobs, contains the initial-observations coefficients. The last two
parameters in the table refer to the estimates of the variance parameters σ2

e and ω. In
balanced panels, all the time dummies would have been omitted automatically from the
initobs equation because of perfect collinearity with the constant term. In unbalanced
panels, as in the present case, the initial period might differ across units and some time
dummies are retained to account for differences in the initialization.

We observe that the first three coefficients in the model equation are highly sta-
tistically significant and the same is true for the majority of the time dummies. The
coefficient of the lagged dependent variable is well within the stationarity region, |λ| < 1.
Under some additional assumptions, this could imply that the initial-observations in-
tercept vanishes. We indeed observe that the constant term in the initobs equation
is not statistically significant. To obtain more-efficient estimates, we can remove this
intercept with the stationary option:25

. xtdpdqml n w k yr1978-yr1984, stationary mlparams nolog

Quasi-maximum likelihood estimation

Group variable: id Number of obs = 891
Time variable: year Number of groups = 140

Fixed effects Obs per group: min = 6
avg = 6.364286
max = 8

D.n Coef. Std. Err. z P>|z| [95% Conf. Interval]

_model
n

LD. .7175702 .0347616 20.64 0.000 .6494386 .7857017

w
D1. -.4219682 .0509203 -8.29 0.000 -.5217701 -.3221662

k
D1. .2493911 .0251776 9.91 0.000 .2000439 .2987384

25. That is, b = 0 in (5) under the assumptions of |λ| < 1, an initialization in the infinite past, and
trend or first-difference stationarity of the exogenous regressors w and k. Because of the presence
of the latter, the variance parameter ω remains unrestricted. See the discussion about restricted
initial observations in section 2.2.
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yr1978
D1. -.0212959 .0149167 -1.43 0.153 -.0505321 .0079404

yr1979
D1. -.0317929 .0148925 -2.13 0.033 -.0609817 -.0026041

yr1980
D1. -.0633101 .0146697 -4.32 0.000 -.0920621 -.0345581

yr1981
D1. -.1125881 .0147782 -7.62 0.000 -.141553 -.0836233

yr1982
D1. -.0839164 .0157373 -5.33 0.000 -.1147609 -.053072

yr1983
D1. -.0455604 .0193118 -2.36 0.018 -.0834109 -.0077099

yr1984
D1. -.0107753 .0236674 -0.46 0.649 -.0571625 .0356119

_initobs
w

D1. .1734465 .0833066 2.08 0.037 .0101686 .3367244
FD. .4915282 .1122137 4.38 0.000 .2715935 .711463

F2D. .2351962 .0922567 2.55 0.011 .0543763 .416016
F3D. .1847706 .0787435 2.35 0.019 .0304362 .3391051
F4D. .1623383 .0793019 2.05 0.041 .0069094 .3177673
F5D. .1883984 .0724927 2.60 0.009 .0463153 .3304815

k
D1. .252992 .0508592 4.97 0.000 .1533099 .3526741
FD. -.0768106 .0440244 -1.74 0.081 -.1630968 .0094757

F2D. .0344116 .0402711 0.85 0.393 -.0445184 .1133416
F3D. .0410705 .0404996 1.01 0.311 -.0383073 .1204483
F4D. .0168102 .0346589 0.49 0.628 -.05112 .0847404
F5D. .13622 .0414449 3.29 0.001 .0549895 .2174506

yr1978
D1. .0515849 .0221159 2.33 0.020 .0082386 .0949312
FD. .035909 .0148529 2.42 0.016 .0067979 .0650202

/_sigma2e .0107368 .0005943 .009572 .0119015
/_omega 1.22007 .0688652 1.085097 1.355044

. estimates store fe_s

The remaining coefficients changed only slightly, but the two time effects in the
initobs equation turned statistically significant at the 5% level. This does not invali-
date our assumptions. All it means is that we should control for different starting points
in the observed sample. We have stored the results from the previous two estimations
under the names fe and fe s, respectively, which we can now use to double check the
validity of the imposed restriction with a likelihood-ratio test:

