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Abstract. We present a new command, gqctest, to implement tests for normality
of a random variable based on the quantile-mean covariance. The test procedures
are based on recent results by Bera et al. (2016, Econometric Theory 32: 1216—
1252) and are an efficient alternative to existing normality tests in the literature.
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1 Introduction

Testing for normality continues to be important in economic and financial data because
it is central to many estimation, inference, and forecasting methods. The characteri-
zation of the normal distribution has been an object of interest and research to many
scholars. Literature on the subject is vast and includes Lukacs (1942), Laha (1957), Rao
(1958), Kagan, Linnik, and Rao (1973), Mathai and Pederzoli (1978), Riedel (1985),
Chikuse (1990), and Xu (1998). Statisticians have long been interested in testing nor-
mality, and much literature includes tests based on the cumulative distribution function
(see ksmirnov; Kolmogorov [1933]; Smirnof [1939]; Lilliefors [1967]; and Zheng [2000]);
the normal probability plot (see swilk; Shapiro and Wilk [1965]; Shapiro and Francia
[1972]; and Royston [1983]); the third and fourth moments (see sktest; Fisher [1930];
Geary [1947]; Bowman and Shenton [1975]; Jarque and Bera [1980]; White and Mac-
Donald [1980]; D’Agostino, Belanger, and D’Agostino [1990]; and Bai and Ng [2005]);
the characteristic function (Koutrouvelis 1980; Koutrouvelis and Kellermeier 1981; and
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Epps and Pulley 1983); the moment generating function (Epps, Singleton, and Pulley
1982); the Hermite polynomials (Kiefer and Salmon 1983; Hall 1990; van der Klaauw
and Koning 2003; and Bontemps and Meddahi 2005); and the presence of serial correla-
tion (Richardson and Smith 1993; Lobato and Velasco 2004). For an excellent historical
review of tests for normality based on the above approaches, as well as others such as
plotting methods, correlation-based tests, Edgeworth expansion, and outlier tests, see
Thode (2002).

Bera et al. (2016) propose a novel way to test for normality of random variables
using the quantile-mean covariance (QC) function, defined as the asymptotic covariance
between the 7th sample quantile and the sample mean. The QC function is given by
the ratio of the expected quantile loss function over the density function evaluated
at a particular quantile. Bera et al. (2016) show that this function is independent of
the choice of the quantile 7 and is equal to the variance if and only if the underlying
distribution is normal. They thus propose a test for normality based on the constancy of
the QC function across quantiles using Kolmogorov (supremum)- and the Cramér—von
Mises (average)-type statistics that check over the entire distribution.

The new command qctest implements a battery of tests to identify nonnormality
using Bera et al. (2016) QC test procedure. As is common in Cramér—von Mises-type
statistics, the limiting distribution is nonstandard. We thus tabulate the asymptotic
distribution for a sample size of 20,000 observations using 50,000 simulations. The
results of the simulation are used to compute the p-value after the qctest run.

qctest also provides a QC plot, a graphical procedure for detecting nonnormality at
particular quantiles, and a Q—Q plot comparing the given quantile distribution with that
of a normal random variable. In the standard Q—Q plot, we look for a deviation from
a 45-degree line, while in the QC plot, the reference line of comparison is a horizontal
one; visually, the latter task is much easier. Also, a formal test statistic is available for
making and using the QC function. The Q—Q plot does not possess such a counterpart.
Large deviations from the horizontal line cast doubts on the normality of the data and
also serve as a means to detect the “exact” locations of departures from normality. This
is useful for statistical analysis based on particular locations of the distribution, such
as tail behavior and extreme value analysis.

This article is organized as follows. Section 2 reviews the QC test of Bera et al. (2016)
and presents the test statistics. Section 3 describes the qctest syntax and presents the
code in which the asymptotic distribution of the Kolmogorov- and the Cramér—von
Mises-type statistics was simulated. Section 4 presents simulations and a real data
application. We conclude with practical suggestions on the proper use of the tests.

