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Abstract. In this article, we adapt the modeling strategy proposed by Philips,
Rutherford, and Whitten (2016, American Journal of Political Science 60: 268–
283) and create a user-friendly Stata command, dynsimpie. This command re-
quires the installation of the clarify package of Tomz, Wittenberg, and King
(2003, Journal of Statistical Software 8(1): 1–30) and uses the commands in
the clarify package to produce estimates from models of compositional depen-
dent variables over time. Users can also examine how counterfactual shocks play
through the system with graphs that are easy to interpret. We illustrate this with
a model of voter support for the three dominant political parties in the UK.

Keywords: st0448, dynsimpie, dynamic composition, counterfactual shocks

1 Overview

While compositional variables are central to many theories in the social sciences and
elsewhere, they tend to be difficult to model. For instance, in examining support for a
particular political party, researchers find that gains in one party’s proportion of support
must come at the expense of support for at least one other party. When there are only
two categories, modeling this type of tradeoff is straightforward. Yet when there are
three or more categories, it becomes increasingly difficult.

To address this issue, researchers have developed an entire class of models. Ad-
vances in the analysis of compositional data can be largely attributed to Aitchison
(1986, 1982, 1983); this work has been applied in the context of geology, medicine
(Hoffman and Uauy 1992), and, more recently, political science (Katz and King 1999;
Tomz, Tucker, and Wittenberg 2002; Pawlowsky-Glahn and Buccianti 2011). Because
compositional variables must sum to one, any increase (or decrease) in one component of
the composition must be offset by a corresponding decrease (or increase) in one or more
of the other components. This makes them particularly difficult to study with conven-
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tional statistical models.1 However, by using a log-ratio transformation (see additional
explanation in Aitchison [1986]), we free the variables from the sum-to-one constraint.
This allows complex compositional models to be fit using standard multivariate normal
or multivariate additive-logistic Student t distributions.

Philips, Rutherford, and Whitten (2016) (see also Philips, Rutherford, and Whit-
ten [2015]) extend modeling compositional dependent variables in several important
ways. First, they address the paucity of dynamic compositional models by propos-
ing an error-correction model of compositional variables to gain inferences about both
long- and short-run effects. This is particularly important because many interest-
ing compositional dependent variables in the social sciences, such as budgets, diver-
sified stock portfolios, or levels of party support, are inherently dynamic. Second,
Philips, Rutherford, and Whitten (2016) greatly simplify the presentation of complex
model results through graphical depictions of their dynamic simulations.

We turn the methods described in Philips, Rutherford, and Whitten (2016) into a
user-friendly command, dynsimpie, that can be implemented in Stata. We apply the
modeling strategy suggested by Tomz, Wittenberg, and King (2003) and use stochastic
simulations to create graphs that show the predicted proportions of each category in
the composition, along with associated measures of confidence. Dynamic simulations
are growing in popularity in political science because of their ease of interpretation and
clarity of inference (Williams and Whitten 2011, 2012; Whitten and Williams 2011).
With dynsimpie, users can easily estimate and graph their own dynamic simulations of
compositional dependent variables.

In brief, our model estimation strategy is as follows.2 Let j components of a total
number of J categories of a dependent variable y over time t be expressed as a propor-
tion, such that

∑J
j=1 = 1. We then calculate J − 1 compositions, stj , by taking the log

ratio between category ytj and some arbitrary baseline category yt1 (where ytj �= 1).3

This is known as the log-ratio transformation (Aitchison 1986).

stj = ln(
ytj
yt1

) ∀j �= 1

Next, we use an error-correction framework to model the relationship between a vector
of exogenous variables, xt, and our log-ratio compositions as a system of equations given
by the following,

Δstj = β0j − αjsjt−1 + βLjxt−1 + βSjΔxt +Σtj

where the change in the logged ratio of dependent variable category j (for j �= 1) relative
to baseline category j = 1 is a function of a constant, β0j , a lag of dependent variable

1. More formally, compositional variables over time have four characteristics. First, each component
must be bounded by zero and one. Second, the components must sum to 1. Third, a change in
a single component is bounded by zero and one. Finally, the sum of the changes at a single time
point t must sum to zero.