. lrtest fe_s fe

Likelihood-ratio test LR chi2(1) = 0.03
(Assumption: fe_s nested in fe) Prob > chi2 = 0.8720
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The test does not reject the restriction on the initial-observations intercept such
that we can retain the stationarity assumption in the further analysis. If the time
effects in the initobs equation were jointly insignificant, we could also exclude them
by specifying the option projection(yr*, omit):26

. xtdpdqml n w k yr1978-yr1984, stationary projection(yr*, omit) mlparams nolog

(output omitted )

. lrtest fe

Likelihood-ratio test LR chi2(3) = 6.29
(Assumption: . nested in fe) Prob > chi2 = 0.0983

Based on the conservative significance level of 10%, this likelihood-ratio test suggests
not to exclude the time dummies jointly with the intercept from the initial-observations
equation. As an asymptotically equivalent test, the Wald test on joint insignificance of
the respective coefficients in the unrestricted model yields the same conclusion:

. estimates restore fe
(results fe are active now)

. test [_initobs]: D.yr1978 FD.yr1978 _cons

( 1) [_initobs]D.yr1978 = 0
( 2) [_initobs]FD.yr1978 = 0
( 3) [_initobs]_cons = 0

chi2( 3) = 6.36
Prob > chi2 = 0.0955

The projection() option can also be used to restrict the number of time leads of the
exogenous regressors in (5). By default, all current and future observations (up to the
shortest time length in unbalanced panels) are used as separate variables in the initial-
observations projection. With a large time dimension, the number of corresponding
coefficients becomes large as well. This problem is aggravated with an increasing number
of exogenous time-varying regressors. The following example illustrates how to use only
contemporaneous values of the first-differenced regressors:27

. xtdpdqml n w k yr1978-yr1984, stationary projection(w k, leads(0)) mlparams

(output omitted )

. lrtest fe_s

Likelihood-ratio test LR chi2(10) = 42.46
(Assumption: . nested in fe_s) Prob > chi2 = 0.0000

In the present case, the number of parameters is reasonably small, and the likelihood-
ratio test clearly rejects this restricted-model version. Alternatively, we might want to
use all the available levels of the exogenous variables instead of their first differences

26. This excludes the time dummies only from the initobs equation and not from the model equation.
27. An alternative might be to use the scores of a principal component analysis applied on the projection

variables in (5). Bontempi and Mammi (2015) suggest such a strategy to reduce the instrument
count for GMM estimators, and it is also implemented in the xtabond2 command by Roodman
(2009). To be used with xtdpdqml, these scores would have to be computed separately beforehand—
for example, with the pca2 command by Bontempi and Mammi (2015)—and could then be supplied
with the projection() option. The credit for this idea goes to an anonymous referee.
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in the initobs equation.28 To achieve this, technically we need to both drop the
first-differenced variables and add the levels:

. xtdpdqml n w k yr1978-yr1984, stationary projection(w k, omit)
> projection(w k, nodifference) mlparams nolog

Quasi-maximum likelihood estimation

Group variable: id Number of obs = 891
Time variable: year Number of groups = 140

Fixed effects Obs per group: min = 6
avg = 6.364286
max = 8

D.n Coef. Std. Err. z P>|z| [95% Conf. Interval]

_model
n

LD. .7169499 .0348373 20.58 0.000 .64867 .7852298

w
D1. -.4231864 .0512345 -8.26 0.000 -.5236041 -.3227686

k
D1. .2501779 .0254106 9.85 0.000 .200374 .2999817

yr1978
D1. -.0211017 .0149431 -1.41 0.158 -.0503896 .0081861

yr1979
D1. -.0315607 .0149312 -2.11 0.035 -.0608253 -.0022961

yr1980
D1. -.0628003 .0148639 -4.23 0.000 -.0919331 -.0336676

yr1981
D1. -.1119848 .0150481 -7.44 0.000 -.1414784 -.0824911

yr1982
D1. -.0832384 .016064 -5.18 0.000 -.1147233 -.0517536

yr1983
D1. -.044769 .0196758 -2.28 0.023 -.083333 -.0062051

yr1984
D1. -.0098343 .0240858 -0.41 0.683 -.0570416 .0373729

28. Phillips (2014) finds simulation evidence that using levels of the right-hand-side variables in (5) can
lead to an improved performance over using first differences. This idea is similar to the use of lagged
levels as instruments for the first-differenced equation as proposed by Anderson and Hsiao (1981,
1982) and Arellano and Bond (1991) in the context of instrumental-variables or GMM estimation.
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_initobs
yr1978

