
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

The Stata Journal (2016)
16, Number 4, pp. 964–988

markdoc: Literate programming in Stata

E. F. Haghish
Center for Medical Biometry and Medical Informatics

University of Freiburg
Freiburg, Germany

and
Department of Mathematics and Computer Science

University of Odense
Odense, Denmark

haghish@imada.sdu.dk

Abstract. Rigorous documentation of the analysis plan, procedure, and computer
codes enhances the comprehensibility and transparency of data analysis. Docu-
mentation is particularly critical when the codes and data are meant to be publicly
shared and examined by the scientific community to evaluate the analysis or adapt
the results. The popular approach for documenting computer codes is known as lit-
erate programming, which requires preparing a trilingual script file that includes
a programming language for running the data analysis, a human language for
documentation, and a markup language for typesetting the document. In this ar-
ticle, I introduce markdoc, a software package for interactive literate programming
and generating dynamic-analysis documents in Stata. markdoc recognizes Mark-
down, LATEX, and HTML markup languages and can export documents in several
formats, such as PDF, Microsoft Office .docx, OpenOffice and LibreOffice .odt,
LATEX, HTML, ePub, and Markdown.

Keywords: pr0064, markdoc, Markdown, HTML, LATEX, literate programming,
dynamic documents, reproducible research, log file, translator

1 Introduction

In recent years, there have been concerns about replicability of study findings as well
as reproducibility of data analysis results in scientific publications. Replication requires
reimplementing experiments to validate the findings. Reproducibility is when an inde-
pendent researcher can replicate the data analysis or the computation using the same
data, procedure, and methodology (Baggerly and Berry 2011). Reproducing the analy-
sis is a minimum standard for evaluating the quantitative results because reproducibility
does not necessarily certify quality, sound methodology, correctness of data collection, or
validity of the findings (Peng 2011; Stodden, Leisch, and Peng 2014). However, it does
provide partial transparency for other researchers to validate the analysis procedure and
examine or adapt the claims (Gentleman and Lang 2007).

To support reproducibility of the analysis, the researcher should prepare detailed
documentation of the methodology and analysis plan, data, and analytic codes and out-
put. The documentation can be included in the analysis code as comments; however,

c© 2016 StataCorp LP pr0064

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X1601600409&domain=pdf&date_stamp=2016-12-01

E. F. Haghish 965

reading comments requires navigating through script files that get more convoluted as
the size and complexity of the program increases. Furthermore, comments are scattered
across the script files and do not fulfill the demand for a coherent document. Alter-
natively, the documentation can be written using a word processor, such as Microsoft
Word. While this approach might suffice for documenting the variables and the analysis
plan, it would be boring, time consuming, and prone to human error to reference the
code or output and to update the documentation after making a change in the code.

Another solution to this problem is to include the documentation within the script
files along with a special notation that separates the documentation from the source
code. Next, a software package is used to parse the special notations and then typeset
the documentation or compile the code, procedures that are called “weave” and “tan-
gle”, respectively. This solution was proposed by Knuth (1984) and is called literate
programming. Knuth (1983) developed the WEB literate-programming software, which
provided the means to write structured documentation within the source code and to
generate dynamic documentation.

Many have attempted to adapt the literate-programming paradigm for statistical
data analysis (Leisch 2002; Rossini and Leisch 2003; Rossini 2001; Xie 2016, 2014; Lenth
2012). Yet the only software allowing literate programming for Stata is StatWeave
(Lenth 2012), which is written in Java, and its Stata package alternative, texdoc (Jann
2016). The main drawback of StatWeave and texdoc is that they only support LATEX,
excluding all Stata users who are not familiar with this markup language. Although
LATEX is very enabling, it is a complex markup language and can hinder the readability
of the source file (see section 5.2).

Another shortcoming of StatWeave and texdoc is that they do not support a real-
time preview of the document; that is, they do not support writing and viewing the
dynamic document interactively without reexecuting the analysis code. In practice,
data analysis is developed gradually in a script file, and an ideal literate-programming
software would allow interactive documentation and execution of the data analysis.
Furthermore, StatWeave forces the user to create a new script file to generate the
dynamic-analysis document, which leads to additional problems in updating and version
control of the script files. For example, the source file that StatWeave executes cannot
be executed directly in a do-file because the source file includes special notations that
separate the LATEX documentation from the analytic code. These notations are not
meaningful for Stata. In addition, texdoc includes several commands to initialize and
close the document, which makes working with it inconvenient, especially for those just
learning statistics.

Literate programming in data analysis should be easy to implement in the source
code, support a real-time preview of the document, provide some options to adjust the
commands and output in the dynamic document, and above all, keep the source file
simple and easy to read. Furthermore, the ability to generate dynamic documents in
various formats from the same source code would be an advantage and would extend
the applications of the literate-programming software. For example, some users might
wish to produce HTML documentation that can be uploaded on websites, while others

966 markdoc: Literate programming in Stata

might wish for PDF or editable documentation formats, such as LATEX, Microsoft Word
.docx, or OpenOffice .odt. In this article, I introduce the markdoc package, which pro-
vides a convenient solution for literate programming in Stata, and discuss its potential
applications.

