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Abstract. In this article, we describe strcs, a user-written command for fitting
flexible parametric survival models on the log-hazard scale. strcs is an extension
of the user-written stgenreg command (Crowther and Lambert, 2013b, Journal
of Statistical Software 53(12): 1–17), which fits general parametric models with
user-defined hazard functions using numerical integration. strcs implements a
two-step method that incorporates both analytical and numerical integration to
estimate the cumulative hazard function required for the log-likelihood function.
This method improves the accuracy of the fully numeric estimation implemented
in stgenreg. Time-dependent effects can be incorporated, and excess mortality
models can be fit by using the available options. We also describe some of the
extensive postestimation commands that are easily implemented after fitting an
strcs model.
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1 Introduction

The Cox model is the most popular method implemented to model survival data because
it requires no assumptions of the shape of the baseline hazard (Cox 1972). Although the
Cox model is an extremely useful tool for estimating relative effects, parametric models
remain popular to obtain estimates of both absolute and relative effects. Many paramet-
ric models can be used to model hazard functions, including Poisson models using splines
(Carstensen 2007) or using fractional polynomials (Lambert et al. 2005) and using the
generalized F distribution (Cox 2008). Here we focus on the flexible parametric sur-
vival models of Royston and Parmar (Royston and Parmar 2002; Royston and Lambert
2011). These models are becoming more popular because they can capture simple and
complex hazard functions that standard parametric models may struggle to capture.
These flexible models use restricted cubic splines (Durrleman and Simon 1989) to model
some transformation of the survival function, usually the log cumulative-hazard func-
tion. Fitting flexible parametric survival models on the log cumulative-hazard scale is
easily implemented in Stata using the stpm2 command (Lambert and Royston 2009).
Flexible parametric survival models on the log cumulative-hazard scale have been shown
to accurately capture a variety of complex hazard functions and to estimate almost iden-
tical hazard ratios as the Cox model provided that enough knots are specified for the
spline function (Rutherford, Crowther, and Lambert 2015). They have also been shown
to accurately capture time-dependent effects (Bower et al. 2015). Flexible parametric
survival models have been extended in a variety of settings, including relative survival
(Nelson et al. 2007), when modeling cure proportions (Andersson et al. 2011) and when
incorporating random effects (Crowther, Look, and Riley 2014).

One can also implement flexible parametric survival models on the log-hazard scale.
However, modeling on this scale requires numerical integration when complex hazards,
such as splines, are used to maximize the likelihood. General models on the log-
hazard scale can be implemented in Stata using the user-written stgenreg command
(Crowther and Lambert 2013b), which fits parametric survival models for user-defined
hazard functions. stgenreg implements a fully numeric approach to numerical integra-
tion. We present the strcs command, an extension of the stgenreg command that fits
flexible parametric survival models on the log-hazard scale using a combination of ana-
lytical integration and numerical integration techniques to increase the accuracy and to
reduce the number of nodes required in numerical integration (Crowther and Lambert
2014). The strcs command is also more user friendly and has some additional pre-
diction tools. Here we describe the strcs command and its extensive postestimation
predictions and illustrate their use.
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2 Flexible parametric survival models

A flexible parametric survival model with time-dependent effects of covariates x on the
log-hazard scale can be written as

ln{h(t;x)} = s {f(x);γ0}+ xβ +

D∑
d=1

s {f(x);γd}xd (1)

where s{f(x);γ0} represents the restricted cubic spline function, D is the number of
time-dependent effects, s{f(x);γd} is the spline function for the dth time-dependent
effect, and f(x) = t or ln(t).

Restricted cubic splines are used within flexible parametric models, usually to model
the log cumulative hazard, although they can be used to model other transformations,
such as the log cumulative odds (Royston and Parmar 2002; Royston and Lambert
2011). Restricted cubic splines are piecewise cubic functions joined at positions called
knots. The overall function is forced to be smooth by forcing the first and second deriva-
tives to be continuous at the knots and constraining the function to be linear before the
first and after the last knot. The complexity of these functions is determined by the
user-defined degrees of freedom, which is equal to the number of knots minus one. Knot
positions can be user defined or chosen to be positioned at equally spaced percentiles of
the observed event-time distribution.

A restricted cubic spline function, s(a; γ0), with a = t or ln(t) and knots k1, . . . , kK
is defined as

s(a; γ0) = γ00 +

K−1∑
l=1

γ0lvl(a)

where the lth basis function vl(a) is defined as

vl(a) =

{
a, for l = 1

(a− kl)
3
+ − λl(a− k1)

3
+ − (1− λl)(a− kK)3+, for l = 2, . . . ,K − 1

and where k1 and kK are the boundary knots, λl = (kK − kl)/(kK − k1), and u+ = u
if u > 0 and u+ = 0 if u ≤ 0. Splines can often be highly correlated; to avoid this
and any computational problems that may occur because of this correlation, one can
orthogonalize splines.