D1. .056943 .0335663 1.70 0.090 -.0088458 .1227318
FD. .0387561 .0200159 1.94 0.053 -.0004743 .0779865

w
L1. -.1708625 .0853048 -2.00 0.045 -.3380569 -.0036681
--. -.3271109 .1564291 -2.09 0.037 -.6337063 -.0205155
F1. .2625743 .1459992 1.80 0.072 -.0235788 .5487274
F2. .0456837 .1010946 0.45 0.651 -.1524581 .2438255
F3. .0217997 .1003578 0.22 0.828 -.1748979 .2184973
F4. -.0289995 .0609608 -0.48 0.634 -.1484805 .0904816
F5. .1955317 .0799724 2.44 0.014 .0387887 .3522746

k
L1. -.2545108 .0526105 -4.84 0.000 -.3576254 -.1513962
--. .3322412 .0816502 4.07 0.000 .1722097 .4922727
F1. -.1117364 .064621 -1.73 0.084 -.2383912 .0149184
F2. -.0051431 .0526266 -0.10 0.922 -.1082892 .0980031
F3. .0245103 .058062 0.42 0.673 -.0892891 .1383096
F4. -.1203073 .0578168 -2.08 0.037 -.2336263 -.0069884
F5. .1350255 .0419887 3.22 0.001 .0527292 .2173219

/_sigma2e .0107329 .0005941 .0095685 .0118972
/_omega 1.220817 .0689984 1.085583 1.356051

The coefficients of main interest in the model equation hardly differ from the earlier
specification. Because first differencing is equivalent to imposing linear restrictions on
the coefficients of the levels, we again have two nested models such that we can use
another likelihood-ratio test to decide the preferred specification:

. lrtest fe_s

Likelihood-ratio test LR chi2(2) = 0.05
(Assumption: fe_s nested in .) Prob > chi2 = 0.9776

Clearly, there is no gain from using the levels of the exogenous variables instead of
their first differences in the initobs equation.

The above QML estimates all are based on “difference GMM” estimates as starting
values for the iterative maximization algorithm. We can recover these initial estimates
by specifying a name for them with the storeinit() option:29

29. The initial GMM estimates provide starting values for the parameters λ and β in (4). They are
the same irrespective of the use of the stationary or projection() options, which only affect the
parameters in (5). Starting values for the latter and for the variance parameters are obtained
automatically by xtdpdqml based on the initial estimates of λ and β; see the online appendix for
the respective formula. The whole set of starting values can be displayed by combining the options
mlparams and iterate(0).
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. xtdpdqml n w k yr1978-yr1984, stationary storeinit(gmm)

(output omitted )

. estimates replay gmm

Model gmm (initial estimates for xtdpdqml )

Dynamic panel-data estimation Number of obs = 891
Group variable: id Number of groups = 140
Time variable: year

Obs per group:
min = 6
avg = 6.364286
max = 8

Number of instruments = 38 Wald chi2(10) = 2218.24
Prob > chi2 = 0.0000

One-step results

n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .32667 .0768081 4.25 0.000 .1761289 .477211

w -.4763421 .0530543 -8.98 0.000 -.5803266 -.3723575
k .3271291 .0280945 11.64 0.000 .2720648 .3821934

yr1978 -.0285803 .0117587 -2.43 0.015 -.0516269 -.0055337
yr1979 -.0359986 .0117658 -3.06 0.002 -.0590592 -.0129381
yr1980 -.0637982 .0116966 -5.45 0.000 -.0867231 -.0408733
yr1981 -.118767 .0120325 -9.87 0.000 -.1423503 -.0951837
yr1982 -.1233297 .0159048 -7.75 0.000 -.1545025 -.0921569
yr1983 -.1054798 .0225806 -4.67 0.000 -.149737 -.0612227
yr1984 -.0878231 .0287666 -3.05 0.002 -.1442045 -.0314417
_cons 2.398147 .1740268 13.78 0.000 2.057061 2.739233