2 Workflow

Because the log file registers every entry in Stata, including the markup annotations
and the text required to typeset the dynamic document, the markdoc command was
designed to produce the dynamic document as a by-product of the log file. In other
words, markdoc interprets the log file—which is updated in real-time during the analysis
session—and typesets the dynamic-analysis document based on the content of the log
file. Once the user opens a Stata Markup and Control Language (SMCL) log file and
begins the data analysis, markdoc can quickly and interactively compile a dynamic
document, as shown in figure 1.

Figure 1. The process of producing dynamic documents with markdoc

This workflow has several advantages when compared with other common literate-
programming packages used for data analysis. First, the log file can be used to compile
a dynamic document in various formats without rerunning the analysis code. Second,
dynamic documents can be produced quickly without reexecuting the analysis code
because the log file contains the history of commands and output and is updated auto-
matically. Finally, this workflow eliminates the need for creating an additional script file
to produce the dynamic document because it follows the natural data analysis practice
in Stata without introducing numerous commands for creating the analysis document.

Although using a single command to convert a SMCL log file into various document
formats is convenient, it does not ensure the reproducibility of the source code, even if
the do-file begins with opening a log and ends by closing the log. For example, the user
might have made changes to the data that are not included in the do-file. Therefore,
the do-file must be examined in a clean workspace, where no data are loaded in Stata.

markdoc supports both procedures. If a SMCL log file is given, it converts the log
to a document without evaluating the reproducibility of the script file that generated
the log. In the example below, markdoc takes the SMCL log file as input and generates
a PDF document. Opening the log quietly avoids including the log description in
the document. The quietly log close command (which can be abbreviated as qui

log c) is automatically removed by markdoc to keep the document clean.

E. F. Haghish 967

Example

quietly log using example, replace smcl
display "Hello world"
quietly log close
markdoc example.smcl, export(pdf)

In addition, markdoc can also take a do-file as an input and actively execute it in
a new workspace—where no data is loaded in that workspace—to examine its repro-
ducibility and generate a dynamic document from the source code1 as shown in figure 2.

Figure 2. The process of producing dynamic documents from do-files

In the example above, if the code is saved as a do-file—for example, in a file named
example.do—then markdoc can produce an identical document using the script file as
shown in the example below.

Example

markdoc example.do, export(html) master

Technical note

HTML and LATEX documents have a strict layout format to represent the documen-
tation properly. Literate-programming software such as texdoc and StatWeave require
the user to create the layout manually, which reduces the readability of the source code.
The master option in markdoc automatically produces a standard HTML or LATEX layout
to keep the source code as clean and simple as possible.

3 The markdoc package

3.1 Features

markdoc recognizes Markdown, HTML, and LATEX markup languages and can export
the dynamic document into several formats: PDF, Microsoft Office .docx, Open Office

1. markdoc can take a Mata file or an ado-file as input and generate Stata help files (.sthlp) or a
package vignette from Markdown documentation. This feature is not discussed in this article.

968 markdoc: Literate programming in Stata

and LibreOffice .odt, LATEX, HTML, ePub, and Markdown,2 as shown in figure 3. By
applying any of these markup languages, users can style the dynamic document, insert
figures, create dynamic tables, write dynamic text, and style the text.

Figure 3. Document formats supported by markdoc

In addition, markdoc includes several document styles, and it also allows users to
create a dynamic document by using external template files, for example, a LATEX header
file, a CSS file, or a Microsoft Word template file. Furthermore, markdoc uses a syntax
highlighter for Stata commands, which makes the code more appealing, distinguishable
from the documentation text, and easier to read and comprehend. Finally, the package
allows rendering LATEX mathematical notations when exporting not only to a LATEX
document, but also to HTML, PDF, Microsoft Word, and OpenOffice documents.

3.2 Dialog box

markdoc was designed to be a user-friendly package—consisting of one command—
that can export a variety of documents from the same source code. Particularly, it was
intended to be used in classrooms for teaching statistics. Students can use the package to
document their analysis using Markdown, include mathematical notations, and actively
practice data analysis and interpretation. To further facilitate learning markdoc, a
dialog box was programmed to visualize the main options and functionalities of the
package. To launch the dialog box, type

2. markdoc can also produce PDF and HTML dynamic presentation slides. This feature goes beyond
the purpose of this article and thus is not discussed here.

E. F. Haghish 969

. db markdoc

Figure 4. markdoc dialog box

The dialog box includes three tabs, each specializing in a particular document format,
that are independent of one another (see figure 4). In this article, I only focus on
the Dynamic Document tab, which is used for generating dynamic-analysis reports
in several formats. The other tabs are used for generating dynamic PDF and HTML

presentation slides and Stata help files and package vignettes from Markdown. The
documentation for the additional functionalities can be found on GitHub Wiki, that is,
http://github.com/haghish/markdoc/wiki.

In the Dynamic Document tab, you can select a do-file or SMCL file and select the
format in which the dynamic document will be executed. The dialog box provides all
the options supported by markdoc. You can specify the markup language that you use
for writing the documentation, select the layout style of the document, or use your own
layout template. Moreover, you can turn on the syntax highlighter or create a table
of contents with a mouse click. The dialog box helps you to become familiar with the
package and examine all of its features.