Restricted cubic splines within flexible parametric survival models allow both simple
and complex hazard functions to be captured in situations where standard parametric
models may struggle to do so (Rutherford, Crowther, and Lambert 2015). Because they
model the baseline function, various postestimation predictions can be calculated, such
as time-dependent hazard ratios and differences in hazards. Time-dependent effects, or
nonproportional hazards, can also be incorporated easily via introducing an interaction
between the covariate and a spline function. The complexity of the deviation from the
baseline hazard in the time-dependent effect can also be chosen by the user by specifying
separate degrees of freedom for this effect.
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3 Maximum likelihood estimation

Flexible parametric survival models are fit using maximum likelihood estimation; the ml
command is used in Stata. Consider a sample of n individuals where ti is the exit time
and di is the event indicator for the ith individual. Then, the log-likelihood contribution
for the ith individual is

log li = di log{h(ti)}+ log{S(ti)} (2)

where h(ti) is the hazard function and S(ti) is the survival function evaluated at the
time of death or censoring ti.

Thus, when one fits a flexible parametric survival model, the hazard h(ti) and the
survival S(ti) are required. The survival can be written as a function of the cumulative
hazard function, H(ti),

S(ti) = exp[−{H(ti)}]

and the cumulative hazard function is the integral of the hazard function:

H(ti) =

∫ ti

0

h(ui)du

Consider the flexible parametric survival model in (1), and let φ(t) equal the right-
hand side of the equation. Then, we have that the hazard function

h(t) = exp{φ(t)}

The survival function can be written in the following way:

S(t) = exp

[
−
∫ ti

0

exp{φ(t)}du
]

Thus, to obtain the survival function, which is part of the likelihood function, one
must integrate the hazard function. In the context of flexible parametric survival models,
the hazard function is a complex spline function that cannot be integrated analytically.
Thus, numerical integration techniques are required.

4 Numerical integration in strcs

As described in the previous section, numerical integration techniques are required when
fitting flexible parametric survival models on the log-hazard scale to maximize the likeli-
hood function. However, numerical integration over the whole function is not necessary.
The restricted cubic spline function is analytically integrable before the first knot and
after the last knot because of the constraints imposed on the function at these two
intervals. Even though there is often little time before the first knot, this is where
numerical integration is the most inaccurate when modeling log transformed time. In
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comparison to modeling flexible parametric survival models on the log-hazard scale us-
ing the stgenreg command, performing the integration in two steps rather than over
the whole function benefits from increased computational efficiency and more accurate
integration.

4.1 The two-step integration approach

strcs uses a two-step integration approach that combines both analytical and numerical
integration of the hazard function.

The cumulative hazard function can be written as the sum of three components,

H(ti) = H1 +H2 +H3

where

• H1 is the cumulative hazard function before the first knot, k1;

• H2 is the cumulative hazard function between k1 and the last knot kK ; and

• H3 is the cumulative hazard function after kK .

Because of the constraints imposed on restricted cubic splines, H1 and H3 can be cal-
culated analytically from the corresponding hazard function; thus only numerical in-
tegration needs to be applied to obtain H2. The number of components included in
the cumulative hazard function for a particular observation depends on the value of the
observed survival time. For example, if the observed survival time ti is after the first
knot but before the last knot, then the cumulative hazard function will contain only
H1 and H2, where H2 will correspond to integration between the time at the first knot
and ti; thus integration of the hazard function corresponding to H3 is not required. See
Crowther and Lambert (2014) for further information.

4.2 Gaussian quadrature

Gaussian quadrature is a method of numerical integration that converts an integral into
a weighted summation over a set of predefined points known as nodes,∫

g(x)dx ≈
m∑
j=1

wjg(xj)

wherem is the number of nodes and g(x) can be approximated by a polynomial function.
The integral can instead be estimated between a and b by the following formula:∫ b

a

g(x)dx ≈ b− a

2

m∑
j=1

wjg

(
b− a

2
xj +

a+ b

2

)
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We are interested in numerically integrating the hazard function h(x) between the
time at the first knot tk1

and at the last knot tkK
; that is, we wish to obtain part H2 of

the cumulative hazard function. The above equation then becomes

∫ min(ti,tkK
)

tk1

h(x)dx ≈ min(ti, tkK
)− tk1

2

m∑
j=1

wjh{
min(ti, tkK

)− tk1

2
xj +

tk1
+min(ti, tkK

)

2

}

strcs implements Gauss–Legendre quadrature. The accuracy of the numerical inte-
gration depends on the number of nodes m specified; previous research has shown that
30 nodes are sufficient in most circumstances (Crowther and Lambert 2013a).

