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Abstract. Lorenz and concentration curves are widely used tools in inequality
research. In this article, I present a new command, lorenz, that estimates Lorenz
and concentration curves from individual-level data and, optionally, displays the
results in a graph. The lorenz command supports relative, generalized, absolute,
unnormalized, custom-normalized Lorenz, and concentration curves. It also pro-
vides tools for computing contrasts between different subpopulations or outcome
variables. lorenz fully supports variance estimation for complex samples.
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1 Introduction

Lorenz and concentration curves are widely used tools for analyzing economic inequality
and redistribution (see, for example, Cowell [2011] and Lambert [2001]). Depending on
the research question, different variants of the methodology are appropriate:

• The standard (relative) Lorenz curve illustrates the shape of a distribution and
the degree of inequality from a relative, scale-free viewpoint. That is, a change
in measurement units or proportional growth for all observations does not change
the Lorenz curve. Because the Lorenz curve evaluates inequality independently of
the overall outcome level, it can assess, for example, whether income inequality
increased or decreased over time, how the structure of inequality changed, or how
inequality differs across countries.

• A useful variant of the relative Lorenz curve is the equality gap (EG) curve, defined
as the difference between the Lorenz curve and the line of perfect equality. It
provides an immediate illustration of how a given distribution deviates from an
equal distribution situation.

• The relative Lorenz curve depicts how a cake is distributed among a group, but it
ignores the actual size of the cake. From the perspective of welfare economics, the
size of the cake does matter. The generalized Lorenz (GL) curve is a Lorenz variant
sensitive to the overall outcome level. It is designed so that gains in welfare lead
to a vertical increase in the curve. Therefore, the GL curve is the best method for
analyzing changes in inequality while accounting for the effects of overall growth.

• Just like the EG curve illustrates deviations from equality in terms of the relative
Lorenz curve, the absolute Lorenz (AL) curve quantifies the EG curve in terms of
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the GL curve. That is, the AL curve illustrates the loss in welfare compared with
an equal distribution situation.

• Redistribution is a major concern in inequality research. For example, researchers
are interested in how taxes change the shape of income distribution. The con-
centration curve, another variant of the Lorenz curve, is an important instrument
in these analyses, because it identifies the winners and losers of redistribution.
Concentration curves can also be used in many other contexts. Essentially, a con-
centration curve shows how one variable is distributed across groups defined in
terms of another variable. For example, concentration curves can analyze how
wealth is distributed across income groups or evaluate the degree to which be-
quests lead to a change in wealth inequality.

• Relative Lorenz and GL curves differ in how they are normalized. Relative Lorenz
curves are normalized to 1 (100% of the cake); GL curves are normalized to the
average of the outcome variable (the size of a piece of cake if the cake is distributed
evenly). Depending on context, it can be useful to omit normalization all together
[total Lorenz (TL) curve] or use custom normalization. Custom normalization is
useful when comparing subpopulations or multiple outcome variables. For exam-
ple, it allows expressing results for one group in relation to the outcome level in
another group, or it allows expressing results for taxes in terms of percentages of
total income.

Despite their frequent use in inequality research literature, Stata does not offer
an official command for the estimation of Lorenz and concentration curves. How-
ever, several user-written commands do exist. For example, the glcurve command
(Jenkins and Van Kerm 1999; Van Kerm and Jenkins 2001) can be used to plot gen-
eralized, relative Lorenz, or concentration curves, but the command does not provide
information on sampling variances. The svylorenz command implements variance
estimation (Jenkins 2006) for relative and GL curves, but the command does not sup-
port the estimation of concentration curves. Further available commands are clorenz

(Abdelkrim 2005) and alorenz (Azevedo and Franco 2006), which both have their spe-
cific pros and cons. Yet, because none of these commands provide a comprehensive
framework for estimating all variations of Lorenz curves described above, I implemented
a new command, lorenz. The command computes and, optionally, graphs relative,
total (unnormalized), generalized, AL, and concentration curves from individual-level
data. lorenz has some unique features: for example, it provides standard errors and
confidence intervals (CIs) for all variations and fully supports estimation from com-
plex samples. Furthermore, lorenz is well suited for subpopulation analysis and offers
options to compute contrasts between subpopulations or between outcome variables
(including standard errors). In contrast to the other available commands, lorenz also
offers custom normalization of results. Finally, lorenz integrates well with Stata and
has been programmed so that it provides the typical features of an estimation command,
including conventional e() returns for processing by postestimation commands.
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In the remainder of the article, I will first discuss the relevant methods and formulas
and then present the syntax and options of the lorenz command. I will then illustrate
the lorenz command with examples.

2 Methods and formulas

2.1 Lorenz curve

Let X be the outcome variable of interest (for example, income). The cumulative
distribution function ofX is given as FX(x) = Pr(X ≤ x), and the quantile function (the
inverse of the distribution function) is given as QX(p) = F−1

X (p) = inf{x|FX(x) ≥ p}
with p ∈ [0, 1]. For continuous X, the ordinates of the relative Lorenz curve are

LX(p) =

∫ Qp
X

−∞ y dFX(x)∫∞
−∞ x dFX(x)

(see, for example, Cowell [2000], Lambert [2001], and Hao and Naiman [2010]). Intu-
itively, a point on the Lorenz curve quantifies the proportion of total outcome of the
poorest p×100 percent of the population. This can easily be seen in the finite population
form of LX(p), which is

LX(p) =

N∑
i=1

XiI (Xi ≤ Qp
X)

N∑
i=1

Xi

with I(A) as an indicator function being equal to 1 if A is true and 0 otherwise.