970 markdoc: Literate programming in Stata

3.3 Installation

markdoc requires the weaver, statax, and markdown packages. weaver (Haghish 2014b)
is a dynamic-document generator, which creates LATEX, HTML, and PDF dynamic doc-
uments in Stata. It also supports markdoc with commands to create dynamic tables,
write dynamic text, and insert the current graph from Stata into the dynamic document.
statax (Haghish 2015) is a syntax highlighter engine that highlights Stata commands
in HTML, PDF, and LATEX documents. The markdown (Haghish 2016b) command is a
Markdown-to-SMCL translator that markdoc uses to generate Stata help files from Mark-
down (Gruber 2004). The mentioned packages are hosted on http://www.github.com.
The github3 (Haghish 2016a) command can install markdoc and its dependencies as
shown below.

. github install haghish/markdoc

In addition, markdoc requires the third-party software Pandoc (MacFarlane 2006),
for converting Markdown to other file formats, and wkhtmltopdf (Kulkarni and Tru-
elsen 2015), for creating PDF documents from source written with Markdown or HTML.
Users who wish to write with LATEX can also compile a PDF document with the markdoc
command if a LATEX distribution is installed on your machine. All mentioned software
are open-source freeware, available for Microsoft Windows, Mac, and Linux operating
systems. The packages hosted on the Statistical Software Components server only in-
clude the ado-files and help files. markdoc provides optional automatic installation for
Pandoc and wkhtmltopdf, which might be more convenient for many users than down-
loading and installing the third-party software manually. The manual and automatic
installation procedures are both described below.

Manual installation of third-party software

The Pandoc software can be downloaded from http://pandoc.org and installed manu-
ally. Once Pandoc is installed, the path to the executable Pandoc should be provided
to markdoc by using the pandoc(str) option. The wkhtmltopdf software can be down-
loaded from http://wkhtmltopdf.org and installed anywhere on your machine. The
path to the executable wkhtmltopdf file should be provided to markdoc by using the
printer(str) option. Similarly, for compiling LATEX to PDF, the proper LATEX distribu-
tion should be downloaded from https://latex-project.org and the path to the executable
pdfLaTeX compiler should be provided using the printer(str) option (see the master
option in section 4 in this regard).

The paths to Pandoc, wkhtmltopdf, and pdfLaTeX can be permanently defined
using the weave setup command. This command opens a script file that memorizes
the path to each software package within a particular global macro. The file includes
instructions and examples of how the file paths should be defined.

3. To install the github command, type
net install github, from("https://haghish.github.io/github/").

E. F. Haghish 971

Automatic installation of third-party software

The markdoc command includes the install option, which downloads the Pandoc
and wkhtmltopdf software automatically if they are not already installed or cannot
be accessed by markdoc. The automatic installation was successfully tested on Mac
OS X (10.9 and 10.10); 32-bit and 64-bit versions of Microsoft Windows (XP, 7, and 8);
Microsoft Windows 10 (64-bit); and Linux Ubuntu 14.04 (64-bit), Mint 17 (32-bit and
64-bit), and CentOS 7 (64-bit). However, manual installation is generally recommended
because it ensures the installation of the latest version of the software.

Technical note

markdoc installs the required software in a directory named Weaver inside the
plus directory, where Stata expects to find user-written ado-files. The path to the
\ado\plus\ directory can be found using the sysdir command, which lists Stata’s sys-
tem directories. For Stata 13 and 14, the default Weaver directory paths are shown
below based on the operating system.

Windows: C:\ado\plus\Weaver

Mac OS X: ~/Library/Application Support/Stata/ado/plus/Weaver

Linux: /home/username/ado/plus/Weaver

3.4 Testing markdoc

After installing the required packages, markdoc can be tested to ensure that the software
is running properly, as shown below. (Note that when the test option is used, there
is no need to specify the SMCL log filename.) If the software was installed manually,
the pandoc() and printer() options should be specified to tell markdoc where it can
access Pandoc and wkhtmltopdf. If the software was installed automatically, then only
the test option is needed to carry out the test.

markdoc, test pandoc("path/pandoc") printer("path/printer")

4 Syntax

The markdoc command only requires the name of the SMCL log file or a do-file to
produce the dynamic document, as shown below. If the file suffix (.smcl or .do) is not
specified, then SMCL log is assumed.

markdoc filename
[
, pandoc(str) printer(str) install test replace

export(name) markup(name) numbered style(name) toc title(str)

author(str) affiliation(str) address(str) summary(str) date master

statax template(filename) noisily
]

972 markdoc: Literate programming in Stata

Options

pandoc(str) specifies the path to the executable Pandoc on your machine. This option
is only required if Pandoc is installed manually and the path is not permanently
defined using the weave setup command.

printer(str) specifies the path to the executable wkhtmltopdf or pdfLaTeX software
on your machine. wkhtmltopdf generates a PDF document from the Markdown and
HTML markup languages, and pdfLaTeX typesets LATEX to a PDF document.

install downloads the required third-party software automatically if they are not al-
ready installed or accessible (see section 3.3).

test runs an example do-file and generates HTML and PDF dynamic documents to
ensure that the required software is running properly.

replace rewrites the exported document if it already exists.

export(name) specifies the format of the exported document. The supported docu-
ment formats are html, pdf, epub, tex (LATEX), docx (Microsoft Office), and odt

(OpenOffice and LibreOffice). If this option and the markup(name) option are not
specified, then markdoc exports a Markdown (export(md)) file by default.

markup(name) specifies the markup language used to annotate the document. name
can be markdown (the default), html, or latex.

numbered turns on numbering of the commands in the dynamic document.