5 Excess mortality models

Excess mortality models, or relative survival models, can also be implemented in strcs

by modeling the log excess-hazard function. Excess mortality, or relative survival, is a
popular method used in population-based cancer studies. Using cause of death data can
be problematic because these often ignore treatment-related deaths, and the recording of
deaths can be unreliable. To avoid these problems, one can implement excess mortality
models. These aim to capture the disease-related mortality by modeling the difference
between the all-cause mortality in the diseased population and the all-cause mortality
in the nondiseased population. Thus the total mortality rate hi(t) can be written as a
function of the expected mortality rate h∗

i (t) and the excess mortality rate associated
with disease, λi(t),

hi(t) = h∗
i (t) + λi(t)

The expected mortality rate is usually obtained from national or regional life tables
matched on age, sex, and year. The survival analogue to the excess mortality is relative
survival Ri(t). Relative survival is related to the expected survival S∗

i (t) and the all-
cause survival in the diseased population Si(t) in the following way:

Si(t) = S∗
i (t)Ri(t)

The log likelihood described in (2) can be extended when considering a relative
survival model:

log li = di log{h∗(ti) + λ(ti)}+ log{R(ti)}

We have discarded log{S∗(ti)} from the log likelihood because the maximum likeli-
hood does not depend on this value.
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6 The strcs command

strcs fits flexible parametric survival models on the log-hazard scale. Restricted cubic
splines smooth the log hazard with user-specified degrees of freedom. Covariates can be
included within the model and are allowed to be time dependent by specifying degrees of
freedom to model the time-dependent effect. Excess hazard models can be implemented
by specifying the expected hazard rate. Numerical integration of the hazard function
is undertaken as a two-step process by combining analytical integration with Gauss–
Legendre quadrature. Both the rcsgen (Lambert 2008) and stpm2 commands are called
in strcs to create splines and get initial values, respectively; the user must install these
prior to using the strcs command. The log likelihood is maximized using the Newton–
Raphson algorithm, via the ml command in Stata. The likelihood is evaluated using
Mata to increase computational speed.

6.1 Syntax

strcs varlist
[
if
] [

in
]
, {df(#) | knots(numlist)}

[
bknots(knots list)

bknotstvc(knots list) dftvc(df list) knotstvc(knots list) knscale(scale)

tvc(varlist) bhazard(varname) bhtime noconstant nodes(#) noorthog

offset(varname) reverse level(#) nohr verbose from(matrix)

inith(varlist) maximize options
]

6.2 Options

Knot selection options

df(#) specifies the degrees of freedom for the restricted cubic spline function used for
the baseline hazard function; the number of degrees of freedom does not include the
constant term. # must be between 1 and 10. With 1 degree of freedom, a linear
effect is fit. The knots() option is not applicable if the df() option is specified.
The knots are placed at equally spaced centiles of the uncensored survival times or
log survival-times, depending on the bhtime option. For example, for df(5) with
no bhtime option, knots are placed at the 20th, 40th, 60th, and 80th centiles of the
distribution of the uncensored log survival-times. Note that these are interior knots
and that there are also boundary knots placed at the minimum and maximum of
the distribution of uncensored survival times or log survival-times. df() or knots()
is required.
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knots(numlist) specifies the knot locations for the baseline hazard function, as opposed
to the locations set by the df() option. Note that the locations of the knots are
placed on the scale defined by knscale(). However, the scale used by the restricted
cubic splines function is always log time unless the bhtime option is specified. Default
knot locations are determined by the df() option. df() or knots() is required.

bknots(knots list) specifies the boundary knots. By default, these are located at the
minimum and maximum of the uncensored survival times, or log survival-times de-
pending on the use of the bhtime option. They are specified on the scale defined by
knscale().

bknotstvc(knots list) specifies the boundary knots for any time-dependent effects. By
default, these are the same as for the bknots option. They are specified on the scale
defined by knscale(). For example, bknotstvc(x1 0.01 10 x2 0.01 8) specifies
the boundary knots for covariate x1 are 0.01 and 10 and for covariate x2 are 0.01

and 8.

dftvc(df list) specifies the degrees of freedom for time-dependent effects in df list. If
there is more than one time-dependent effect and different degrees of freedom are
requested for each time-dependent effect, then use the syntax dftvc(x1:3 x2:2 1).
This will use 3 degrees of freedom for covariate x1, 2 degrees of freedom for covariate
x2, and 1 degree of freedom for all remaining time-dependent effects.

knotstvc(knots list) defines the location of the interior knots for time-dependent ef-
fects. If different knots are required for different time-dependent effects, the option
is specified as, for example, knotstvc(x1 1 2 3 x2 1.5 3.5).

knscale(scale) sets the scale on which user-defined knots are specified. knscale(time)
denotes the original time scale, knscale(log) denotes the log time scale, and
knscale(centile) specifies that the knots are taken to be centile positions in the
distribution of uncensored log survival-times if the bhtime option is not specified.
The default is knscale(time).

tvc(varlist) gives the name of the variables that are time dependent. Time-dependent
effects are fit using restricted cubic splines. The degrees of freedom are specified
using the dftvc() option.