Furthermore, let Ji be an indicator for whether observation i belongs to subpopula-
tion j (that is, Ji = 1 if observation i belongs to subpopulation j and Ji = 0 otherwise).
The finite population form of the Lorenz curve of X in subpopulation j in this case is

Lj
X(p) =

N∑
i=1

XiI
(
Xi ≤ Qp,j

X

)
Ji

N∑
i=1

XiJi

where Qp,j
X is the p quantile of X in subpopulation j. One obtains the population-wide

Lorenz curve by setting Ji = 1 for all observations.

Lorenz curves are typically displayed graphically with p on the horizontal axis and
LX(p) on the vertical axis, although Lorenz (1905) originally proposed an opposite
layout.
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2.2 Equality gap curve

The EG curve quantifies the degree to which the proportion of total outcome of the
poorest p×100 percent of the population deviates from the proportion of total outcome
these population members would get under an equal distribution. That is, the EG curve
is equal to the difference between the equal distribution diagonal and the Lorenz curve.
Formally, the (finite population form of the) EG curve of Y in subpopulation j is

EG
j
X(p) = p−

N∑
i=1

XiI
(
Xi ≤ Qp,j

X

)
Ji

N∑
i=1

XiJi

= p− Lj
X(p)

EGX(p) is equal to the proportion of total outcome that would have to be relocated to the
poorest p×100 percent to provide them an average outcome equal to the subpopulation
average.

2.3 Total (unnormalized) Lorenz curve

In the finite population, one can define the (subpopulation specific) TL curve as

TL
j
X(p) =

N∑
i=1

XiI
(
Xi ≤ Qp,j

X

)
Ji

The TL curve quantifies the cumulative sum of outcomes among the poorest p × 100
percent of the subpopulation.

2.4 Generalized Lorenz curve

The ordinates of the relative Lorenz curve refer to cumulative outcome proportions.
Hence, LX(1) = 1. In contrast, the ordinates of the GL curve, GLX(p), refer to the
cumulative outcome average. Hence, GLX(1) = X, where X is the mean of X. Formally,
one can define the GL curve as

GLX(p) =

∫ Qp
X

−∞
x dFX(x)

the finite population form of which is

GLX(p) =
1

N

N∑
i=1

XiI (Xi ≤ Qp
X)

(see, for example, Shorrocks [1983], Cowell [2000], and Lambert [2001]). Furthermore,
for subpopulation j, one can write the GL curve as
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GL
j
X(p) =

1
N∑
i=1

Ji

N∑
i=1

XiI
(
Xi ≤ Qp,j

X

)
Ji

where
∑N

i=1 Ji is equal to the subpopulation size.

2.5 Absolute Lorenz curve

The AL curve quantifies the degree to which the GL curve deviates from the equal
distribution line in terms of the cumulative outcome average (see, for example, Moyes
[1987]). Formally, the (finite population form of the) AL curve of Y in subpopulation j
is

AL
j
X(p) =

1
N∑
i=1

Ji

{
N∑
i=1

XiI
(
Xi ≤ Qp,j

X

)
Ji − p

N∑
i=1

XiJi

}
= GL

j
X(p)− p

N∑
i=1

XiJi

N∑
i=1

Ji

2.6 Concentration curve

The Lorenz curve of outcome variable X refers to cumulative outcome proportions of
population members ranked by the values of X. Using an alternative ranking variable Y ,
while still measuring outcome in terms of X, leads to the so-called concentration curve.
Formally, the (relative) concentration curve of X with respect to Y can be defined as

LXY (p) =

∫ Qp
Y

−∞
∫∞
−∞ xfXY (x, y) dx dy∫∞
−∞ x dFX(x)

where Qp
Y is the p quantile of the distribution of Y and fXY (x, y) is the density of the

joint distribution of X and Y (see, for example, Bishop, Chow, and Formby [1994]). In
the finite population, the concentration curve simplifies to

LXY (p) =

N∑
i=1

XiI (Yi ≤ Qp
Y )

N∑
i=1

Xi

Furthermore, for subpopulation j, the concentration curve can be written as

Lj
XY (p) =

N∑
i=1

XiI
(
Yi ≤ Qp,j

Y

)
Ji

N∑
i=1

XiJi

Total, generalized, or absolute concentration curves can be defined analogously.
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2.7 Renormalization

Relative Lorenz curves are normalized with respect to the total of the analyzed outcome
variable in the given population or subpopulation. It may be contextually useful to apply
a different type of normalization. For example, when analyzing labor income, we may
want to express results with respect to total income (labor income plus capital income).
Likewise, when analyzing a subpopulation, we may want to express results relative to
another subpopulation or relative to the overall population.

To normalize the Lorenz curve or the EG curve of X with respect to the total of Z
(where Z may be the sum of several variables, possibly including X), let

Lj,Z
X (p) =

N∑
i=1

XiI
(
Xi ≤ Qp,j

X

)
Ji

N∑
i=1

ZiJi

and EG
j,Z
X (p) = p− Lj,Z

X (p)

Likewise, for normalization with respect to a fixed (subpopulation) total τ , let

Lj,τ
X (p) =

N∑
i=1

XiI
(
Xi ≤ Qp,j

X

)
Ji

τ
and EG

j,τ
X (p) = p− Lj,τ

X (p)

To normalize the Lorenz curve of subpopulation j with respect to the total in sub-
population r (where subpopulation r may include subpopulation j), let

Ljr
X (p) =

N∑
i=1

XiI
(
Xi ≤ Qp,j

X

)
Ji

N∑
i=1

XiRi

where Ri is an indicator for whether observation i belongs to subpopulation r or not.
For example, if r is the entire population (including subpopulation j), then Lj,r

X (p) is
the proportion of the population-wide outcome that goes to the poorest p×100 percent
of subpopulation j. In contrast, because the EG curve is supposed to quantify the
deviation from the equal distribution line, one should define the renormalized EG curve
of subpopulation j with respect to the total in subpopulation r as

EG
jr
X (p) = p

N∑
i=1

Ji

N∑
i=1

Ri

− Ljr
X (p)

where p
∑N

i=1 Ji/
∑N

i=1 Ri is the outcome share of the poorest p × 100 percent of sub-
population j if all population members would receive the same outcome.