style(name) specifies the theme of the HTML, LATEX, Microsoft Word .docx, and
PDF documents. name can be simple or stata. style(stata) can be used to
export LATEX documents in Stata Journal style, even if the document is written with
Markdown.

toc automatically creates a table of contents in the PDF, LATEX, and Microsoft Word
dynamic documents.

title(str) displays the title of the dynamic document on the title page.

author(str) displays the author’s name on the title page.

affiliation(str) displays the author’s affiliation (or any preferred relevant informa-
tion) on the title page.

address(str) displays the author’s contact information (or any preferred relevant infor-
mation) on the title page. For example, it can be used to add a telephone number,
email address, or mailing address.

summary(str) displays a summary or abstract on the title page.

date displays the current date on the title page.

master creates a layout for HTML and LATEX documents. For example, it includes Math-
Jax and CSS codes in HTML documents and includes the most common packages for

E. F. Haghish 973

rendering graphs and figures in LATEX documents. Both HTML and LATEX documents
have a restricted layout. master automates this process and creates a complete lay-
out for HTML and LATEX documents, allowing the user to focus on the content of the
document and keep the source code clean. Users who are not familiar with HTML or
LATEX will find this option handy.

statax uses the statax package to highlight the syntax of Stata codes in the HTML

and PDF documents.

template(filename) applies an external style sheet. For example, if the document is
written in Markdown or HTML and exported to HTML or PDF, then a CSS style sheet
can be specified to alter the appearance of the dynamic document. Similarly, when
the document is exported to Microsoft Word .docx, a reference document with a
similar format can be used to alter the style of the Word document (for example,
create a .docx document, change the styles and themes, and use it as a template
file). Finally, if the document is written in LATEX, this option can be used to append
the LATEX header (that is, required packages, user-defined commands, etc.) to the
exported document.

noisily displays the extended log.

4.1 Version declaration

As noted, the github install haghish/markdoc command installs the latest ver-
sion of the markdoc package and its dependencies. However, markdoc—like any other
software—may change over time, making older projects that were documented using
markdoc irreproducible. To tackle this problem, all releases of markdoc are made avail-
able via GitHub and can be installed via the github (Haghish 2016a) command. To
ensure that your current projects remain executable over time, you should document the
version of markdoc that you are using to write the analysis documents. For example, if
you are using markdoc version 3.9.4, write the following note in your analysis codes:

/***
Version declaration

This analysis was developed using Stata 14.2 and markdoc 3.9.4
on Mac OS X 10.10.5. To install markdoc 3.9.4 and the dependencies
required by this version, type

github install haghish/markdoc, version(3.9.4)
***/

The version() option not only installs the specified version of markdoc, but also
markdoc’s dependencies for version 3.9.4, ensuring that you install the same version
of markdoc and its dependencies that was used to produce a dynamic-analysis report.
Naturally, reinstalling the markdoc package without specifying the version() option
will update the package and its dependencies to the current version. A similar decla-
ration is recommended in scientific publication, by specifying the version of Stata and
markdoc used for executing and documenting the data analysis.

974 markdoc: Literate programming in Stata

5 Supported markup languages

To automatically typeset a document from source files, a markup language is needed.
A markup language is a computer language that annotates the content and styles in
the document. Markup languages can be divided into three categories: descriptive,
procedural, and presentational (Reid 2015). Descriptive languages, such as XML, de-
scribe the content of the document. Procedural languages, such as PostScript, define
how the document should be processed. And presentational languages, such as HTML

and LATEX, frame how the document should be rendered and presented. To write a
literate program, we need a presentational markup language to define the template of
the document and render headings and images in the document. markdoc supports the
Markdown, HTML, and LATEX markup languages. These markup languages are briefly
compared with examples in the following sections.

Regardless of the markup language used to write a dynamic-analysis document,
there is a demand for a special notation to separate the documentation text from the
analytic code and results. As shown in the examples of the following sections, markdoc
requires the markup syntax and the documentation text to be written as a comment
in the do-file, starting with /*** and ending with ***/, each on a separate line. This
notation allows the do-file to remain executable by keeping the comments within from
interfering with the code execution in Stata.

5.1 Markdown

Markdown (Gruber 2004) is a minimalistic markup language and has an intuitive syntax
that makes it preferable to HTML and LATEX. Table 1 presents the most common
Markdown syntax.4

4. Complete documentation of the Markdown commands can be found at
http://daringfireball.net/projects/markdown/dingus.

E. F. Haghish 975

Table 1. Markdown syntax references

Markdown syntax Result

Heading 1 Heading 1
=========

Heading 2 Heading 2

###Heading 3 Heading 3

####Heading 4 Heading 4

plain text paragraph plain text paragraph

> text block quote

Bold or __Bold__ text Bold or Bold text

Italic or _Italic_ text Italic or Italic text

`monospace` text monospace text

superscript^2^ superscript2

--- horizontal rule

1. Ordered item1 1. Ordered item1
A. Sublist 1 A. Sublist 1
a. Subsublist 1 a. Subsublist 1

2. Ordered item2 2. Ordered item2

* Unordered item1 • Unordered item1
* Sublist 1 - Sublist 1
* Subsublist 1 * Subsublist 1

* Unordered item2 • Unordered item2

![Text](filename) Insert an image with description

[Text](http://url) Insert a hyperlink

http://haghish.com

976 markdoc: Literate programming in Stata

Dynamic documents written in Markdown can include LATEXmathematical notations
(see section 5.3). They can also be exported to HTML, LATEX, or any of the other
supported document formats, thereby providing greater flexibility compared with HTML

and LATEX. The example below demonstrates using Markdown to create headings and
subheadings and to style text in a do-file. The do-file is then compiled into a Microsoft
Word document.