2. See Philips, Rutherford, and Whitten (2016) for a more extensive discussion.
3. The choice of the baseline category j = 1 is arbitrary because, as we will see, all stj are later

untransformed back into their original ytj and we can also retrieve the predicted values for yt1.
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sjt−1, the lag and first difference of xt, and a matrix of stochastic disturbance terms,
Σtj , that may be correlated across the system of equations. Because of this potentially
correlated error structure, we fit all error-correction models at once in a seemingly
unrelated regression to gain more efficient estimates. While the error-correction model
is ideal for unit-root series [typically first-order integration, I(1), in most social science
applications] that have a cointegrating relationship, or where all series are stationary
[that is, I(0)] (De Boef and Keele 2008), we stress that users should conduct the proper
tests for unit roots and cointegration before running dynsimpie.4

Because numerical interpretation of the resulting models is relatively difficult, the
command instead lets users conduct their own simulations of substantively meaning-
ful inferences (King, Tomz, and Wittenberg 2000; Williams and Whitten 2012). To do
this, we use the commands in the clarify package to produce 1,000 sets of parameter
estimates (Tomz, Wittenberg, and King 2003). The clarify package uses Monte Carlo
simulations to present statistical outputs that substantively illustrate interesting quan-
tities such as predicted values and first differences; installation of clarify is required to
use dynsimpie. Starting with each variable at its sample mean at time t = 1 (with the
long-run vector of exogenous variables set to their sample means, and the differenced
exogenous variables set to zero), the command calculates predicted values for each J−1
composition. These values then move back into the equation at time t = 2 (through the
lagged dependent variable), and the process is repeated. At a user-specified time point,
a counterfactual “shock” may be introduced—which affects our model by giving one
of the independent variables a negative or positive short-run change for a single time
point. Then, the process readjusts to a new equilibrium at subsequent time points.
The command changes the predicted log-ratio compositional values back into predicted
proportions by using the following untransformation:

Ŷtj =
eŜtj

1 +
∑J

j=2 e
Ŝtj

∀j �= 1

For the baseline category (j = 1), the untransformation is given as

Ŷtj =
1

1 +
∑J

j=2 e
Ŝtj

In addition to predicted values, upper and lower confidence intervals are calculated via
the percentile method at a user-specified level of confidence (the default is 95%). The
predicted composition values and associated confidence intervals are saved to a dataset
so that they can be easily plotted.5

4. For a Monte Carlo investigation into the consequences of violating this suggestion, see the Supple-
mental Materials in Philips, Rutherford, and Whitten (2016).

5. This is the same order of operations to handle compositional data as given in the clarify docu-
mentation (Tomz, Wittenberg, and King 2003, 21).
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2 Syntax

dynsimpie indepvars
[
if
] [

in
]
, dvs(varlist) shockvar(varname) shock(#)[

time(#) graph saving(string) range(#) sig(#) dummy(varlist)

dummyset(numlist) shockvar2(varname) shock2(numlist)

shockvar3(varname) shock3(numlist) notable nosave
]

indepvars is a list of independent variables to be included in the model. The final list
will be one variable less than the total number of desired independent variables,
because one variable must always be specified in shockvar() (see below). As shown
in the examples, these variables need to be specified only in levels—dynsimpie

automatically transforms them into the lag and first difference needed for estimation
in the error-correction model.

3 Options

dvs(varlist) is a list of the compositional dependent variables to be fit in the model.
Each of these should be expressed as either proportions (thus summing to 1) or
percents (summing to 100). dynsimpie will issue an error message if neither of
these criteria is met. The command takes the log of the proportion of each category
relative to the proportion of an arbitrary “baseline” category; for example, if there
were J dependent variables in dvs(varlist), dynsimpie would create J−1 categories
of stj = ln(ytj/ytJ ), where the Jth category is the baseline. dvs() is required.

shockvar(varname) is the independent variable, not included in varlist, that experi-
ences some counterfactual one-period shock as specified in shock() at time t specified
in time(). Because this is within an error-correction framework, the shock first af-
fects the first-differenced shockvar() at time t for one time period, then moves into
the lagged shockvar(). shockvar() is required.