The normalized Lorenz curve ordinates Ljr
X (p) express outcome shares in subpopula-

tion j relative to the total outcome of subpopulation r. An alternative is to renormalize
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Lorenz curve ordinates in a way such that they are relative to the total that would
be observed in subpopulation j, if all members of subpopulation j would receive the
average outcome of subpopulation r. This can be achieved by rescaling the total by
relative group sizes; that is,

Ljr
X (p) =

N∑
i=1

XiI
(
Xi ≤ Qp,j

X

)
Ji

N∑
i=1

Ji

N∑
i=1

Ri

N∑
i=1

XiRi

and EG
jr
X (p) = p− Ljr

X (p)

There is a close relation between Ljr
X (p) and the GL curves; the ratio of Ljr

X (p) from two
subpopulations is equal to the ratio of the GL curves for these subpopulations.

Combining normalization with respect to a different subpopulation and normaliza-
tion with respect to the total of a different outcome variable or a fixed total leads to

Ljr,Z
X (p) =

N∑
i=1

XiI
(
Xi ≤ Qp,j

X

)
Ji

N∑
i=1

ZiRi

EG
jr,Z
X (p) = p

N∑
i=1

Ji

N∑
i=1

Ri

− Ljr,Z
X (p)

Ljr,Z
X (p) =

N∑
i=1

XiI
(
Xi ≤ Qp,j

X

)
Ji

N∑
i=1

Ji

N∑
i=1

Ri

N∑
i=1

ZiRi

EG
jr,Z
X (p) = p− Ljr,Z

X (p)

and

Ljr,τ
X (p) =

N∑
i=1

XiI
(
Xi ≤ Qp,j

X

)
Ji

τ
EG

jr,τ
X (p) = p

N∑
i=1

Ji

N∑
i=1

Ri

− Ljr,τ
X (p)

Ljr,τ
X (p) =

N∑
i=1

XiI
(
Xi ≤ Qp,j

X

)
Ji

N∑
i=1

Ji

N∑
i=1

Ri

τ

EG
jr,τ
X (p) = p− Ljr,τ

X (p)

You can apply analogous renormalizations to concentration curves. Simply replace
I(Xi ≤ Qp,j

X ) in the above formulas with I(Yi ≤ Qp,j
Y ).
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2.8 Contrasts

Analyzing distributional differences is helpful for computing contrasts between Lorenz
curves. For example, the difference

LX(p)− LY (p)

may be used to evaluate whether distribution X Lorenz dominates distribution Y . Like-
wise, the difference

GLX(p)− GLY (p)

may be used to evaluate whether distribution X GL dominates distribution Y . There
is dominance if the difference is positive for all p. As shown by Atkinson (1970), if
distribution X Lorenz dominates distribution Y , then distribution X can be seen as
more equal than distribution Y under weak conditions. Likewise, if distribution X GL

dominates distribution Y , then distributionX can be seen as preferable over distribution
Y in terms of welfare under weak conditions (see, for example, Lambert [2001]).

It may be contextually practical to define contrasts as ratios, that is, LX(p)/LY (p),
or as logarithms of ratios, that is, ln{LX(p)/LY (p)}.

2.9 Estimation procedure

In the preceding sections, I gave various formal definitions of quantities related to Lorenz
curves. In this section, I provide a brief description of how we can estimate these
quantities and their sampling variances from data.

Given is a sample Xi, i = 1, . . . , n, with sampling weights wi. Furthermore, let
subscripts in parentheses refer to observations sorted in ascending order of X. We can
then estimate LX(p) as

L̂X(p) = (1− γ)X̃ip−1 + γX̃ip

where

γ =
p− p̂ip−1

p̂ip − p̂ip−1
, X̃ip =

ip∑
i=1

w(i)X(i)

n∑
i=1

wiXi

, and p̂ip =

ip∑
i=1

w(i)

n∑
i=1

wi

and where ip is defined such that p̂ip−1 < p ≤ p̂ip . Using this approach, we break ties in
X proportionally and apply linear interpolation (corresponding to quantile definition 4
in Hyndman and Fan [1996]), where the distribution function of X is flat. Alternatively,
we can avoid linear interpolation and estimate LX(p) as

L̂X(p) = X̃ip =

ip∑
i=1

w(i)X(i)

n∑
i=1

wiXi
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(corresponding to quantile definition 1 in Hyndman and Fan [1996]). The first approach
appears preferable over the second approach because the second approach requires arbi-
trary decisions on the sort order within ties of X to obtain stable results in the presence
of sampling weights.

We can use analogous formulas to estimate total, generalized, absolute, or renormal-
ized Lorenz curves. For concentration curves, the observations are sorted in order of Y
instead of X; to enforce stable results, we can average X values within ties of Y .

Following Binder and Kovacevic (1995) and Kovac̆ević and Binder (1997), we can
obtain approximate variance estimates for Lorenz ordinates by estimating the total (see
[R] total)—perhaps accounting for complex survey design (see [SVY] svy estimation)—
of residual variables, defined as

uj
i (p) =

{(
Xi − Q̂p,j

X

)
I
(
Xi ≤ Q̂p,j

X

)
+ p Q̂p,j

X

}
Ji − ai

b

where ai and b are as described in table 1 (for details, see Jann [2016]).1 For concen-

tration curves, we can replace I(Xi ≤ Q̂p,j
X ) with I(Yi ≤ Q̂p,j

Y ) and replace Q̂p,j
X with

Ê(X|Y = Qp,j
Y , J = 1).2 Furthermore, we can obtain variance estimates for contrasts

by the delta method as outlined in Jann (2016).