Example

quietly log using example, replace
/***
This is a heading
=================

This is a subheading

Text can also appear as _Italic_ or __Bold__.
***/
quietly log close
markdoc example, export(docx)

Technical note

The default markup language is Markdown. If the document is annotated with HTML

or LATEX, then the markup language should be specified using the markup() option.

5.2 HTML and LATEX

Although it is simple, convenient, and flexible, Markdown only provides commands for
basic styling, such as writing headings, making text bold or italic, adding a hyperlink,
and inserting a graph or image. In contrast, HTML and LATEX provide more options for
styling and annotating the dynamic document; however, dynamic documents written in
these markup languages will not be as readable as documents written with Markdown.
While HTML and LATEX are supported by markdoc, the reader is encouraged to practice
Markdown documentation whenever the document does not require detailed styling.
The following example creates an HTML document using HTML markup.

E. F. Haghish 977

Example

quietly log using example, replace
/***
<h1>This is a heading </h1>
<h2>This is a subheading </h2>
<p>Text can also appear as <i>Italic</i> or Bold.</p>
***/
quietly log close
markdoc example, export(html) markup(html)

Now, the previous example is repeated using LATEX markup and with the addition of
the master option to create the document’s layout automatically and allow compilation
of the document. Because we are compiling LATEX to PDF, the path to pdfLaTeX should
also be specified in the printer option. To demonstrate the alternative procedure to
produce dynamic documents with markdoc, assume that the following code is saved in
a do-file named example.do. Note that the statax option was also added to highlight
the syntax of Stata commands in the LATEX document.

Example

/***
\section{This is a heading}
\subsection{This is a subheading}
Text can also appear as \textit{Italic} or \textbf{Bold}.
***/
display "writing with LaTeX increases the complexity of the code"

Then the following command will generate the dynamic document:

markdoc example.do, master export(pdf) markup(latex) statax ///
printer("/path/to/pdflatex")

5.3 Mathematical notations

markdoc supports LATEX markup language, and naturally, it can also render LATEX
notations. In addition, when the document is written in Markdown, markdoc can render
LATEX notation in all the supported formats. To write an inline notation, the notation
should begin and end with a single dollar sign. To place the notation on a separate line,
the notation should begin and end with double dollar signs.

978 markdoc: Literate programming in Stata

Example

quietly log using example, replace
/***
Writing mathematical notations
==============================

A text paragraph can include mathematical notations. For example, the
formula $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$ will be displayed within
the text paragraph, whereas this next formula will be placed on a separate
line: $$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$
***/
quietly log close
markdoc example, export(docx)

6 Additional notation markers

The markdoc package can include a subset of the SMCL log file’s code and output to
create less-detailed documentation or to concentrate on the main result of the analysis.
For example, the user may not want to include the process of data preparation and
exploration in the dynamic document, because all the executed commands and output
are already documented in the log file. However, turning the SMCL log on and off is not
a favorable approach because it reduces the transparency of the analysis, especially if
the data analysis is carried out interactively. Instead, markdoc includes a list of notation
markers that allow the user to exclude a command, output, or part of the log file from
the dynamic document. These markers are listed in table 2.

Table 2. Additional notation markers

Marker Description

/**/ exclude the Stata command but keep the output
/***/ exclude the Stata output but include the command
//OFF exclude everything in the log that follows
//ON deactivate the //OFF marker
<!*!> interprets macros and scalars in documentation
//IMPORT filename include an external file (Markdown, HTML, LATEX)

To exclude the Stata command or output, the code line should begin with /**/ or
/***/ markers, respectively. To exclude a section of code and output from the SMCL

log file, place the //OFF and //ON markers on a separate line in the do-file; markdoc will
ignore anything that appears between these markers. The <!*!> marker allows writing
dynamic text and is discussed in section 7.

E. F. Haghish 979

Several user-written packages export Stata output to LATEX and HTML files, includ-
ing tabout (Watson 2004), weaver (Haghish 2014b), and synlight (Haghish 2014a).
markdoc provides the //IMPORT filename command to include external files in the dy-
namic document. For example, using the outreg2 package (Wada 2005), a regression
table can be exported to a LATEX file and then imported into the dynamic document.
To keep the source code clean, the //IMPORT command can also be used to include a
descriptive text file, such as a project description or methodology, that is not supposed
to change based on the analysis results.

7 Writing dynamic documentation

markdoc borrows three additional commands from the weaver package (Haghish 2014b):
txt, tbl, and img, which are used to write dynamic text, to create dynamic tables, and
to capture and include graphs in the dynamic document, respectively. These commands
are discussed with examples in this section.