shock(#) is the amount to shock the independent variable specified in shockvar() at
time t specified in time(). shock() is required.

time(#) is the time that the variable specified in shockvar() experiences a one-period
shock. The default is time(10).

graph displays a plot of the simulated output. The predicted proportion of each of the
compositional dependent variables is plotted against time, along with the associated
confidence intervals.

saving(string) specifies the name of the dataset that dynsimpie will save the results to.
By default, the results are saved as dynsimpie results.dta. This dataset contains a
time variable, the midpoints, and the upper and lower confidence intervals for each
dependent variable. This is commonly used for graphing the dynamic simulation
results.
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range(#) gives the length of the scenario to simulate. By default, 20 time periods are
simulated. range(#) must always be more than the time(#) at which the shock
occurs.

sig(#) specifies the level of confidence associated with the calculation of the confidence
intervals. The default is sig(95) for 95% confidence intervals.

dummy(varlist) specifies a list of dummy variables in the model.

dummyset(numlist) specifies alternative values for each of the dummy variables specified
in dummy() to be used throughout the simulation. By default, each of the dummy
variables in dummy() will be set to 0 throughout the simulation.

shockvar2(varname) allows for an additional shock to take place at time t. As with
shockvar(), this variable cannot be included in varlist.

shock2(numlist) is the amount by which to shock shockvar2(varname).

shockvar3(varname) allows for an additional shock to take place at time t. As with
shockvar(), this variable cannot be included in varlist.

shock3(numlist) is the amount by which to shock shockvar3(varname).

notable suppresses the automatic generation of the seemingly unrelated regression re-
sults. By default, a table of estimates is shown.

nosave suppresses saving the results. By default, the results are saved as either
dynsimpie results.dta or a user-specified name in saving().

4 Examples

To illustrate the functions of dynsimpie, we use data on UK party support from Philips,
Rutherford, and Whitten (2016).6 They hypothesize that support for each of the three
largest political parties (Labour, Conservatives, and Liberal Democrats) is a function of
party identification, evaluation of the party leaders, national retrospective evaluations,
and evaluations of which party is the best manager of the most important issue facing
the country. Thus the dependent variable is a j = 3 composition of the proportion of
support for each party that sums to 1. This is shown in figure 1. Summary statistics
for each party are shown in table 1.

6. This dataset is included in the dynsimpie package download.
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Table 1. Summary statistics for UK party support

Variable Obs. Mean Standard Deviation Minimum Maximum

Conservatives 71 0.43 0.06 0.33 0.58
Liberal Democrats 71 0.21 0.04 0.13 0.33
Labour 71 0.36 0.05 0.25 0.46

. use uk_ajps

. twoway line Con ts || line Ldm ts || line Lab ts,
> legend(order(1 "Conservatives" 2 "Liberal Democrats" 3 "Labour"))
> ytitle("Proportion of Support")
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Figure 1. Party support during the “new Labour” period

According to Philips, Rutherford, and Whitten (2016), the next step is to conduct
unit-root testing to determine whether an error-correction model is appropriate to use.
Recall that error-correction models are appropriate only in cases where all the variables
are stationary or where all variables are nonstationary and appear to be in a cointegrat-
ing relationship. To see whether this is the case for the UK example, table 2 shows the
results of the Dickey–Fuller and Phillips–Perron unit-root tests for all the undifferenced
and differenced series. Because we seldom reject the null hypothesis of nonstationar-
ity for the undifferenced series and always reject it for the differenced series, we can
conclude that all variables appear to be nonstationary.
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Table 2. Unit-root tests for UK party support

Aug. Dickey–Fuller Phillips–Perron
UndifferencedDifferencedUndifferenced Differenced

Dependent Variables:
Conservatives −2.32 −9.55* −2.27 −9.64*

Labour −2.21 −7.94* −2.41 −7.95*

Lib. Dems. −2.88* −9.18* −2.72 −9.47*

Independent Variables:
Party ID −3.09* −13.58* −2.84 −14.81*

Labour Leader Evaluation −2.21 −8.98* −2.52 −8.94*

Conservative Leader Evaluation −2.87* −10.50* −2.72 −10.87*

Lib. Dem. Leader Evaluation −1.15 −7.73* −0.86 −7.66*

Natl. Retrospective Evaluation −0.90 −7.89* −1.08 −8.04*

Labour “Best Manager” of −2.75 −9.25* −2.85 −9.16*
Economy

Note: Augmented Dickey–Fuller Z(t) test statistics. * p < 0.05. Phillips–Perron Z(t)
test statistics. * p < 0.05.