2 QC test for normality

Consider the QC function, simply denoted as C(7), described in Ferguson (1999). Sup-
pose {Xy,...,X,} is an independent and identically distributed sample with distribu-
tion function F(z), density f(x), quantile function Q(7) (0 < 7 < 1), and mean px.
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Further suppose that the density f(x) is continuous and positive at (7). Denote the
sample mean by X,, = 1/n >, X; and the sample 7th quantile by Y, ,, = X(n:[nr])-
The QC function, C(7), is the asymptotic covariance between the sample quantiles with
index 7 € (0,1) and the sample mean; that is,

C(r) = lim Cov (vVnY;n,vn X,)
n—oo

Note that Q(7) = arg min, Fp,(X —a), where the quantile loss function is defined by
pr(u) := {7 —1(u < 0) }u; see Koenker and Bassett (1978). Thus the expected quantile
loss function is given by Ep,(X — a). Plugging in Q(7), we obtain the minimized
expected quantile loss function w(7) := Ep,{X — Q(7)}. From Ferguson (1999),

@(7)
He)}

where 1/[f{Q(7)}] (the inverse of the density evaluated at the 7th quantile) is called
the sparsity function (Tukey 1965).

C(r) =

Although desirable, except for some special cases (for example, normal distribution),
closed-form expressions of C(7) are not available. Following the standard notation, let
¢, ®, and ®~! denote, respectively, the density, distribution, and quantile functions of
the Standard normal random variable. Thus, if X ~ N(ux,0%), then it has density,
distribution, and quantile functions f(z) = (1/ax)¢{(x —ux)/ox}, F(z) = ®{(x —
px)/ox}, and Q(1) = ox® (1) + ux, respectively.

Bera et al. (2016) key result is summarized in the following theorem.

Theorem 1. Let X be a random variable with finite mean px € R and variance o% > 0,
and the density function f(z) is positive and differentiable. Then, C(1) = 0% for all
T € [0,1] if and only if X ~ N(ux,0%).

The QC function, C(7), of a random sample provides rich information about the
underlying distribution, and the result in theorem 1 suggests a natural way to test
normality based on the constancy of C'(7) across quantiles. Consider the null hypothesis
(Hp) of normality based on this process. For technical reasons, we consider the QC
process for 7 € T =[e, 1 — €], where € is a small positive number (the uniform asymptotic
representation holds on a subinterval of [0,1]). For similar treatment in other inference
problems, see, for example, Andrews (1993) and Andrews and Ploberger (1994).

Given a normally distributed random sample {X;}!"_,, define the QC process Cy, ()
as

1 - )(z — UX 1
Cn(1) = — —= (= 1x, <o) —{® (7
7= 2o | T Lo — (e )
According to theorem 1, for any 7, as n — oo,

T ZX ~Lxicer) 51




1042 Tests for normality based on the quantile-mean covariance

and
T_]- <Q(t
fz T e R )
where ) EX L
o2 (1) = T X<Q(T) _
(™) f{Q(T)}zog( (1 =27) HQ(T)}Y2o%k

The construction of C,, (1) requires knowledge of unknown parameters px, 0%, and
f{Q (7)}; thus it is infeasible to use Cy, (1) directly in testing normality. To construct
a feasible version of the QC process under Hy in practice, we use

Lx = %Z i UX:lZO(i_//ZX)Q
Q(r) = fix+dxd ' (r), f{Q(T)}:%M@*l(T)}

and consider the following feasible QC process:
~ 1 - [Xi—fhix -~ .
6= =3 [N (1 g) - FlQ )]
i=1

To test normality, Bera et al. (2016) consider functionals of én(T) over 7 € 7. In
particular, they propose the following test statistics:

T, := sup @l(T)’
TET

sup én(r)2
TET

Ty, = / én(T)QdT
TET

Tgn .