7.1 Dynamic text

Dynamic text—that is, including macros and scalars within text—is a useful feature in
literate programming. When the data are changed and the code reexecuted, dynamic
text will automatically update the values mentioned in the text. markdoc allows in-
cluding macros and scalars inside the documentation text using <!*!> marker. The *
can be a numeric or string macro or a scalar as well as a single scalar subsetted from
a matrix or a dataset. Furthermore, Stata’s display directive (see [P] display) can be
used to format the value of *. This marker requires an active execution, that is, when
markdoc is given a do-file to produce the dynamic document (see figure 5):

Example

//OFF
sysuse auto, clear
summarize foreign
scalar c = "Dynamic"
local min = `r(min)´
scalar max = r(max)
matrix Mat = (`r(min)´, `r(max)´)
//ON
/***
###<!c!> text
The 24^th^ observation in the data is `<!make[24]!>` with a `price` of
<!price[24]!>. The values of the `foreign` variable range between
<!`min´!> to <!max!>. The same values can also be extracted from matrices,
for example, <!Mat[1,1]!> and <!Mat[1,2]!>.
***/

980 markdoc: Literate programming in Stata

If the example is saved in example.do, the document can be produced by typing
the following:

. markdoc example.do, export(docx)

Figure 5. A dynamic text example

Alternatively, to provide the ability to write dynamic text within loops and user-
written program, the txt command—which is used for a similar purpose in the weaver
package (Haghish 2014b)—is borrowed and updated to support markdoc. The syntax
of the txt command is as follows:

txt
[
code

] [
display directive

[
display directive

[
. . .
]]]

display directive (similar to the display directive of Stata’s display command) can
be a double-quoted string, a compound double-quoted string, a mathematical operation,
a scalar, or a formatting directive (%fmt). By default, the txt command creates a text
paragraph. However, if the code subcommand is added, it produces a monospace-font
text line that can be used to discuss a line of code in the analysis document. In the
example below, the r(N) scalar, which is returned from the summarize command, is used
to print the number of observations in the price variable in a dynamic-text paragraph.

Example

quietly log using example, replace
sysuse auto, clear
quietly summarize price
txt r(N) " observations are included in the dataset."
quietly log close
markdoc example, export(odt)

Technical note

Using the <!*!> marker is convenient and follows markdoc’s usual procedure for
writing the documentation. However, this marker can only be used when the dynamic
document is actively executed by markdoc, that is, when the do-file is given to markdoc.
Therefore, to generate a dynamic document from the SMCL log file, the dynamic text
should be written using the txt command to display the markup code in the SMCL log.
Moreover, the <!*!> marker cannot be used in loops or within ado-files. For executing
markup and documentation within a loop or user-written program, the txt command
should be applied.

E. F. Haghish 981

7.2 Dynamic tables

The tbl command is also borrowed from the weaver package (Haghish 2014b) to cre-
ate simple Markdown tables that can be exported to any of the supported document
formats. This command creates a Markdown table and thus should only be used if
the document is written in Markdown. The syntax of tbl is similar to that of Stata’s
matrix input command, creating the table by defining subsequent rows.

tbl (*
[
,*...

] [
*
[
,*...

] [
\
[
...

]]]
)
[
, title(str)

]
The asterisk symbol represents a display directive, which can be a double-quoted

string, compound double-quoted string, mathematical operation, scalar, or formatting
directive (%fmt). Using auto.dta, I demonstrate the creation of a simple table that in-
cludes the number of observations, mean, and standard deviation of the price variable;
see figure 6.

Example

quietly summarize price
tbl ("Variable", "Observations", "Mean", "SD" \ ///

"__price__", r(N), %9.2f r(mean), %9.2f r(sd))

Figure 6. A dynamic table

7.3 Dynamic figures

Markdown, HTML, and LATEX have specific syntaxes to include figures in the document.
To automate the process of including a Stata graph in the document, the graph should
first be exported to an image file and then included in the document. The example
below demonstrates how to include a figure in a Microsoft Word document.

Example

quietly log using example, replace
sysuse auto, clear
histogram price
quietly graph export graph.png, width(300) replace
/***
Adding a figure in the document
===============================

![Histogram of the `price` variable](./graph.png)
***/
quietly log close
markdoc example, export(docx)

982 markdoc: Literate programming in Stata

To include figures in the analysis document, they should be exported to any of the
common graphical formats: .png, .gif, .jpeg, etc. The .png format is recommended
because it is a lossless and popular graphical format that can be included in any of the
supported document formats and is also supported by Stata.

Alternatively, we can again borrow from the weaver package. This time, we borrow
the img command, which has the following syntax:

img
[
using filename

] [
, title(str) width(int) height(int) {left | center}

]
The img command can be used in two different ways. It can include an image file

that is already stored on your machine: img using filename. Or, it can be used without
using filename, which will automatically capture the current graph from Stata, store
it in a directory named Weaver-figure in the working directory, and import it into the
dynamic document.

Example

quietly log using example, replace
/***
Using the `img` command

***/
sysuse auto, clear
histogram price
img
quietly log close
markdoc example, export(pdf) statax

By default, the img command prints Markdown code in the log; the markup() option
can be used to define html or latexmarkup. The width() and height() options, which
are used to specify the figure size in the dynamic document, only work in HTML and
LATEX because Markdown cannot resize images.

8 Example and notes

In the following example, I use Markdown syntax to write and style text, to insert a
graph, and to export the document in PDF format (see figure 7). The example also
includes the tbl command for creating a dynamic table as well as the notation markers
for hiding parts of the log file in the dynamic document.