Estimation options

bhazard(varname) invokes a relative survival model where varname holds the expected
mortality rate (hazard) at the time of death or censoring.

bhtime smooths the estimated log-hazard function over time using restricted cubic
splines. By default, smoothing is over log time.

noconstant suppresses the constant term (intercept) in the model.
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nodes(#) specifies the number of nodes to be used in Gauss–Legendre quadrature
numerical integration when calculating the estimated cumulative hazard function
from the estimated hazard function. The default is nodes(30). Changing the nodes
may be useful if there are convergence problems. Too few nodes may result in a poor
approximation involved in the numerical integration sensitivity. Analyses should be
performed to ensure the results are not sensitive to the number of nodes.

noorthog suppresses orthogonal transformation of spline variables.

offset(varname) specifies a variable whose coefficient is constrained to be 1.

reverse specifies that the splines be calculated backward. See Andersson et al. (2011)
for details of the approach.

Reporting options

level(#) specifies the confidence level, as a percentage, for the confidence intervals
(CIs). The default is level(95) or as set by set level.

nohr reports the coefficients instead of hazard ratios.

verbose details the process of the strcs program in its output.

Maximization options

from(matrix) defines the parameter matrix of initial values to be used in maximum
likelihood estimation. By default, strcs estimates initial hazard estimates by fitting
a model on the log cumulative-hazard scale using the stpm2 command.

inith(varlist) defines initial hazard estimates to be used in maximum likelihood esti-
mation. By default, strcs estimates initial hazard estimates by fitting a model on
the log cumulative-hazard scale using the stpm2 command.

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log,

trace, gradient, showstep, hessian, shownrtolerance, tolerance(#),
ltolerance(#), gtolerance(#), nrtolerance(#), and nonrtolerance; see
[R] maximize. These options are seldom used, but the difficult option may be
useful if there are convergence problems.
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7 The strcs postestimation command

7.1 Syntax

predict newvar
[
if
] [

in
]
, {survival | hazard | xb | xbnobaseline | cumhazard |

sdiff1(varname #
[
varname # ...

]
)

sdiff2(varname #
[
varname # ...

]
) |

hdiff1(varname #
[
varname # ...

]
)

hdiff2(varname #
[
varname # ...

]
) |

hrnumerator(varname #
[
varname # ...

]
)

hrdenominator(varname #
[
varname # ...

]
)}[

at(varname #
[
varname # ...

]
)
[
ci | stdp

]
nodes(#) per(#)

timevar(varname) zeros level(#)
]

7.2 Options

survival predicts the survival function. survival, hazard, xb, xbnobaseline,
cumhazard, sdiff1() (and sdiff2() if applicable), hdiff1() (and hdiff2() if
applicable), or hrnumerator() (and hrdenominator()) is required.

hazard predicts the hazard function. survival, hazard, xb, xbnobaseline, cumhazard,
sdiff1() (and sdiff2() if applicable), hdiff1() (and hdiff2() if applicable), or
hrnumerator() (and hrdenominator()) is required.

xb predicts the linear predictor, including the spline function. survival, hazard, xb,
xbnobaseline, cumhazard, sdiff1() (and sdiff2() if applicable), hdiff1() (and
hdiff2() if applicable), or hrnumerator() (and hrdenominator()) is required.

xbnobaseline predicts the linear predictor, excluding the spline function, that is, only
the time-fixed part of the model. survival, hazard, xb, xbnobaseline, cumhazard,
sdiff1() (and sdiff2() if applicable), hdiff1() (and hdiff2() if applicable), or
hrnumerator() (and hrdenominator()) is required.

cumhazard predicts the cumulative hazard function using Gauss–Legendre quadrature
numerical integration. survival, hazard, xb, xbnobaseline, cumhazard, sdiff1()
(and sdiff2() if applicable), hdiff1() (and hdiff2() if applicable), or
hrnumerator() (and hrdenominator()) is required.

sdiff1(varname #
[
varname # ...

]
) and

sdiff2(varname #
[
varname # ...

]
) predict the difference in survival curves

with the first survival curve defined by the covariate values listed for sdiff1() and
the second by those listed for sdiff2(). By default, covariates not specified using
either option are set to zero. Note that setting the remaining values of covari-
ates to zero may not always be sensible. If # is set to ., then varname takes its
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observed values in the dataset. For example, sdiff1(hormon 1) (without specify-
ing sdiff2()) computes the difference in predicted survival curves at hormon = 1

compared with hormon = 0. sdiff1(hormon 0) sdiff2(hormon 1) computes the
difference in predicted survival curves at hormon = 0 compared with hormon = 1.
sdiff1(hormon 0 age 50) sdiff2(hormon 1 age 30) computes the difference in
predicted survival curves at hormon = 0 and age = 50 compared with hormon = 1

and age = 30. survival, hazard, xb, xbnobaseline, cumhazard, sdiff1() (and
sdiff2() if applicable), hdiff1() (and hdiff2() if applicable), or hrnumerator()
(and hrdenominator()) is required.

hdiff1(varname #
[
varname # ...

]
) and hdiff2(varname #

[
varname # ...