1. When computing the u variables, the lorenz command presented in section 3 uses definition 4
in Hyndman and Fan (1996) to determine Q̂p,j

X (or definition 1, depending on the method used
for estimating the Lorenz ordinates). Furthermore, analogously to the approach used for point

estimation, ties in X are broken when determining I(Xi ≤ Q̂p,j
X ) (based on observations sorted

by wi within ties, which is an arbitrary decision to enforce stable results). Depending on sample
design, terms 1/(win) and τ/(win) in the formulas in table 1 require modification; an alternative
is to set these terms to zero (see Jann [2016]). Finally, for EG curves, use −u instead of u.

2. In the lorenz command presented in section 3, E(X|Y = Qp,j
Y , J = 1), the expected value of

X at the p quantile of Y in subpopulation j, is estimated by local linear regression using the
Epanechnikov kernel and the default rule-of-thumb bandwidth as described in [R] lpoly.
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Table 1. Definitions of ai and b

ai b

Lj
X(p),EGj

X(p) XiJiL̂
j
X(p)

∑
i

wiXiJi

TL
j
X(p) 1

win
T̂L

j
X(p) 1

GL
j
X(p) JiĜL

j
X(p)

∑
i

wiJi

AL
j
X(p)

{
ÂL

j
X(p) + pXi

}
Ji

∑
i

wiJi

Lj,Z
X (p),EGj,Z

X (p) ZiJiL̂
j,Z
X (p)

∑
i

wiZiJi

Lj,τ
X (p),EGj,τ

X (p) τ
win

L̂j,τ
X (p) τ

Ljr
X (p) XiRiL̂

jr
X (p)

∑
i

wiXiRi

EG
jr
X (p)

(∑
k

wkXkRk

∑
k

wkJk
Ji −

∑
k

wkXkRk

∑
k

wkRk
Ri

)
p

∑
k

wkJk

∑
k

wkRk

+XiRiL̂
jr
X (p)

∑
i

wiXiRi

Ljr
X (p),EGjr

X (p)

(
XiRi −

∑
k

wkXkRk

∑
k

wkRk
Ri +

∑
k

wkXkRk

∑
k

wkJk
Ji

)
×

∑
k

wkJk

∑
k

wkRk
L̂jr

X (p)

∑
i

wiJi

∑
i

wiRi

∑
i

wiXiRi

Ljr,τ
X (p) τ

win
L̂jr,τ

X (p) τ

EG
jr,τ
X (p)

(
τJi∑

k
wkJk

− τRi∑
k

wkRk

)
p

∑
k

wkJk

∑
k

wkRk
+ τ

win
L̂jr,τ

X (p) τ

Ljr,τ
X (p),EGjr

X (p)

(
τ

win
− τRi∑

k
wkRk

+ τJi∑
k

wkJk

) ∑
k

wkJk

∑
k

wkRk
L̂jr,τ

X (p)

∑
i

wiJi

∑
i

wiRi
τ

(All sums are across the entire sample.)

3 The lorenz command

lorenz has three subcommands. lorenz estimate computes the Lorenz curve or-
dinates and their variance matrix; lorenz contrast computes differences in Lorenz
curve ordinates between outcome variables or subpopulations based on the results by
lorenz estimate; and lorenz graph draws a line graph from the results provided by
lorenz estimate or lorenz contrast.
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3.1 Syntax of lorenz estimate

The syntax of lorenz estimate is

lorenz
[
estimate

]
varlist

[
if
] [

in
] [

weight
] [

,

{gap | sum | generalized | absolute} percent normalize(spec) gini

nquantiles(#) percentiles(numlist) pvar(pvar) step over(varname)

total contrast
[
(spec)

]
graph

[
(options)

]
vce(vcetype) cluster(clustvar)

svy
[
(subpop)

]
nose level(#) noheader notable nogtable display options

]
pweights, fweights, and iweights are allowed; see [U] 11.1.6 weight. For each speci-
fied variable, lorenz estimate tabulates Lorenz curve ordinates along with their stan-
dard errors and CIs.3 If one specifies the over() option (see below), only one variable
is allowed in varlist. lorenz assumes subcommand estimate as the default; typing
the word “estimate” is required only in the case of a name conflict between the first
element of varlist and the other subcommands of lorenz (see below). Options are as
follows.

Main

Only one instance of gap, sum, generalized, or absolute is allowed.

gap computes EG curves instead of relative Lorenz curves.

sum computes total (unnormalized) Lorenz curves instead of relative Lorenz curves.

generalized computes GL curves instead of relative Lorenz curves.

absolute computes AL curves instead of relative Lorenz curves.

percent expresses results as percentages instead of proportions. percent is not allowed
in combination with sum, generalized, or absolute.

normalize(spec) normalizes Lorenz ordinates with respect to the specified total (not
allowed in combination with sum, generalized, or absolute). spec is[

over:
][

total
] [

, average
]

where over may be

. the subpopulation at hand (the default)
# the subpopulation identified by value #
## the #th subpopulation
total the total across all subpopulations

3. Variance estimation is not supported for iweights and fweights. To compute standard errors and
CIs in the case of fweights, apply lorenz to the expanded data (see [D] expand).
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and total may be