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w D.k D.yr1978 D.yr1979 D.yr1980 D.yr1981 D.yr1982

D.yr1983 D.yr1984
Instruments for level equation

Standard: _cons

The initial estimates for the QML estimator can be overwritten with the from()

option, for example, if a “system GMM” estimator is justified:30

. xtdpdsys n w k yr1978-yr1984, twostep

(output omitted )

. matrix b = e(b)

. xtdpdqml n w k yr1978-yr1984, stationary from(b, skip)

(output omitted )

. estimates store fe_eq1

30. Alternative starting values for the variance parameters σ2
e and ω could be supplied with the

initval() option; see section 3.2. To be feasible, the starting value for ω needs to be larger
than (T − 1)/T , where T = max(Ti).
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The QML estimator converges to the same results under both initializations. While
the estimator of Hsiao, Pesaran, and Tahmiscioglu (2002) is consistent both in a fixed-
effects and in a random-effects world, the Bhargava and Sargan (1983) estimator would
be more efficient under random effects but inconsistent in the presence of fixed effects.
In the present case, it turns out that the starting values for the variance parameters in
the random-effects model are infeasible:

. xtdpdqml n w k yr1978-yr1984, re

Quasi-maximum likelihood estimation
initial values not feasible
r(1400);

We can supply alternative starting values for the variance parameters with the
initval() option:31

. xtdpdqml n w k yr1978-yr1984, re initval(.1 .2 .2 .3) nolog

Quasi-maximum likelihood estimation

Group variable: id Number of obs = 1031
Time variable: year Number of groups = 140

Random effects Obs per group: min = 7
avg = 7.364286
max = 9

n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .6827452 .0264103 25.85 0.000 .6309818 .7345085

w -.3044987 .0422166 -7.21 0.000 -.3872419 -.2217556
k .2630637 .0214881 12.24 0.000 .2209478 .3051796

yr1978 -.0215183 .0148306 -1.45 0.147 -.0505856 .0075491
yr1979 -.0326742 .0148093 -2.21 0.027 -.0616998 -.0036485
yr1980 -.0639498 .014763 -4.33 0.000 -.0928847 -.0350148
yr1981 -.1171753 .0148591 -7.89 0.000 -.1462986 -.0880519
yr1982 -.0953543 .0151577 -6.29 0.000 -.1250629 -.0656457
yr1983 -.0651054 .0180881 -3.60 0.000 -.1005575 -.0296533
yr1984 -.035986 .0226091 -1.59 0.111 -.0802991 .0083271
_cons 1.437169 .1517993 9.47 0.000 1.139648 1.73469

. estimates store re_eq1

For the random-effects QML estimator, a specification test rejects the restriction
imposed by the stationarity assumptions on the dependent variable and the regressors:32

31. The initval() option specifies starting values for the variance parameters in the order σ2
u, σ

2
e , σ

2
0 ,

and φ; see section 3.2. The chosen values should satisfy the particular constraint (σ2
u − φ2σ2

0)T >
−σ2

e , where T = max(Ti), taking into account the restrictions on the variance parameters if the
stationary option is specified; see section 2.1 and the online appendix for details.