]
)

predict the difference in hazard functions with the first hazard function defined by
the covariate values listed for hdiff1() and the second by those listed for hdiff2().
By default, covariates not specified using either option are set to zero. Note that
setting the remaining values of the covariates to zero may not always be sensi-
ble. If # is set to ., then varname takes its observed values in the dataset. For
example, hdiff1(hormon 1) (without specifying hdiff2()) computes the differ-
ence in predicted hazard functions at hormon = 1 compared with hormon = 0.
hdiff1(hormon 0) hdiff2(hormon 1) computes the difference in predicted hazard
functions at hormon = 0 compared with hormon = 1. hdiff1(hormon 0 age 50)

hdiff2(hormon 1 age 30) computes the difference in predicted hazard functions
at hormon = 0 and age = 50 compared with hormon = 1 and age = 30. survival,
hazard, xb, xbnobaseline, cumhazard, sdiff1() (and sdiff2() if applicable),
hdiff1() (and hdiff2() if applicable), or hrnumerator() (and hrdenominator())
is required.

hrnumerator(varname #
[
varname # ...

]
) predicts the (time-dependent) hazard

ratio with the numerator of the hazard ratio. By default, all covariates other than
varname and any other variables mentioned are set to zero. Note that setting the
remaining values of covariates to zero may not always be sensible. If # is set to
., then varname takes its observed values in the dataset. survival, hazard, xb,
xbnobaseline, cumhazard, sdiff1() (and sdiff2() if applicable), hdiff1() (and
hdiff2() if applicable), or hrnumerator() (and hrdenominator()) is required.

hrdenominator(varname #
[
varname # ...

]
) specifies the denominator of the haz-

ard ratio. By default, all covariates other than varname and any other variables
mentioned are set to zero. If # is set to ., then varname takes its observed values
in the dataset. survival, hazard, xb, xbnobaseline, cumhazard, sdiff1() (and
sdiff2() if applicable), hdiff1() (and hdiff2() if applicable), or hrnumerator()
(and hrdenominator()) is required.

at(varname #
[
varname # ...

]
) requests that the covariates specified by the listed

varname be set to the listed # values. For example, at(x1 1 x3 50) would evaluate
predictions at x1 = 1 and x3 = 50. This is a useful way to obtain out-of-sample
predictions. Note that if at() is used together with zeros, all covariates not listed
in at() are set to zero. If at() is used without zeros, then all covariates not listed
in at() are set to their sample values; see also zeros.



1000 strcs

ci calculates a CI for the requested statistics and stores the confidence limits in new-
var lci and newvar uci. ci cannot be used with the stdp option.

stdp calculates the standard error of the prediction and stores it in newvar se. stdp

is available only for the xb and xbnobaseline options and cannot be used with the
ci option.

nodes(#) specifies the number of nodes to be used when numerically integrating the
estimated hazard function using Gauss–Legendre quadrature. Numerical integration
is required when predicting the cumulative hazard and survival functions. The
default is nodes(30).

per(#) expresses hazard rates and differences in hazard rates per # person years.

timevar(varname) defines the variable used as time in the predictions. The default is
timevar( t). This is useful for large datasets where, for plotting purposes, predic-
tions are needed, for example, only for 200 observations. Note that some caution
should be taken when using this option because predictions may be made at what-
ever covariate values are in the first 200 rows of data. This can be avoided by using
the at() option or the zeros option, or both, to define the covariate patterns for
which you require the predictions.

zeros sets all covariates to zero (baseline prediction). For example, predict s0,

survival zeros calculates the baseline survival function. See also at().

level(#) specifies the confidence level as a percentage. The default is level(95) or
as set by set level.

8 Examples

We illustrate strcs through an application to 14,423 female patients diagnosed with
breast cancer in England and Wales between 1986 and 1990 (Coleman et al. 1999) and
consider the variables old and deprived. We use the binary variable old to consider
the effect of age at diagnosis on survival (old = 1 for the oldest patients, age ≥ 80 years;
old = 0 for the youngest patients, age < 50 years). We use the binary variable deprived
to consider the effect of deprivation on survival (deprived = 1 for the most deprived
patients; deprived = 0 for the least deprived patients). Observations other than those
in these variable groups were removed to demonstrate the specific issue of modeling
multiple time-dependent effects. The data must be declared as survival-time data using
stset to fit an strcs model. We follow patients up to 5-years postdiagnosis; 6,426
events were observed during this follow-up time.