E. F. Haghish 983

Example

/***
In this example, I will demonstrate how to create headings, style text, insert
a graph, and create dynamic tables with the __markdoc__ package. I will also
demonstrate how to hide a chunk of code and output from the SMCL log file.
I will use __auto.dta__ and practice some of the most basic Stata commands
on the __weight__ variable, which indicates the weight of the vehicle. I
begin by summarizing the __weight__ variable.
***/
//OFF
sysuse auto, clear
histogram weight, frequency scheme(sj)
quietly graph export graph.png, width(150) replace
//ON
summarize weight
/***
As shown in the output of the __summarize__ command, the __weight__ variable
includes <!r(N)!> observations with a mean of <!%9.1f r(mean)!> and a standard
deviation of <!%9.1f r(sd)!>. Alternatively, I could create a loop for several
variables to create a dynamic table with a better appearance and less detail.
***/
//OFF
foreach var of varlist weight price mpg {

summarize `var´
local `var´_mean : display %9.2f r(mean)
local `var´_sd : display %9.2f r(sd)

}
//ON
tbl ("Variable name", "Mean", "SD" \ ///

"__weight__", `weight_mean´, `weight_sd´ \ ///
"__price__", `price_mean´, `price_sd´ \ ///
"__mpg__", `mpg_mean´, `mpg_sd´), ///
title("Table 1. Summary of the __weight__, __price__, and" ///

"__mpg__ variables")
/***
Inserting a figure

To demonstrate how to insert a figure in the dynamic document, I create
a histogram of the __weight__ variable and export it to __.png__,
which is a widely used lossless format.

![Figure 1. Distribution of the __weight__ variable](graph.png)
***/

If the example is saved in example.do, the following command will test the repro-
ducibility of the do-file and produce the dynamic document:

markdoc example.do, replace export(pdf) title("markdoc package example") ///
author("E. F. Haghish") ///
affiliation("Center for Medical Biometry and Medical Informatics," ///
"University of Freiburg") date statax style(formal)

984 markdoc: Literate programming in Stata

Figure 7. Preview of the document written with Markdown

E. F. Haghish 985

9 Conclusion

Peer reviewers of quantitative research need transparent documentation of data anal-
ysis to review the procedure and reproduce the results. For the same reason, sci-
entific journals are becoming stricter in requiring authors to publish their data and
script files as well as make potentially reusable data publicly available for further
research (Loder and Groves 2015; Sturges et al. 2015; Nature Publishing Group 2015;
Nature Neuroscience Editors 2007; Piwowar, Day, and Fridsma 2007; Sturges et al.
2014; Piwowar and Chapman 2008; McCain 1995). Furthermore, research is becoming
more collaborative (Wray 2002; Petre 1994; Subramanyam 1983), which consequently
demands within-group data, code sharing, and collaborative programming. In this ar-
ticle, I discussed some of the common challenges in documenting data analysis, and I
introduced markdoc, a new literate-programming package for Stata.

Literate programming in statistics—that is, explaining and documenting data anal-
ysis and statistical codes—can facilitate learning statistics and creating analysis doc-
uments (Baumer et al. 2014; Rossini 2001). Literate-programming values clean, well-
written, and well-documented code and encourages users to read and comprehend the
code (Knuth 1974, 1984). Toward this purpose, markdoc facilitates clean code docu-
mentation. markdoc supports a minimalistic markup language that helps keep docu-
mentation simple, easy to read, and appealing; provides several options and styles to
simplify LATEX and HTML documentation; and allows use of the same source to com-
pile documents in various formats. These are just a few of the features that make the
package distinctive in the field of statistics.

The simplicity of markdoc not only encourages Stata users to practice literate pro-
gramming but also makes teaching literate programming feasible. Literate programming
is advertised as a way to improve students’ statistical comprehension and results inter-
pretation (Baumer et al. 2014). Students can use literate-programming tools to write
their notes within the statistics software and document the code within their script file.
Because markdoc supports LATEX mathematical notations and compiles them to PDF,
HTML, and Microsoft Word as well as LATEX, it is a powerful documentation tool that
can be used within the Stata Do-file Editor.

Statistics teachers can also benefit from markdoc by creating dynamic PDF slides
that include figures, mathematical notations, and Stata commands and output, allowing
them to reuse parts of the slides in other lectures. There is also a syntax highlighter
that can be used in HTML, PDF, and LATEX documents and slides. Thus, the markdoc

package is a complete tool for developing appealing educational materials in addition
to writing dynamic-analysis documents.

986 markdoc: Literate programming in Stata

10 References
Baggerly, K. A., and D. A. Berry. 2011. Reproducible research. Amstat News .
http://magazine.amstat.org/blog/2011/01/01/scipolicyjan11/.

Baumer, B., M. Cetinkaya-Rundel, A. Bray, L. Loi, and N. J. Horton. 2014. R mark-
down: Integrating a reproducible analysis tool into introductory statistics. Technology
Innovations in Statistics Education 8(1): 1–29.
http://escholarship.org/uc/item/90b2f5xh.

Gentleman, R., and D. T. Lang. 2007. Statistical analyses and reproducible research.
Journal of Computational and Graphical Statistics 16: 1–23.

Gruber, J. 2004. Markdown: Syntax.
http://daringfireball.net/projects/markdown/syntax.

Haghish, E. F. 2014a. synlight: Stata module to highlight syntax in SMCL and translate
to HTML format. Statistical Software Components S457894, Department of Eco-
nomics, Boston College. https://ideas.repec.org/c/boc/bocode/s457894.html.

. 2014b. Weaver package 3.3.5.
http://www.haghish.com/statistics/stata-blog/reproducible-research/weaver.php.