Our next step is to test for evidence of cointegration. Using the common Engle–
Granger (1987) approach to cointegration, we see that there appears to be evidence
that all three dependent variables (Labour, Conservatives, and Liberal Democrats) are
in a cointegrating relationship with the independent variables.7 Therefore, the error-
correction model is appropriate to use in this example.

The model of UK party support is now ready to be fit and simulated using dynsimpie.
We list the five independent variables and those who view Labour as the “Best Manager”
of the economy in the required shockvar() option. The three dependent variables are
listed under the required dvs() option. For our dynamic simulation, we will show
the estimated effects of a one standard-deviation increase (+0.054) of those who think
Labour is the best manager of the most important issue at time t = 9.

. dynsimpie all_pidW all_LabLeaderEval_W all_ConLeaderEval_W
> all_LDLeaderEval_W all_nat_retW, dvs(Con Ldm Lab) t(9)
> shock(0.054) shockvar(all_b_mii_lab_pct) graph

No range specified; default to t=20

Seemingly unrelated regression

Equation Obs Parms RMSE "R-sq" chi2 P

D_Ldm_Con 68 13 .1051191 0.7159 183.70 0.0000
D_Lab_Con 68 13 .0584838 0.7902 273.01 0.0000

7. The Engle–Granger approach to cointegration testing involves regressing the dependent variable on
the independent variables in levels and testing whether the resulting residuals are stationary, which
indicates the presence of a cointegrating relationship. Dickey–Fuller and Phillips–Perron unit-root
tests show that the residuals of the Conservative, Labour, and Liberal Democrat regressions are
stationary—thus we have reason to believe that there is a cointegrating relationship present.
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Coef. Std. Err. z P>|z| [95% Conf. Interval]

D_Ldm_Con
L_Ldm_Con -.5776355 .0986824 -5.85 0.000 -.7710496 -.3842215
D_all_pidW -2.243771 1.071513 -2.09 0.036 -4.343899 -.1436436

D_all_LabLe~W -.0317277 .0857915 -0.37 0.712 -.1998759 .1364205
D_all_ConLe~W -.2779544 .0627374 -4.43 0.000 -.4009174 -.1549915
D_all_LDLea~W .4820017 .0779929 6.18 0.000 .3291385 .6348649
D_all_nat_r~W .1491226 .1410416 1.06 0.290 -.1273139 .4255591

L_all_pidW 1.247393 1.016881 1.23 0.220 -.7456575 3.240443
L_all_LabLe~W -.0485621 .0740909 -0.66 0.512 -.1937775 .0966533
L_all_ConLe~W -.0948527 .0702979 -1.35 0.177 -.232634 .0429286
L_all_LDLea~W .1754929 .0494942 3.55 0.000 .078486 .2724998
L_all_nat_r~W .0994187 .0545379 1.82 0.068 -.0074737 .2063111
D_all_b_mii~t .2725831 .5676606 0.48 0.631 -.8400113 1.385177
L_all_b_mii~t -.4906083 .4268449 -1.15 0.250 -1.327209 .3459924

_cons -1.068066 .6230965 -1.71 0.087 -2.289313 .1531808

D_Lab_Con
L_Lab_Con -.5165434 .0867791 -5.95 0.000 -.6866273 -.3464596
D_all_pidW -.3706903 .620695 -0.60 0.550 -1.58723 .8458495

D_all_LabLe~W .2363446 .0475815 4.97 0.000 .1430866 .3296025
D_all_ConLe~W -.1501075 .0348201 -4.31 0.000 -.2183536 -.0818614
D_all_LDLea~W .0072788 .0428209 0.17 0.865 -.0766487 .0912063
D_all_nat_r~W .0783334 .0781189 1.00 0.316 -.0747769 .2314437