. use ew_breast
(Ch28 Adult Breast 174, 175)

. keep if agegroup==1 | agegroup==5
(76,332 observations deleted)

. tabulate dep, generate(dep)

(output omitted )
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. keep if dep1==1 | dep5==1
(24,576 observations deleted)

. count
14,423

. generate deprived=1 if dep==5
(9,460 missing values generated)

. replace deprived=0 if dep==1
(9,460 real changes made)

. generate old=1 if agegroup==5
(9,721 missing values generated)

. replace old=0 if agegroup==1
(9,721 real changes made)

. stset survtime, failure(dead==1) exit(time 5)

failure event: dead == 1
obs. time interval: (0, survtime]
exit on or before: time 5

14423 total observations
0 exclusions

14423 observations remaining, representing
6426 failures in single-record/single-failure data

52269.807 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 5

8.1 Proportional hazards model

A flexible parametric proportional hazards model on the log-hazard scale adjusting for
deprivation and age at diagnosis is fit and shown here using the strcs command:

. strcs deprived old, df(5) nolog

Log likelihood = -17583.118 Number of obs = 14,423

Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

xb
deprived 1.188827 .0305327 6.73 0.000 1.130466 1.250202

old 4.242514 .1081975 56.67 0.000 4.035664 4.459967

rcs
__s1 -.2452037 .0183438 -13.37 0.000 -.2811569 -.2092505
__s2 -.1028519 .0146591 -7.02 0.000 -.1315833 -.0741205
__s3 -.0095586 .0130162 -0.73 0.463 -.0350699 .0159526
__s4 .0464819 .0117706 3.95 0.000 .023412 .0695518
__s5 -.0374921 .010923 -3.43 0.001 -.0589007 -.0160834
_cons -2.753924 .0344452 -79.95 0.000 -2.821436 -2.686413

Quadrature method: Gauss-Legendre with 30 nodes

These results indicate that the mortality rate for those who are deprived is 19%
higher than that of the affluent, and the mortality rate for the oldest patients is 4.24
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times that of the youngest. The estimates for s1, s2, . . . , s5, and cons are not
interpretable individually but together form the log baseline hazard function. Here
we specify five degrees of freedom to model the log baseline hazard function through
the df(5) option, which is reflected in the output having five restricted cubic spline
variables, s1, s2, . . . , s5. Fitting a Cox model using stcox gives very similar
estimates to those seen when fitting flexible parametric survival models on the log-
hazard scale using strcs:

. stcox deprived old, nolog

failure _d: dead == 1
analysis time _t: survtime

exit on or before: time 5

Cox regression -- Breslow method for ties

No. of subjects = 14,423 Number of obs = 14,423
No. of failures = 6,426
Time at risk = 52269.80699

LR chi2(2) = 3285.67
Log likelihood = -58181.114 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

deprived 1.188597 .0305272 6.73 0.000 1.130245 1.24996
old 4.240279 .1081452 56.64 0.000 4.033529 4.457627

Similarly, fitting a flexible parametric survival model on the log cumulative-hazard
scale gives very similar estimates:

. stpm2 deprived old, df(5) scale(hazard) eform nolog

Log likelihood = -17565.021 Number of obs = 14,423

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

xb
deprived 1.188864 .0305337 6.74 0.000 1.1305 1.250241

old 4.243773 .1082262 56.68 0.000 4.036868 4.461284
_rcs1 2.601464 .0314216 79.16 0.000 2.540602 2.663784
_rcs2 .9448331 .0075656 -7.09 0.000 .9301205 .9597785
_rcs3 .9538918 .0042863 -10.51 0.000 .9455277 .9623299
_rcs4 1.01948 .0028672 6.86 0.000 1.013876 1.025116
_rcs5 .9978683 .0015792 -1.35 0.178 .994778 1.000968
_cons .1862209 .0039616 -79.01 0.000 .178616 .1941496

The knot positions and various other stored results can be found by using the
ereturn list command after fitting a model using strcs. It is also simple to pre-
dict the hazard function after fitting a model by using the predict postestimation
command. We illustrate this by predicting the hazard from the previously described
proportional hazards strcs model and creating a new variable called pred hazard.

. predict pred_hazard, hazard
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We then plot over time since diagnosis; see figure 1. The predicted estimates shown
here are from a proportional hazards model, so the rates shown in figure 1 are perfectly
proportional.
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Figure 1. Predicted hazards from a proportional hazards flexible parametric model on
the log-hazard scale using the strcs command

8.2 Nonproportional hazards model

We can fit a nonproportional hazards flexible parametric model on the log-hazard scale
with time-dependent effects of deprivation and age at diagnosis using the strcs com-
mand:
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. strcs deprived old, df(5) tvc(deprived old) dftvc(3) nolog

Log likelihood = -17374.818 Number of obs = 14,423

Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

xb
deprived 1.078623 .0522633 1.56 0.118 .9809022 1.186079

old 5.124901 .2416034 34.66 0.000 4.672585 5.621001

rcs
__s1 .00354 .0330689 0.11 0.915 -.0612739 .0683539
__s2 .0433423 .0273338 1.59 0.113 -.010231 .0969155
__s3 .1234013 .0211381 5.84 0.000 .0819714 .1648312
__s4 .0770874 .012494 6.17 0.000 .0525996 .1015752
__s5 -.0353503 .0109504 -3.23 0.001 -.0568126 -.013888

__s_deprived1 -.0881581 .0295574 -2.98 0.003 -.1460894 -.0302267
__s_deprived2 .0435977 .0258279 1.69 0.091 -.0070241 .0942195
__s_deprived3 .0237286 .0236893 1.00 0.317 -.0227014 .0701587