The first two are Kolmogorov suptype statistics, and the third one is the Cramér—von
Mises (average)-type statistic. Because the distributions of the test statistics are not
standard under the null hypothesis of normality Hy, we need to construct their critical
values. These are calculated by simulation using a sample size of 20,000, over 50,000
replications. Table 1 provides 1%, 5%, and 10% critical values for the test statistics Ty,
T, and T3,. The table covers T = [e,1 — €] with € € {0.001,0.01,0.05,0.10,0.15, 0.20},
and the approximating grid is 0.001. These simulations are also used to construct
p-values for the QC tests.
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Table 1. Critical values for T statistics

€ T statistic 10% 5% 1%
0.001 Tin 0.8144674 0.8868363 1.0426934
Ts, 0.6633571 0.7864787 1.0872095
T3, 0.0785807 0.0964926 0.1397021
0.01 Tin 0.8142603 0.8867764 1.0426934
Ton 0.6630199 0.7863724 1.0872095
T3, 0.0777682 0.0955875 0.138823
0.05 T, 0.7814074 0.8563241 1.0122919
15, 0.6105975 0.7332909 1.0247349
T3, 0.0681487 0.0845204 0.122791
0.10 Tin 0.7037061 0.775032 0.9195223
Ton 0.4952022 0.6006745 0.8455212
T3, 0.0545155 0.0684603 0.1003814
0.15 T, 0.6192168 0.6864218 0.8223042
15, 0.3834294 0.4711749 0.6761842
T3, 0.0428251  0.054668 0.0839317
0.20 Tin 0.5396766 0.5985859  0.722712
Ton 0.2912508 0.3583051 0.5223127
T3, 0.0325979 0.0431813 0.0695557

3 The qctest command

3.1 Syntax

The syntax is

qctest depvar [indepvars] [zf] [, nograph addqgqplot allstats level(#)

twoway,options}

3.2 Options

nograph suppresses QC plot display. The default is to show the QC plot.

addqgplot adds a Q—-Q plot to the QC plot. This option works only if nograph is not
specified.

allstats reports all the T statistics. The default is T5.
level (#) sets the confidence level. The default is level (95).

twoway_options; see [G-3] twoway_options.
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3.3 Stored results

qctest stores the following in r():

Matrices
r(QCplot) a matrix with numerical coordinates of the QC plot and their
confidence intervals
r(Ts) table of results; first column: epsilon values; second: T statistics;

third: p-values

The matrix r(QCplot) is useful to replicate the QC plot with other graph formats
provided by Stata.

Bera et al. (2016) show that the T statistics have nonnormal asymptotic distribu-
tions, and then p-values stored in r(Ts) are computed using a simulation of 50,000
random samples with 20,000 observations each. Results of the simulated database are
provided in the companion databases qctest-Tdist.dta for obtaining the p-values of
the T statistics and qctest-QCdist.dta for the QC plot.

4 Simulation and empirical application

This section illustrates the gctest command with two examples. First, we use different
random samples to evaluate the performance of the tests. Second, we use real data
stored in Stata’s auto.dta.

4.1 Simulations

For comparison, we develop the examples in Bera et al. (2016) by drawing random
samples from N (0, 1), Student’s t3, and 3.

Consider a sample size of n = 50. First, we evaluate the tests’ performance for
normal distributions. As expected, we cannot reject the null hypothesis of normality.
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. version 13
. set seed 123

. set obs 50
number of observations (_N) was 0O, now 50

. generate x = rnormal()

. qctest x, addqgplot allstats

Computing plots and T statistics...
Test for normality based on the quantile-mean covariance process

Ho: x has a normal distribution
Ha: x hasn’t a normal distribution

epsilon
and T Stat. p-value
0.001
T1 0.4764 0.8254
T2 0.2270 0.8254
T3 0.0206 0.8608
0.01
T1 0.4764 0.8210
T2 0.2270 0.8210
T3 0.0203 0.8560
0.05
T1 0.4764 0.7222
T2 0.2270 0.7222
T3 0.0186 0.8032
0.10
T1 0.3857 0.8052
T2 0.1488 0.8052
T3 0.0130 0.8106
0.15
T1 0.3857 0.6213
T2 0.1488 0.6213
T3 0.0117 0.6729
0.20
T1 0.3857 0.4162
T2 0.1488 0.4162
T3 0.0097 0.5524

1045

Second, we consider a random sample from a Student’s ¢ distribution with three
degrees of freedom. This example is of interest because the difference with the normal
distribution corresponds only to excess kurtosis. The results are sensitive to the T statis-
tic and the epsilon chosen. Note that T3 detects nonnormality of the data-generating
process while the others do not. As shown below, the lack of power is due to the small
sample chosen for this example.
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. generate y = rt(3)

. qctest y, addqgplot allstats
Computing plots and T statistics...