L_all_pidW 1.726958 .6186231 2.79 0.005 .514479 2.939437
L_all_LabLe~W .1743062 .0471755 3.69 0.000 .081844 .2667684
L_all_ConLe~W -.0119387 .037973 -0.31 0.753 -.0863644 .0624869
L_all_LDLea~W .0168671 .0248225 0.68 0.497 -.0317841 .0655182
L_all_nat_r~W .0942601 .0321303 2.93 0.003 .0312859 .1572342
D_all_b_mii~t 1.658563 .3142354 5.28 0.000 1.042673 2.274453
L_all_b_mii~t .094476 .2301271 0.41 0.681 -.3565649 .5455169

_cons -1.544897 .3709526 -4.16 0.000 -2.271951 -.8178433

Simulating main parameters. Please wait....

Note: Clarify is expanding your dataset from 68 observations to 1000
observations in order to accommodate the simulations. This will append
missing values to the bottom of your original dataset.

% of simulations completed: 3% 7% 10% 14% 17% 21% 25% 28% 32% 35% 39% 42% 46% 50
> % 53% 57% 60% 64% 67% 71% 75% 78% 82% 85% 89% 92% 96% 100%

Simulating Sigma matrix. Please wait..
% of simulations completed: 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Number of simulations : 1000
Names of new variables : b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16
> b17 b18 b19 b20 b21 b22 b23 b24 b25 b26 b27 b28 b29 b30 b31

Please Wait...Simulation in Progress (20)
1 2 3 4 5

................................................. 50

....................
(note: file dynsimpie_results.dta not found)
file dynsimpie_results.dta saved
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By default, the estimation results are presented, as shown in table 3.8 Note that
because there were three dependent variables, dynsimpie automatically performs the
log-ratio transformation so that only two log compositional ratios are shown in the
output: ln(Lib. Dems./Conservative) and ln(Labour/Conservative).

Table 3. Table of results from dynsimpie output

Variable ln( Lib. Dems.
Conservative ) ln( Labour

Conservative )

Lagged Dependent Variable −0.58* (0.10) −0.52* (0.09)

ΔParty IDt −2.24* (1.07) −0.37 (0.62)

ΔLabour Leader Eval.t −0.03 (0.09) 0.24* (0.05)

ΔConservative Leader Evaluationt −0.28* (0.06) −0.15* (0.03)

ΔLib. Dem. Leader Evaluationt 0.48* (0.08) 0.01 (0.04)

ΔNatl. Retrospective Evaluationt 0.15 (0.14) 0.08 (0.08)

ΔLabour “Best Manager” of Economyt 0.27 (0.57) 1.66* (0.31)

Party IDt−1 1.25 (1.02) 1.73* (0.62)

Labour Leader Eval.t−1 −0.05 (0.07) 0.17* (0.05)

Conservative Leader Eval.t−1 −0.09 (0.07) −0.01 (0.04)

Lib. Dem. Leader Eval.t−1 0.18* (0.05) 0.02 (0.02)

Natl. Retrospective Eval.t−1 0.10 (0.05) 0.09* (0.03)

Labour “Best Manager” of Economyt−1 −0.49 (0.43) 0.09 (0.23)

Constant −1.07 (0.63) −1.54* (0.37)

Note: Coefficients from a seemingly unrelated regression with standard errors
in parentheses. Two-tailed test statistics. * p < .05.

While the coefficients in table 3 are useful for judging significance of slope coefficients
and calculating long- and short-run effects, the coefficients are difficult to interpret
because a parameter estimate represents the effect that that particular variable has
on the logged ratio of one political party relative to the other. Therefore, graphical
interpretations, such as the predicted probabilities shown in figure 2, are particularly
useful. Recall that we specified a one standard-deviation increase in the proportion
of those who think Labour is the best manager of the most important issue to occur
at t = 9. This is shown in figure 2. It is clear that this change has both long- and
short-run effects on the predicted proportion of party support in the UK. In response to
the shock, in the short run, Labour receives about a three-percentage point boost. This
comes almost entirely at the expense of Conservative support. However, over the long
run, Liberal Democrats experience a drop in support—in contrast, Conservative support
returns to the starting value, and Labour support diminishes, eventually settling just
above its starting value.