__s_old1 -.233187 .0359835 -6.48 0.000 -.3037133 -.1626607
__s_old2 -.2568875 .0300956 -8.54 0.000 -.3158738 -.1979012
__s_old3 -.2564321 .0261969 -9.79 0.000 -.3077772 -.2050871

_cons -2.838495 .0412506 -68.81 0.000 -2.919344 -2.757645

Quadrature method: Gauss-Legendre with 30 nodes

The hazard ratios for the effect of deprivation and age at diagnosis are now allowed to
vary over time through the use of the tvc() option. The dftvc(3) option specifies that
three degrees of freedom, or two internal knots, should be used to model the deviations
in the time-dependent effects. One can also select different degrees of freedom for each
time-dependent effect using the dftvc() option, as illustrated here:

. strcs deprived old, df(5) tvc(deprived old) dftvc(deprived:2 old:3) nolog

Log likelihood = -17375.262 Number of obs = 14,423

Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

xb
deprived 1.112886 .0393846 3.02 0.003 1.03831 1.192819

old 5.107861 .2401446 34.69 0.000 4.658221 5.600903

rcs
__s1 -.0010421 .0327606 -0.03 0.975 -.0652517 .0631675
__s2 .0477148 .0269529 1.77 0.077 -.0051118 .1005414
__s3 .1304704 .0198034 6.59 0.000 .0916566 .1692843
__s4 .0794761 .0122591 6.48 0.000 .0554488 .1035034
__s5 -.0354069 .0109494 -3.23 0.001 -.0568673 -.0139464

__s_deprived1 -.0720214 .0241037 -2.99 0.003 -.1192637 -.0247791
__s_deprived2 .0270911 .0189817 1.43 0.154 -.0101124 .0642945

__s_old1 -.2349027 .0359378 -6.54 0.000 -.3053396 -.1644659
__s_old2 -.2551347 .0300374 -8.49 0.000 -.3140069 -.1962625
__s_old3 -.2539953 .0260704 -9.74 0.000 -.3050923 -.2028983

_cons -2.847685 .0402228 -70.80 0.000 -2.926521 -2.76885

Quadrature method: Gauss-Legendre with 30 nodes

This specifies that the effect of deprivation is allowed to vary with time with two
degrees of freedom, while the effect of age is allowed to vary with three degrees of
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freedom. The hazard ratios for the effects of deprivation and age at diagnosis can be
predicted as follows:

. predict hr_deprived, hrnumerator(deprived 1) hrdenominator(deprived 0) ci

. predict hr_old, hrnumerator(old 1) hrdenominator(old 0) ci

The hrnumerator() and hrdenominator() options are used to define which co-
variate patterns are included in the numerator and the denominator of the hazard
ratio, respectively. The ci option calculates CIs for the specified predictions and saves
the lower and upper confidence limits as varname lci and varname uci, respectively.
These predicted hazard ratios are displayed in figure 2.
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Figure 2. Predicted hazard ratios from nonproportional hazards model. (a) Hazard
ratio for deprivation effect (deprived versus affluent). (b) Hazard ratio for age effect
(old versus young).

Out-of-sample predictions and predictions for certain covariate patterns can be im-
plemented using the timevar() and at() options, respectively. These are illustrated for
a prediction of the survival function in addition to predictions for survival differences,
the cumulative hazard function, and hazard-rate differences:

. range temptime 0 10 200
(14,223 missing values generated)

. predict pred_surv, surv timevar(temptime) at(deprived 1 old 1) ci

. predict pred_sdiff_age, sdiff1(old 1) sdiff2(old 0) ci

. predict pred_chazard, cumhazard

. predict pred_hdiff_age, hdiff(old 1) hdiff2(old 0) ci
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The range command creates a variable named temptime that contains 200 observa-
tions with equally spaced values from 0 to 10. This variable is used to predict survival
up to 10 years postdiagnosis, even though the analysis was based upon follow-up to
5 years. Figure 3 displays the results from the above predictions.
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Figure 3. Predictions from flexible parametric nonproportional hazards model using
strcs. (a) Survival function with 95% CI for the oldest patients at diagnosis who were
the most deprived, up to 10 years postdiagnosis. (b) Survival difference with 95% CI

between the oldest patients and the youngest patients. (c) Cumulative hazards of each
deprivation group and age group. (d) Difference in hazard rates with 95% CI over time
between the oldest patients and the youngest patients.