32. In contrast to the fixed-effects model, the restriction in the random-effects model is not on the
initial-observations intercept but on the covariance between the initial-observations error term and
the unit-specific effects. Moreover, in the fixed-effects model, first-difference stationarity of the
regressors is required compared with stationarity of the levels in the random-effects model, aside
from |λ| < 1 and an initialization of the process in the very past; see section 2.
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. xtdpdqml n w k yr1978-yr1984, re stationary initval(.1 .2 .2 .3)

(output omitted )

. lrtest re_eq1

Likelihood-ratio test LR chi2(1) = 4.05
(Assumption: . nested in re_eq1) Prob > chi2 = 0.0443

Assuming that the model is correctly specified, we can employ the traditional Haus-
man (1978) test to discern between the fixed-effects and the random-effects models:33

. hausman fe_eq1 re_eq1, df(3)

Coefficients
(b) (B) (b-B) sqrt(diag(V_b-V_B))

fe_eq1 re_eq1 Difference S.E.

n
L1. .7175701 .6827452 .034825 .0226023

w -.4219682 -.3044987 -.1174694 .0284716
k .2493912 .2630637 -.0136726 .0131215

yr1978 -.0212959 -.0215183 .0002224 .0016011
yr1979 -.0317929 -.0326742 .0008813 .0015725
yr1980 -.0633101 -.0639498 .0006397 .
yr1981 -.1125881 -.1171753 .0045871 .
yr1982 -.0839164 -.0953543 .0114378 .0042314
yr1983 -.0455604 -.0651054 .019545 .006765
yr1984 -.0107753 -.035986 .0252107 .0069979

b = consistent under Ho and Ha; obtained from xtdpdqml
B = inconsistent under Ha, efficient under Ho; obtained from xtdpdqml

Test: Ho: difference in coefficients not systematic

chi2(3) = (b-B)´[(V_b-V_B)^(-1)](b-B)
= 239.87

Prob>chi2 = 0.0000
(V_b-V_B is not positive definite)

The null hypothesis is strongly rejected in favor of the fixed-effects model. Notice
that the hausman command was executed with the option df(3). The reason is that
we cannot include the time effects in the comparison because of a singularity in the
asymptotic covariance matrix of the difference between the fixed-effects and the random-
effects estimates. The degrees of freedom therefore equals the number of time-varying
regressors excluding the time dummies.34

33. The hausman command cannot compare the fixed-effects coefficients reported for the first-differenced
equation with the random-effects coefficients for the levels equation. Therefore, we had to estimate
the models without the mlparams option such that all coefficients are reported for the levels equation.
The remaining parameters are not needed for this test.

34. See Wooldridge (2010, chap. 10.7.3) for a discussion of this problem.
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An underlying assumption of this Hausman test is that one of the estimators is
efficient. However, this would no longer be the case if the model is misspecified. For
example, the assumed error covariance structure might be invalid. Exemplary for the
fixed-effects estimator, we observe that the standard errors indeed increase sizably if we
use a variance–covariance estimator that is robust to cross-sectional heteroskedasticity
with the option vce(robust):35

. xtdpdqml n w k yr1978-yr1984, stationary vce(robust) nolog

Quasi-maximum likelihood estimation

Group variable: id Number of obs = 891
Time variable: year Number of groups = 140

Fixed effects Obs per group: min = 6
avg = 6.364286

(Estimation in first differences) max = 8
(Std. Err. adjusted for clustering on id)

Robust
n Coef. Std. Err. z P>|z| [95% Conf. Interval]

n
L1. .7175702 .0777459 9.23 0.000 .5651911 .8699493

w -.4219682 .1284262 -3.29 0.001 -.6736789 -.1702574
k .2493911 .0459749 5.42 0.000 .159282 .3395002

yr1978 -.0212959 .0140127 -1.52 0.129 -.0487603 .0061685
yr1979 -.0317929 .0163543 -1.94 0.052 -.0638468 .000261
yr1980 -.0633101 .0172692 -3.67 0.000 -.0971571 -.0294631
yr1981 -.1125881 .0196329 -5.73 0.000 -.151068 -.0741083
yr1982 -.0839164 .0174937 -4.80 0.000 -.1182034 -.0496294
yr1983 -.0455604 .0201398 -2.26 0.024 -.0850337 -.0060871
yr1984 -.0107753 .0265246 -0.41 0.685 -.0627626 .041212
_cons 1.751776 .4532361 3.87 0.000 .8634493 2.640102