Test for normality based on the quantile-mean covariance process

Ho: y has a normal distribution
Ha: y hasn"t a normal distribution

epsilon
and T Stat. p-value
0.001
T1 0.6948 0.2655
T2 0.4827 0.2655
T3 0.1674 0.0037
0.01
T1 0.6948 0.2645
T2 0.4827 0.2645
T3 0.1655 0.0037
0.05
T1 0.6948 0.2030
T2 0.4827 0.2030
T3 0.1625 0.0022
0.10
T1 0.6948 0.1086
T2 0.4827 0.1086
T3 0.1469 0.0013
0.15
T1 0.6948 0.0453
T2 0.4827 0.0453
T3 0.1316 0.0009
0.20
T1 0.6948 0.0144
T2 0.4827 0.0144
T3 0.1242 0.0005

Third, we consider the x? case characterized by the asymmetry due to a large mass
of probability on the right tail of the distribution. Clearly, all results show a rejection
of the null hypothesis of normality.




J. Alejo, A. Bera, A. Galvao, G. Montes-Rojas, and Z. Xiao 1047

. generate z = rnormal() "2

. qctest z, addqgqplot allstats
Computing plots and T statistics...

Test for normality based on the quantile-mean covariance process

Ho: z has a normal distribution
Ha: z hasn’t a normal distribution

epsilon
and T Stat. p-value
0.001
T1 2.2374 0.0000
T2 5.0061 0.0000
T3 0.8009 0.0000
0.01
T1 2.2374 0.0000
T2 5.0061 0.0000
T3 0.7927 0.0000
0.05
T1 2.2374 0.0000
T2 5.0061 0.0000
T3 0.7485 0.0000
0.10
T1 2.2374 0.0000
T2 5.0061 0.0000
T3 0.6892 0.0000
0.15
T1 2.2374 0.0000
T2 5.0061 0.0000
T3 0.5824 0.0000
0.20
T1 2.2374 0.0000
T2 5.0061 0.0000
T3 0.4161 0.0000

We also evaluate the tests’ performance when we increase the sample size. This
aspect is analyzed using the plots generated by gctest (figures 1 to 3). In each figure,
the graph on the left contains the QC plots (black solid lines) with the 95% uniform
confidence bands (in shaded region), which are calculated using the simulation described
in section 3.3. The graph on the right displays the Q—Q plots (scatterplots). For each
of the Q—Q plots, we added a solid straight line that connects the quantile pairs and a
95% confidence band (in dashed lines).

The results clearly show that the tests work well when the data are generated using
normal distributions. For nonnormal distributions, the QC plots show departures from
the horizontal line at the extreme quantiles. In the Student’s t case, rejections are
clearly observed for extreme quantiles even for n = 50.
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The figures also show the disadvantages of the Q—Q plots with respect to the QC
plots. For example, on the Q—Q plots, the scales on the graphs increase considerably
as we increase the sample size (see, for instance, figure 2). The QC plots, however, do
not suffer from these scale distortions. Moreover, the 45-degree line in the Q—Q plots
becomes more horizontal as we increase the sample size. Thus we find that the QC plots
provide a useful graphical alternative analysis to the popular Q—Q plots.

n = 50
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Figure 1. Normal distribution, n = 50500




J. Alejo, A. Bera, A. Galvao, G. Montes-Rojas, and Z. Xiao 1049

n = 50
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Figure 2. Student’s t distribution with 3 degrees of freedom, n = 50500
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n =50
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Figure 3. Chi-squared distribution with 1 degree of freedom, n = 50500

4.2 Example with real data

We use real data from the 1978 automobile dataset (auto.dta) provided by Stata. We
test the normality of the price and gear_ratio variables using qctest.
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sysuse auto, clear
(1978 Automobile Data)

. qctest price, addqq allstats
Computing plots and T statistics...