. 2015. Statax: JavaScript syntax highlighter for Stata.
http://www.haghish.com/statax/statax.php.

. 2016a. github: Stata module for searching and installing Stata packages from
GitHub. GitHub. https://github.com/haghish.github.

. 2016b. markdown: A Stata module to convert Markdown to SMCL language.
http://github.com/haghish/markdown.

Jann, B. 2016. Creating LaTeX documents from within Stata using texdoc. Working
Paper 14, University of Bern Social Sciences.
http://repec.sowi.unibe.ch/files/wp14/jann-2015-texdoc.pdf.

Knuth, D. E. 1974. Computer programming as an art. Communications of the ACM
17: 667–673.

. 1983. The WEB system of structured documentation. Technical Report STAN-

CS-83-980, Department of Computer Science, Stanford University.
http://infolab.stanford.edu/pub/cstr/reports/cs/tr/83/980/CS-TR-83-980.pdf.

. 1984. Literate programming. Computer Journal 27: 97–111.

Kulkarni, A., and J. Truelsen. 2015. WK<html> to pdf. http://wkhtmltopdf.org/.

Leisch, F. 2002. Sweave: Dynamic generation of statistical reports using literate data
analysis. In COMPSTAT 2002, ed. W. Härdle and B. Rönz, 575–580. Physica Verlag:
Heidelberg.

E. F. Haghish 987

Lenth, R. V. 2012. StatWeave Users’ Manual.
http://homepage.stat.uiowa.edu/∼rlenth/StatWeave/StatWeave-manual.pdf.

Loder, E., and T. Groves. 2015. The BMJ requires data sharing on request for all trials.
British Medical Journal 350: h2373.

MacFarlane, J. 2006. Pandoc: A universal document converter.
http://johnmacfarlane.net/pandoc/index.html.

McCain, K. W. 1995. Mandating sharing: Journal policies in the natural sciences.
Science Communication 16: 403–431.

Nature Neuroscience Editors. 2007. Got data? Nature Neuroscience 10: 931.

Nature Publishing Group. 2015. Availability of data, material and methods.
http://www.nature.com/authors/policies/availability.html.

Peng, R. D. 2011. Reproducible research in computational science. Science 334: 1226–
1227.

Petre, M. 1994. A Paradigm, Please–and Heavy on the Culture. In User-Centred Re-
quirements for Software Engineering Environments, ed. D. J. Gilmore, R. L. Winder,
and F. Détienne, 273–284. Berlin: Springer.

Piwowar, H. A., and W. W. Chapman. 2008. A review of journal policies for sharing
research data. In Proceedings ELPUB 2008 Conference on Electronic Publishing.
Toronto, Canada: ELPUB.

Piwowar, H. A., R. S. Day, and D. B. Fridsma. 2007. Sharing detailed research data is
associated with increased citation rate. PLOS ONE 2: e308.

Reid, J. 2015. HTML5 Programmer’s Reference. Berkeley, CA: Apress.

Rossini, A., and F. Leisch. 2003. Literate statistical practice. Working Paper 194,
Department of Biostatistics, University of Washington.
http://biostats.bepress.com/uwbiostat/paper194/.

Rossini, A. J. 2001. Literate statistical practice. In Proceedings of the 2nd International
Workshop on Distributed Statistical Computing. Vienna, Austria: DSC.

Stodden, V., F. Leisch, and R. D. Peng, eds. 2014. Implementing Reproducible Research.
Boca Raton, FL: Chapman & Hall/CRC.

Sturges, P., M. Bamkin, J. Anders, and A. Hussain. 2014. Journals and their
policies on research data sharing. https://jordproject.wordpress.com/reports-and-
article/journals-and-their-policies-on-research-data-sharing/.

Sturges, P., M. Bamkin, J. H. S. Anders, B. Hubbard, A. Hussain, and M. Heeley. 2015.
Research data sharing: Developing a stakeholder-driven model for journal policies.
Journal of the Association for Information Science and Technology 66: 2445–2455.

http://homepage.stat.uiowa.edu/~rlenth/StatWeave/StatWeave-manual.pdf

988 markdoc: Literate programming in Stata

Subramanyam, K. 1983. Bibliometric studies of research collaboration: A review. Jour-
nal of Information Science 6: 33–38.

Wada, R. 2005. outreg2: Stata module to arrange regression outputs into an illustrative
table. Statistical Software Components S456416, Department of Economics, Boston
College. https://ideas.repec.org/c/boc/bocode/s456416.html.

Watson, I. 2004. tabout: Stata module to export publication quality cross-tabulations.
Statistical Software Components S447101, Department of Economics, Boston College.
https://ideas.repec.org/c/boc/bocode/s447101.html.

Wray, K. B. 2002. The epistemic significance of collaborative research. Philosophy of
Science 69: 150–168.

Xie, Y. 2014. Dynamic Documents with R and knitr. Boca Raton, FL: Chapman &
Hall/CRC.

. 2016. knitr: A General-Purpose Package for Dynamic Report Generation in R.
R package version 1.13. https://cran.r-project.org/web/packages/knitr/index.html.

About the author

E. F. Haghish is a PhD student in applied statistics at the Center for Medical Biometry and
Medical Informatics at the University of Freiburg in Germany. He is also affiliated with the
University of Southern Denmark in Denmark.