If there is cross-sectional heteroskedasticity, the results from the traditional Hausman
test are no longer valid because the random-effects QML estimator is not efficient any
more, and the hausman command refuses to accept estimates with a robust variance–
covariance estimator. As a feasible alternative, we can use Stata’s suest command
to perform a generalized Hausman test. suest can combine the fixed-effects and the
random-effects QML estimates, and it calculates a simultaneous variance–covariance es-
timator. For the latter, suest needs the nonrobust variance–covariance estimate for the
whole set of parameters as input. Thus, we are requested to execute xtdpdqml without
the option vce(robust) but with the mlparams option.36 Moreover, we should specify
the option vce(cluster id) when calling suest to account for the panel structure:

35. vce(robust) causes the sandwich formula to be used for the variance–covariance estimator, taking
into account that the observations are not independent across time. Robust standard errors are
also calculated for the initial GMM estimates if they are stored with the storeinit() option.
Neither the initial values nor the final coefficient estimates are affected by the type of standard
errors. Hayakawa and Pesaran (2015) demonstrate that the QML estimator remains consistent
under cross-sectional heteroskedasticity. However, it becomes inconsistent if the untransformed
idiosyncratic error component is serially correlated or heteroskedastic across time.

36. suest also requires the postestimation command predict to produce equation-level scores. After
xtdpdqml, this is possible only with the mlparams option and not with the stationary option.
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. xtdpdqml n w k yr1978-yr1984, re initval(.1 .2 .2 .3) mlparams

(output omitted )

. estimates store re

. suest fe re, vce(cluster id)

(output omitted )

. test ([fe__model]LD.n = [re__model]L.n) ([fe__model]D.w = [re__model]w)
> ([fe__model]D.k = [re__model]k)

( 1) [fe__model]LD.n - [re__model]L.n = 0
( 2) [fe__model]D.w - [re__model]w = 0
( 3) [fe__model]D.k - [re__model]k = 0

chi2( 3) = 5.97
Prob > chi2 = 0.1132

The suest output is omitted because of its length. It simultaneously reports the re-
sults for both models as separate equations. Further above, we saw the output generated
by xtdpdqml with the mlparams option. It separates the parameters into different equa-
tions, with the first two named model and initobs for our model parameters of main
interest and the initial-observations coefficients, respectively. suest builds its equation
names as combinations of the estimates’ name and xtdpdqml’s equation names, result-
ing in fe model, fe initobs, re model, re initobs, and similarly for the variance
parameters that make up separate equations. This helps us to understand the syntax
of the test command after suest. To test for systematic differences between the fixed-
effects and the random-effects models, we need to compare the coefficients of the lagged
dependent variable and the two exogenous regressors w and k from the two models.37

As we can see, the Wald test does not reject the null hypothesis at the conventional
significance levels, which is the opposite result from the traditional Hausman test above.
However, we should not be too confident about this result because the p-value is still
relatively small. With the fixed-effects QML estimator, we remain on the safe side.

Finally, after fitting our model, we might be interested in the long-run effects of the
exogenous regressors. While the coefficients β are short-run effects conditional on the
initial level of employment, L.n, the corresponding long-run effects can be computed as
β/(1− λ). In Stata, we can obtain such estimates with the nlcom command:

. xtdpdqml n w k yr1978-yr1984, stationary vce(robust)

(output omitted )

. nlcom (_b[w] / (1 - _b[L.n])) (_b[k] / (1 - _b[L.n]))

_nl_1: _b[w] / (1 - _b[L.n])
_nl_2: _b[k] / (1 - _b[L.n])

n Coef. Std. Err. z P>|z| [95% Conf. Interval]

_nl_1 -1.494064 .4484327 -3.33 0.001 -2.372976 -.6151519
_nl_2 .8830199 .1834742 4.81 0.000 .523417 1.242623

37. With the same reasoning as before, the time dummies are not included in the comparison.
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6 Conclusion

In this article, I presented the new estimation command xtdpdqml, which extends the
available toolkit for linear dynamic panel model estimation in Stata. It implements QML

estimators for random-effects and fixed-effects models that account for the endogeneity
of the initial observations to avoid biased estimates when the time dimension is short.
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