Test for normality based on the quantile-mean covariance process

Ho: price has a normal distribution
Ha: price hasn’t a normal distribution

epsilon
and T Stat. p-value
0.001
T1 2.1675 0.0000
T2 4.6982 0.0000
T3 0.8984 0.0000
0.01
T1 2.1675 0.0000
T2 4.6982 0.0000
T3 0.8921 0.0000
0.05
T1 2.1675 0.0000
T2 4.6982 0.0000
T3 0.8129 0.0000
0.10
T1 2.1675 0.0000
T2 4.6982 0.0000
T3 0.6711 0.0000
0.15
T1 2.1675 0.0000
T2 4.6982 0.0000
T3 0.4669 0.0000
0.20
T1 2.1265 0.0000
T2 4.5220 0.0000
T3 0.2353 0.0000

1051
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. qctest gear_ratio, addqq allstats
Computing plots and T statistics...

Test for normality based on the quantile-mean covariance process

Ho: gear_ratio has a normal distribution
Ha: gear_ratio hasn’t a normal distribution

epsilon
and T Stat. p-value
0.001
T1 1.1201 0.0039
T2 1.2547 0.0039
T3 0.1260 0.0167
0.01
T1 1.1201 0.0039
T2 1.2547 0.0039
T3 0.1256 0.0162
0.05
T1 1.1201 0.0028
T2 1.2547 0.0028
T3 0.1102 0.0175
0.10
T1 1.1201 0.0008
T2 1.2547 0.0008
T3 0.0861 0.0206
0.15
T1 0.8852 0.0043
T2 0.7836 0.0043
T3 0.0465 0.0798
0.20
T1 0.5315 0.1089
T2 0.2824 0.1089
T3 0.0208 0.2322

The results suggest that price is clearly nonnormal, while there is mixed evidence for
gear ratio. The following code and figure 4 show the plot analysis where the price distri-
bution has large differences with the zero line in the QC plot, while the gear ratio shows
discrepancies only for the 0.80 to 0.90 percentiles. qctest supports some customizations
to display graphics. The following code shows two examples of customization with a
title, a subtitle, and a note.

. qctest price, addqq

> title("Test of normality for price")
subtitle("1978 automobile data, auto.dta")
> note("Notes: 95, confidence intervals")

v

. qctest gear_ratio, addqq

> title("Test of normality for grear_ratio")
subtitle("1978 automobile data, auto.dta")
> note("Notes: 95% confidence intervals")

v
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Figure 4. Automobile price and gear ratio from 1978 automobile data

4.3 Monte Carlo study comparing QC test with other tests for nor-
mality

We implement the proposed test in a Monte Carlo experiment and compare it with three
popular tests available in Stata. In particular, we compare it with sktest (Fisher 1930;
Geary 1947; Bowman and Shenton 1975; Jarque and Bera 1980; White and MacDonald
1980; D’Agostino, Belanger, and D’Agostino 1990; Bai and Ng 2005), swilk (Shapiro
and Wilk 1965; Shapiro and Francia 1972; Royston 1983), mvtest (Mardia, Kent, and
Bibby 1979), and ksmirnov (Kolmogorov—Smirnov-type test).
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We consider 1,000 replications of a different data-generating process [N(0,1), Stu-
dent’s t with 3 degrees of freedom, and x?] and sample sizes (50, 100, 500). We evaluate
qctest for the T3 statistic only (that is, we do not use the allstats option) and con-
struct the simulation using the simulate command in Stata. The results appear in
table 2.