8.3 Time versus log time

It is common to model log time when fitting flexible parametric survival models. Trans-
forming to the log time scale has been shown to generally fit better than on the
untransformed time scale when using the same degrees of freedom (Royston 2000;
Royston and Lambert 2011). In strcs, one can also model on the time scale by spec-
ifying the bhtime option. There are situations where one may prefer to model un-
transformed time, for example, when modeling with age as the time scale. Also, when
modeling the log hazard with log time, one must be cautious when considering the
hazard rate close to zero because at this point, the hazard rate is zero or infinity. Fig-
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ure 4 shows the differences when modeling on the log-transformed time scale and the
untransformed time scale. In this example, modeling on the log time scale is more stable
to changes in the baseline degrees of freedom. The Akaike information criterion and
Bayesian information criterion also suggest that the log-transformed time scale generally
provides a better fit than the untransformed time scale when using the same degrees of
freedom.
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Figure 4. Predictions of the hazard rate of deprived patients from a flexible parametric
nonproportional hazards model using strcs with different baseline degrees of freedom.
(a) Displays predictions from models on the log time scale. (b) Displays predictions
from models on the time scale. Results are presented from six months.

8.4 Number of nodes and degrees of freedom

Increasing the degrees of freedom or altering the knot positions can make the fit model
more complicated. In some complex scenarios, models may not converge with the default
number of nodes; if this is the case, the number of nodes can be altered by using
the nodes() option. Also, to ensure that the number of nodes specified is enough
to provide a good approximation in the numerical integration estimation, one should
perform sensitivity analyses. The following output illustrates how altering the number
of nodes can be implemented. Figure 5 displays the predicted baseline hazard rate from
the strcs models with differing nodes.
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. forvalues nodes = 5(5)30 {
2. qui strcs deprived old, df(3) nodes(`nodes´) tvc(deprived)

> dftvc(1) nolog
3. predict haz_dep_nodes`nodes´, haz at(dep 0 old 0)
4. }
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Figure 5. Baseline hazard rate (old, affluent patients) predicted from flexible parametric
survival models on the log-hazard scale using strcs with varying nodes

The predicted hazard rates are very similar in figure 5, except for when 5 nodes
are specified. This suggests that in this example, provided the number of nodes is at
least 15, the approximation involved in the Gauss–Legendre numerical integration is
accurate.

Table 1 shows the estimated parameters and standard errors from a proportional
hazards model fit using the two-step approach implemented in strcs and the fully
numeric approach implemented in stgenreg. Comparing the two integration methods
indicates that the two-step approach obtains more consistent estimates with a lower
number of nodes than the fully numeric approach. For example, the estimates of cons

are the same to 5 decimal points after 40 nodes is specified when implementing the
two-step approach in strcs, whereas the estimates of cons are more different when
implementing the fully numeric approach in stgenreg.
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One can specify the degrees of freedom using the df() option as described previously.
One can also specify the degrees of freedom, or the position of the knots, by using the
knots() and the knotstvc() options, alongside the knscale() option, for the baseline
hazard and the time-dependent effects, respectively. It is useful to investigate how
different specified degrees of freedom affect the model estimates. This has previously
been investigated on the log cumulative-hazard scale; see Lambert and Royston (2009)
for further information because the same issues apply here.

8.5 Excess mortality models

Excess mortality models can be easily implemented using the bhazard() option. This
option specifies the variable that contains the expected hazard rate. A proportional
excess-hazards model can be fit as follows:

. generate _year=min(year(datediag+_t),2010)

. generate _age=floor(min(agediag+_t,99))

. merge m:1 _year sex _age using popmort2011, nolabel keepusing(rate)
> assert(2 3) keep(3) noreport nogenerate

. strcs deprived old, df(5) bhazard(rate) nolog

Log likelihood = -16232.411 Number of obs = 14,423

Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

xb
deprived 1.276213 .0408588 7.62 0.000 1.198592 1.35886

old 2.640435 .0877225 29.23 0.000 2.47398 2.818089

rcs
__s1 -.3002251 .0231134 -12.99 0.000 -.3455265 -.2549237
__s2 -.0938537 .0184632 -5.08 0.000 -.130041 -.0576664
__s3 .0113959 .0162236 0.70 0.482 -.0204018 .0431937
__s4 .0711007 .0147399 4.82 0.000 .0422111 .0999903
__s5 -.0503612 .0135819 -3.71 0.000 -.0769813 -.0237411
_cons -2.856882 .0418619 -68.25 0.000 -2.93893 -2.774834

Quadrature method: Gauss-Legendre with 30 nodes

Here we create variables for attained year and age to merge in the correct expected
rates from a population mortality file. We then use these rates to fit the model on the
log excess-hazard scale. This model provides estimates of excess hazard ratios; time-
dependent excess-hazard ratios can be estimated similarly to the methods for including
time-dependent effects described previously. Predictions from this model estimate excess
hazard rates and relative survival proportions.

9 Conclusion

strcs is an extension to the general tool stgenreg that fits flexible parametric models
on the log-hazard scale in a more efficient, user-friendly way with extended postesti-
mation prediction tools. strcs implements a two-step integration process to increase



H. Bower, M. J. Crowther, and P. C. Lambert 1011

the accuracy of integration. Modeling using strcs avoids problems with multiple time-
dependent effects that may be present when fitting flexible parametric survival models
on the log cumulative-hazard scale using stpm2.
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