. the total of the variable at hand (the default)
* the total of the sum across all analyzed outcome variables
varlist the total of the sum across the variables in varlist
# a total equal to #

total specifies the variables to compute the total or sets the total to a fixed value. If
multiple variables are specified, it uses the total across all specified variables (varlist
may contain external variables that are not among the list of analyzed outcome
variables). over selects the reference population to compute the total; over is allowed
only if you specify the over() option (see below). Suboption average accounts for
subpopulation sizes (sum of weights) so that the results are relative to the average
outcome in the reference population; this is relevant only if over is present.

gini reports the Gini coefficients of the distributions (also known as concentration
indices if you specify pvar(); see below) to be computed and reported in a separate
table.4

Percentiles

nquantiles(#) specifies the number of (equally spaced) percentiles used to deter-
mine the Lorenz ordinates (plus an additional point at the origin). The default is
nquantiles(20). This is equivalent to typing percentiles(0(5)100).

percentiles(numlist) specifies, as percentages, the percentiles to compute the Lorenz
ordinates. The numbers in numlist must be within 0 and 100. You may ap-
ply shorthand conventions as described in [U] 11.1.8 numlist. For example, to
compute Lorenz ordinates from 0 to 100% in steps of 1 percentage point, type
percentiles(0(1)100). The numbers provided in percentiles() do not need
to be equally spaced and do not need to cover the whole distribution. For exam-
ple, to focus on the top 10% and use an increased resolution for the top 1%, type
percentiles(90(1)98 99(0.1)100).

pvar(pvar) computes concentration curves with respect to variable pvar. That is, it will
determine the ordinates of the curves from observations sorted in ascending order of
pvar instead of the outcome variable (and use average outcome values within ties of
pvar).

step determines the Lorenz ordinates from the step function of the cumulative outcomes.
The default is to use linear interpolation in regions where the step function is flat.

Over

over(varname) repeats results for each subpopulation defined by the values of varname.
Only one outcome variable is allowed if you specify over().

4. Variance estimation for Gini coefficients is not supported.
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total reports additional overall results across all subpopulations. total is allowed only
if you specify over().

Contrast/graph

contrast
[
(spec)

]
computes differences in Lorenz ordinates between outcome variables

or between subpopulations. spec is[
base

] [
, ratio lnratio

]
where base is the name of the outcome variable or the value of the subpopulation
used as the base for the contrasts. If base is omitted, contrast() computes adjacent
contrasts across outcome variables or subpopulations (or contrasts with respect to
the total if total results across subpopulations have been requested).

Use the suboption ratio to compute contrasts as ratios, or use the suboption
lnratio to compute contrasts as logarithms of ratios. The default is to compute
contrasts as differences.

graph
[
(options)

]
draws a line graph of the results. I describe options for lorenz graph

below.

SE/SVY

vce(vcetype) determines how to compute standard errors and CIs. vcetype may be

analytic

cluster clustvar
bootstrap

[
, bootstrap options

]
jackknife

[
, jackknife options

]
The default is vce(analytic). See [R] bootstrap and [R] jackknife for boot-
strap options and jackknife options, respectively.

cluster(clustvar) is a synonym for vce(cluster clustvar).

svy
[
(subpop)

]
accounts for the survey design for variance estimation; see [SVY] svyset.

Specify subpop to restrict survey estimation to a subpopulation, where subpop is[
varname

] [
if
]

The subpopulation is defined by observations for which varname �= 0 and for which
the if condition is met. See [SVY] subpopulation estimation for more information
on subpopulation estimation.

The svy option is allowed only if Taylor linearization is the variance estimation
method set by svyset (the default). For other variance estimation methods, use the
usual svy prefix command; see [SVY] svy. For example, type svy brr: lorenz . . .
to use balanced repeated-replication variance estimation. The svy option is available
because lorenz does not allow the svy prefix for Taylor linearization.
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nose suppresses the computation of standard errors and CIs. Use the nose option to
speed up computations, for example, when applying a prefix command that uses
replication techniques for variance estimation, such as [SVY] svy jackknife. You
cannot use the nose option together with vce(), cluster(), or svy.

Reporting

level(#) specifies the confidence level, as a percentage, for CIs. The default is
level(95) or as set by set level.

noheader suppresses the output header; only the coefficient table is displayed.

notable suppresses the coefficient table.

nogtable suppresses the table containing the Gini coefficients.

display options are standard reporting options such as cformat(), pformat(),
sformat(), or coeflegend; see [R] estimation options.

3.2 Syntax of lorenz contrast

lorenz contrast computes differences in Lorenz ordinates between outcome variables
or subpopulations. It requires results from lorenz estimate to be in memory, which
will be replaced by the results from lorenz contrast.5 The syntax is

lorenz contrast
[
base

] [
, ratio lnratio graph

[
(options)

]
display options

]
where base is the name of the outcome variable or the value of the subpopulation used
as the base for the contrasts. If you omit base, lorenz contrast computes adjacent
contrasts across outcome variables or subpopulations (or contrasts with respect to the
total if total results across subpopulations have been requested). Options are as follows:

ratio causes contrasts to be reported as ratios. The default is to report contrasts as
differences.

lnratio causes contrasts to be reported as logarithms of ratios. The default is to report
contrasts as differences.

graph
[
(options)

]
draws a line graph of the results. I describe options for lorenz graph

below.

display options are standard reporting options such as cformat(), pformat(),
sformat(), or coeflegend; see [R] estimation options.

5. Alternatively, to compute the contrasts directly, apply the contrast() option to lorenz estimate

(see above).
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3.3 Syntax of lorenz graph

lorenz graph draws a line diagram of Lorenz curves or Lorenz curve contrasts. It
requires results from lorenz estimate or lorenz contrast to be in memory.6 The
syntax is

lorenz graph
[
, proportion nodiagonal diagonal(line options) keep(list)

prange(min max) gini(%fmt) nogini connect options

labels("label1" "label2" . . . ) byopts(byopts) overlay o#(options) level(#)

ci(citype) ciopts(area options) noci addplot(plot) twoway options
]

Options are as follows.