Table 2. Monte Carlo simulations

n = 50 n = 100 n = 500
N(07 1) t3 X% N((]: 1) t3 X% N(O’ 1) t3 X%

QC test (T3)
e=0.001 «=0.01 0.006 0.515 1.000 0.005 0.814 1.000 0.010 1.000 1.000
a=0.05 0.038 0.671 1.000 0.040 0.901 1.000 0.046 1.000 1.000
a=0.10 0.090 0.742 1.000 0.102 0.925 1.000 0.099 1.000 1.000
e=0.01 «=0.01 0.005 0.513 1.000 0.005 0.814 1.000 0.010 1.000 1.000
a=0.05 0.038 0.666 1.000 0.041 0.901 1.000 0.045 1.000 1.000
a=0.10 0.091 0.742 1.000 0.102 0.923 1.000 0.096 1.000 1.000
e=0.05 ao=0.01 0.006 0.531 1.000 0.005 0.833 1.000 0.008 1.000 1.000
a=0.05 0.041 0.671 1.000 0.047 0.902 1.000 0.042 1.000 1.000
a=0.10 0.094 0.744 1.000 0.109 0.924 1.000 0.099 1.000 1.000
e=0.10 o=0.01 0.007 0.565 1.000 0.009 0.855 1.000 0.008 1.000 1.000
a=0.05 0.040 0.697 1.000 0.050 0.911 1.000 0.047 1.000 1.000
a=0.10 0.096 0.761 1.000 0.107 0.936 1.000 0.095 1.000 1.000
e=0.15 a=0.01 0.006 0.577 0.997 0.008 0.861 1.000 0.009 1.000 1.000
a=0.05 0.038 0.707 0.999 0.053 0.918 1.000 0.046 1.000 1.000
a=0.10 0.090 0.767 0.999 0.103 0.941 1.000 0.095 1.000 1.000
€e=020 o=0.01 0.009 0.582 0.840 0.009 0.868 0.977 0.009 1.000 1.000
a=0.05 0.042 0.712 0906 0.057 0.916 0.988 0.048 1.000 1.000
a=0.10 0.087 0.772 0.938 0.099 0.942 0.996 0.091 1.000 1.000
Skewness and kurtosis (SK) test
a=0.01 0.009 0.502 0976 0.007 0.747 1.000 0.009 1.000 1.000
a=0.05 0.057 0.661 0.999 0.044 0.865 1.000 0.063 1.000 1.000
a=0.10 0.097 0.741 1.000 0.094 0.907 1.000 0.111 1.000 1.000
Multivariate (MV) tests
a=0.01 0.012 0.573 1.000 0.005 0.833 1.000 0.016 1.000 1.000
a=0.05 0045 0.714 1.000 0.046 0.896 1.000 0.065 1.000 1.000
a=0.10 0.088 0.776 1.000 0.076 0.927 1.000 0.100 1.000 1.000
Shapiro—Wilk (SW) test
a=0.01 0.009 0.520 1.000 0.003 0.803 1.000 0.014 1.000 1.000
a=0.05 0.051 0.640 1.000 0.039 0.881 1.000 0.059 1.000 1.000
a=0.10 0.096 0.718 1.000 0.093 0.910 1.000 0.111 1.000 1.000
Kolmogorov—Smirnov test
a=0.01 0.000 0.053 0.596 0.000 0.114 1.000 0.000 0.870 1.000
a=0.05 0.001 0.116 0926 0.000 0.248 1.000 0.000 0.967 1.000
a=0.10 0.001 0.177 0.982 0.000 0.340 1.000 0.000 0.987 1.000

Note: Monte Carlo simulations based on 1,000 replications.

The Monte Carlo experiment shows an excellent performance of the Bera et al.
(2016) tests for normality. The QC tests have correct empirical size for different «
theoretical values and for all e. Note also that the SK, MV, and SW tests have a similar
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size performance but that the Kolmogorov—Smirnov tests are largely undersized. The
QC tests also have good power performance. For t3 random variables, the QC tests have
more power than the SK and SW tests, but they are outperformed by the MV tests. Note
that the power increases as € increases. For x? random variables, all tests have power
close to 1, which makes it difficult to compare them. Note that the QC test reduces
power as € increases, probably because the non-Gaussian features are better observed
in the tails for asymmetric distributions.

5 Conclusion

The new gctest command develops Bera et al. (2016) QC tests for normality. These
provide a novel way to implement tests for normality of a random variable based on
the covariance between the sample mean and sample quantiles. The new procedure also
comes with a graphical alternative to visualize departures from Gaussianity.
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