Main

proportion scales the population axis as a proportion (0 to 1). The default is to scale
the axis as a percentage (0 to 100).

nodiagonal omits the equal distribution diagonal included by default for graphing rela-
tive Lorenz or concentration curves. There is no equal distribution diagonal included
for graphing EG, total, generalized, and AL curves. There is also no equal distribution
diagonal for graphing contrasts.

diagonal(line options) affects the rendition of the equal distribution diagonal, and
line options are as described in [G-3] line options.

keep(list) selects and orders the results to be included as separate subgraphs, where list
is a list of the names of the outcome variables or the values of the subpopulations
to be included. list may also contain total for the overall results if requested.
Furthermore, you may use elements such as #1, #2, #3, etc., to refer to the 1st, 2nd,
3rd, etc., outcome variable or subpopulation.

prange(min max) restricts the range of the points to be included in the graph. It omits
points whose abscissas lie outside min and max. min and max must be within [0,100].
For example, to include only the upper half of the distribution, type prange(50 100).

gini(%fmt) sets the format for the Gini coefficients included in the subgraph or legend
labels; see [D] format. The default is gini(%9.3g). gini() includes Gini coef-
ficients only if information on Gini coefficients is available in the provided results
(that is, if you apply the gini option to lorenz estimate).

nogini suppresses the Gini coefficients. This is relevant only if you specify the gini

option when calling lorenz estimate.

6. You may draw the graph directly using the graph() option on lorenz estimate or lorenz contrast

(see above).
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Labels/Rendering

connect options affect the rendition of the plotted lines; see [G-3] connect options.

labels("label1" "label2" . . . ) specifies custom labels for the subgraphs of the outcome
variables or subpopulations.

byopts(byopts) determines how subgraphs are combined; see [G-3] by option.

overlay includes results from multiple outcome variables or subpopulations in the same
plot instead of creating subgraphs.

o#(options) affects the rendition of the line of the #th outcome variable or subpopula-
tion if you specify overlay. For example, type o2(lwidth(*2)) to increase the line
width for the second outcome variable or subpopulation. options are the following:

connect options rendition of the plotted line (see
[G-3] connect options)[

no
]
ci whether to draw the CI

ciopts(area options) rendition of the CI (see below)

CIs

level(#) specifies the confidence level, as a percentage, for CIs. The default is the level
used for computing the lorenz estimate results. level() cannot be used together
with ci(bc), ci(bca), or ci(percentile).

ci(citype) chooses the type of CIs to be plotted for results computed using the bootstrap
technique. citype may be normal (normal-based CIs, the default), bc (bias-corrected
[BC] CIs), bca (BC and accelerated CIs), or percentile (percentile CIs). bca is
available only if you request BCa CIs when running lorenz estimate (see [R] boot-
strap).

ciopts(area options) affects the rendition of the plotted confidence areas. area options
are as described in [G-3] area options.

noci omits CIs from the plot.

Add plots

addplot(plot) adds other plots to the generated graph; see [G-3] addplot option.

Y axis, X axis, Title, Caption, Legend, Overall

twoway options are general twoway options, other than by(), as documented in
[G-3] twoway options.
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4 Examples

4.1 Basic application

By default, lorenz computes relative Lorenz curves on a regular-grid of 20 equally
spaced points across the population (plus a point at the origin). The following example
shows the results for wages in the 1988 extract of the U.S. National Longitudinal Study
of Young Women data, shipped with Stata:

. sysuse nlsw88
(NLSW, 1988 extract)

. lorenz estimate wage

L(p) Number of obs = 2,246

wage Coef. Std. Err. [95% Conf. Interval]

0 0 (omitted)
5 .015106 .0004159 .0142904 .0159216

10 .0342651 .0007021 .0328882 .035642
15 .0558635 .0010096 .0538836 .0578434
20 .0801846 .0014032 .0774329 .0829363
25 .1067687 .0017315 .1033732 .1101642
30 .1356307 .0021301 .1314535 .1398078
35 .1670287 .0025182 .1620903 .171967
40 .2005501 .0029161 .1948315 .2062687
45 .2369209 .0033267 .2303971 .2434447
50 .2759734 .0037423 .2686347 .2833121
55 .3180215 .0041626 .3098585 .3261844
60 .3633071 .0045833 .3543191 .372295
65 .4125183 .0050056 .4027021 .4223345
70 .4657641 .0054137 .4551478 .4763804
75 .5241784 .0058003 .5128039 .5355529
80 .5880894 .0062464 .5758401 .6003388
85 .6577051 .0066148 .6447333 .6706769
90 .7346412 .0068289 .7212497 .7480328
95 .8265786 .0062687 .8142856 .8388716
100 1 . . .

The standard errors for the first point and the last point are 0 because these Lorenz
ordinates are 0 and 1 by definition. This is why Stata flags the first point as “omitted”
and prints “missing” for the standard error and CI of the last point.
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To graph the estimated Lorenz curve, type (see figure 1):

. lorenz graph, aspectratio(1) xlabel(, grid)
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Figure 1. Lorenz curve of wages

The aspectratio(1) option enforces a square plot region, and xlabel(, grid)

includes vertical grid lines.

The default for lorenz is a regular grid of evaluation points across the whole dis-
tribution. To use an irregular grid or to cover just a part of the distribution, use the
percentiles() option. The following example focuses on the upper 20% and uses a
different step size toward the tail of the distribution (figure 2).

. lorenz estimate wage, percentiles(80(2)94 95(1)100)

L(p) Number of obs = 2,246

wage Coef. Std. Err. [95% Conf. Interval]

80 .5880894 .0062464 .5758401 .6003388
82 .6151027 .0063755 .6026003 .6276051
84 .6432933 .0065449 .6304586 .6561281
86 .672506 .006651 .6594633 .6855487
88 .70278 .0067917 .6894613 .7160987
90 .7346412 .0068289 .7212497 .7480328
92 .7684646 .0067952 .7551391 .7817901
94 .806114 .0064727 .7934209 .8188071
95 .8265786 .0062687 .8142856 .8388716
96 .8485922 .0060386 .8367504 .860434
97 .8730971 .0051329 .8630314 .8831629
98 .9046081 .0027287 .899257 .9099591
99 .9486493 .000697 .9472826 .9500161
100 1 . . .
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. lorenz graph, recast(connect) msymbol(diamond)
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Figure 2. Upper part of the Lorenz curve of wages

The recast(connect) option made the evaluation points visible in the graph. The
msymbol(diamond) option specified diamonds as marker symbols.
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4.2 Subpopulation estimation

To compute results for multiple subpopulations, use the over() option. I analyzed
wages by union status below (see figure 3):

. lorenz estimate wage, over(union)

(output omitted )

. lorenz graph, aspectratio(1) xlabel(, grid)
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Figure 3. Lorenz curve of wages by union status
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By default, lorenz places results for the subpopulations in separate subgraphs. To
combine the results in a single plot, use the overlay option (figure 4):

. lorenz graph, aspectratio(1) xlabel(, grid) overlay
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Figure 4. Overlayed Lorenz curves by union status

4.3 Contrasts and Lorenz dominance

A useful feature of lorenz is that it can compute contrasts between subpopulations or
outcome variables. For example, to evaluate whether the wage distribution of unionized
women Lorenz dominates the wage distribution of nonunionized women, type
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. lorenz estimate wage, over(union)

(output omitted )

. lorenz contrast 0

L(p) Number of obs = 1,878

0: union = nonunion
1: union = union

wage Coef. Std. Err. t P>|t| [95% Conf. Interval]

1
0 0 (omitted)
5 .0020273 .0009365 2.16 0.031 .0001905 .003864

10 .004292 .0016305 2.63 0.009 .0010942 .0074897
15 .0071636 .0023077 3.10 0.002 .0026376 .0116895
20 .0095728 .0030773 3.11 0.002 .0035375 .0156081
25 .0128985 .0038764 3.33 0.001 .0052959 .020501
30 .017007 .0046414 3.66 0.000 .0079042 .0261097
35 .0207488 .005331 3.89 0.000 .0102935 .031204
40 .024661 .0059814 4.12 0.000 .0129302 .0363918
45 .0284968 .0065591 4.34 0.000 .0156329 .0413607
50 .0326431 .0071647 4.56 0.000 .0185915 .0466948
55 .036453 .0077004 4.73 0.000 .0213506 .0515553
60 .0402741 .0082179 4.90 0.000 .0241569 .0563913
65 .0433946 .0086696 5.01 0.000 .0263914 .0603977
70 .0450269 .0090563 4.97 0.000 .0272654 .0627884
75 .043906 .0093882 4.68 0.000 .0254936 .0623184
80 .0397601 .009565 4.16 0.000 .021001 .0585193
85 .0334832 .0096968 3.45 0.001 .0144655 .0525008
90 .0248836 .0094742 2.63 0.009 .0063025 .0434646
95 .013423 .0083609 1.61 0.109 -.0029747 .0298208
100 0 (omitted)

(difference to union = 0)

. lorenz graph
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Figure 5. Difference in Lorenz curves by union status
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The Lorenz curve for unionized women’s wages lies above the Lorenz curve for
nonunionized women’s wages (see figure 5). One can conclude that the wage distri-
bution for nonunionized women is less equal than the wage distribution for unionized
women.

Lorenz dominance does not necessarily imply that one distribution is preferable over
the other from a welfare perspective. To evaluate welfare ordering, one may find it
useful to analyze GL dominance. The following example shows the GL curves of wages
of unionized and nonunionized women (figure 6):

. lorenz estimate wage, over(union) generalized

(output omitted )

. lorenz graph, overlay
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Figure 6. Generalized Lorenz curves by union status
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To evaluate whether one distribution dominates the other, we can again take con-
trasts (figure 7):

. lorenz contrast 0

(output omitted )

. lorenz graph
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Figure 7. Difference in GL curves by union status

These results clearly show that the wage distribution for unionized women GL dom-
inates the wage distribution for nonunionized women. Not only is the wage distribution
for unionized women less unequal than the wage distribution for nonunionized women,
it is also clearly preferable from a welfare perspective.

4.4 Concentration curves

Concentration curves illustrate how one variable is distributed across the population,
ranked by another variable. As an example, consider the following household dataset
with information on transfer income, capital income, and earnings. We may use the
pvar() option to analyze how transfers and capital rents are distributed across house-
holds, while ranking households by earnings:
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. use lorenz_exampledata

. summarize

Variable Obs Mean Std. Dev. Min Max

earnings 6,007 94673.66 72285.96 0 1965925
capincome 6,007 8346.58 50226.91 0 2374227
transfers 6,007 6375.284 15838.54 0 239408

couple 6,007 .4453138 .4970418 0 1

. lorenz estimate transfers capincome, pvar(earnings)

(output omitted )

. lorenz graph, aspectratio(1) xlabels(, grid) overlay legend(cols(1))
> ciopts(recast(rline) lpattern(dash))
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Figure 8. Concentration curves of transfers and capital income

We see, as expected, that the concentration curve for transfers lies above the equal
distribution line (figure 8). That is, transfers benefit households with low earnings. For
example, the bottom 50% of households in the earnings distribution receive about 80%
of all transfers. Capital income is skewed toward high-earning households (the bottom
50% of households in the earnings distribution receive only about 25% of all capital
income).

4.5 Renormalization

By default, Lorenz and concentration curves are normalized so that the last ordinate
is equal to one, because 100% of the population possesses 100% of the outcome sum.
When one analyzes subpopulations or multiple outcome variables, however, it may be
useful to apply a different type of normalization with the normalize() option.
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For example, the normalize() option can be used to subdivide the Lorenz curve of
total income by income source as follows:

. generate totalinc = earnings + capincome + transfers

. generate earntrans = earnings + transfers

. lorenz estimate totalinc earntrans transfers, pvar(totalinc) normalize(totalinc)

(output omitted )

. lorenz graph, aspectratio(1) xlabels(, grid) overlay
> labels("total income" "tansfers+earnings" "transfers")
> legend(position(3) stack cols(1))
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Figure 9. Lorenz curve subdivided by income source

The trick is to generate a series of variables accumulating the income sources step
by step and then normalize results with respect to the variable containing the sum of all
income sources. Furthermore, I specified the pvar(totalinc) option so that the same
ordering of observations is used for all variables. The results are shown in figure 9. The
bottom curve displays the part of cumulative total income due to transfers. The area
between the bottom curve and the middle curve depicts the contribution of earnings.
The area between the middle curve and the upper curve captures the contribution of
capital income.

The data used in the last example come from two different types of tax subjects:
single-person tax subjects and married couples. When analyzing income inequality
among singles and couples, we might want to account for the different income levels of
the two groups. The following example shows how to compute Lorenz curves for the
two groups that are both normalized with respect to the same reference group.
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. lorenz estimate totalinc, over(couple) normalize(1:, average)

(output omitted )

. lorenz graph, aspectratio(1) xlabels(, grid) overlay
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Figure 10. Renormalized Lorenz curves by type of tax subject

Expression “1:” in normalize() specifies that the subpopulation identified by
value 1 (couples) be used as the reference group; suboption average implies normaliza-
tion in terms of group averages instead of group totals (without the average suboption,
the results would be affected by the group sizes). In figure 10, we see that on average,
income declared by singles amounts to about 60% of income declared by couples (the
rightmost ordinate of the renormalized Lorenz curve of singles is equal to about 0.6).
We also see that the curve for singles lies everywhere below the Lorenz curve of couples;
that is, the poorest x% of singles are always poorer than the poorest x% of couples.

Finally, the following example illustrates how to apply renormalization to both vari-
ables and subpopulations.
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. lorenz estimate transfers, over(couple) pvar(earnings)
> normalize(total:earnings, average)

(output omitted )

. lorenz graph, nodiagonal overlay
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Figure 11. Renormalized concentration curves of transfers

In the above example, I analyze the relationship between transfers and labor income
(earnings). The normalize() option normalizes all results with respect to the average
of variable earnings in the overall population (expression “total:” selects the total
population as the reference group). The results, displayed in figure 11, indicate that
couples, on average, receive transfers in the range of a bit more than 5.5% of the
population average of earnings; singles receive somewhat higher transfers (7.5% of the
population average of earnings). For both groups, transfers are more concentrated
among the poor; that is, the size of transfers decreases with earnings (both curves have
a decreasing slope). The decrease in transfers, however, is more rapid for couples than
for singles.

5 Acknowledgment

This research has been supported by the Swiss National Science Foundation (Grant
No. 143399).

6 References
Abdelkrim, A. 2005. clorenz: Stata module to estimate Lorenz and concentration curves.
Statistical Software Components S456515, Department of Economics, Boston College.
https://ideas.repec.org/c/boc/bocode/s456515.html.



B. Jann 865

Atkinson, A. B. 1970. On the measurement of inequality. Journal of Economic Theory
2: 244–263.

Azevedo, J. P., and S. Franco. 2006. alorenz: Stata module to produce Pen’s Parade,
Lorenz and Generalised Lorenz curve. Statistical Software Components S456749,
Department of Economics, Boston College.
http://ideas.repec.org/c/boc/bocode/s456749.html.

Binder, D. A., and M. S. Kovacevic. 1995. Estimating some measures of income inequal-
ity from survey data: An application of the estimating equations approach. Survey
Methodology 21: 137–145.

Bishop, J. A., K. V. Chow, and J. P. Formby. 1994. Testing for marginal changes in
income distributions with Lorenz and concentration curves. International Economic
Review 35: 479–488.

Cowell, F. A. 2000. Measurement of inequality. In Handbook of Income Distribution,
vol. 1, ed. A. B. Atkinson and F. Bourguignon, 87–166. The Netherlands: Elsevier.

. 2011. Measuring Inequality. 3rd ed. Oxford: Oxford University Press.

Hao, L., and D. Q. Naiman. 2010. Assessing Inequality. Thousand Oaks, CA: Sage.

Hyndman, R. J., and Y. Fan. 1996. Sample quantiles in statistical packages. American
Statistician 50: 361–365.

Jann, B. 2016. Assessing inequality using percentile shares. Stata Journal 16: 264–300.

Jenkins, S. P. 2006. svylorenz: Stata module to derive distribution-free variance es-
timates from complex survey data, of quantile group shares of a total, cumulative
quantile group shares. Statistical Software Components S456602, Department of Eco-
nomics, Boston College. https://ideas.repec.org/c/boc/bocode/s456602.html.

Jenkins, S. P., and P. Van Kerm. 1999. sg107: Generalized Lorenz curves and related
graphs. Stata Technical Bulletin 48: 25–29. Reprinted in Stata Technical Bulletin
Reprints, vol. 8, pp. 274–278. College Station, TX: Stata Press.
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