8. The notable option suppresses table output.
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Figure 2. One standard-deviation increase in those who think Labour is the best man-
ager of the most important issue, created using the graph option

While the plot in figure 2, generated using the graph option, is adequate in many
cases, users may desire to customize their plots. By default, dynsimpie will save the
predicted midpoints, time variable, and upper and lower confidence intervals to a dataset
called dynsimpie results.dta or a user-specified name using the saving() option.9

The saved dataset can be opened to create a customized graph:

. preserve

. use dynsimpie_results

. twoway rspike var1_pie_ul_ var1_pie_ll_ time ||
> rspike var2_pie_ul_ var2_pie_ll_ time ||
> rspike var3_pie_ul_ var3_pie_ll_ time ||
> scatter mid1 time || scatter mid2 time || scatter mid3 time,
> legend( order(4 "Conservatives" 5 "Liberal Democrats" 6 "Labour"))
> xtitle("Month") ytitle("Predicted Proportion of Support")

. restore

9. The nosave option suppresses this action.
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Figure 3. One standard-deviation increase in those who think Labour is the best man-
ager of the most important issue, customized graph

dynsimpie has several options that users can specify to create a graph. The time()
option changes the time that the independent variable receives a shock, while range()
specifies the length of the scenario to simulate. For example, figure 4 shows the same
counterfactual shock as in figure 3 but specifies a range of 40 months and changes the
shock to occur during month 30. In addition, using the dummy() option, we can add a
dummy variable that is equal to one during the months of the Great Recession. Because,
by default, dynsimpie will set any dummy variables to zero, we can set this variable to
one using the dummyset() option. As shown in figure 4, the confidence intervals grow
wider to reflect an increase in uncertainty; otherwise, the results are very similar to the
model without the Great Recession dummy variable.

. dynsimpie all_pidW all_LabLeaderEval_W all_ConLeaderEval_W
> all_LDLeaderEval_W all_nat_retW, dvs(Con Ldm Lab) t(30) range(40) shock(0.054)
> shockvar(all_b_mii_lab_pct) graph dummy(recession_dum) dummyset(1)

Seemingly unrelated regression

Equation Obs Parms RMSE "R-sq" chi2 P

D_Ldm_Con 68 14 .1046312 0.7186 186.20 0.0000
D_Lab_Con 68 14 .058494 0.7901 273.29 0.0000
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Coef. Std. Err. z P>|z| [95% Conf. Interval]

D_Ldm_Con
L_Ldm_Con -.5794892 .09819 -5.90 0.000 -.7719381 -.3870403
D_all_pidW -2.381324 1.079898 -2.21 0.027 -4.497885 -.2647632

D_all_LabLe~W -.0351874 .0854955 -0.41 0.681 -.2027555 .1323807
D_all_ConLe~W -.2752663 .0625296 -4.40 0.000 -.397822 -.1527106
D_all_LDLea~W .4756217 .078012 6.10 0.000 .3227209 .6285225
D_all_nat_r~W .1846631 .1469831 1.26 0.209 -.1034185 .4727447

L_all_pidW .9048556 1.095946 0.83 0.409 -1.24316 3.052871
L_all_LabLe~W -.0408467 .0743497 -0.55 0.583 -.1865694 .104876
L_all_ConLe~W -.087119 .0706325 -1.23 0.217 -.2255561 .0513181
L_all_LDLea~W .174251 .0492857 3.54 0.000 .0776527 .2708492
L_all_nat_r~W .1568401 .0889912 1.76 0.078 -.0175795 .3312597
D_all_b_mii~t .2530257 .565468 0.45 0.655 -.8552712 1.361322
L_all_b_mii~t -.4664369 .425917 -1.10 0.273 -1.301219 .3683451
recession_dum .0599391 .0736982 0.81 0.416 -.0845067 .2043849

_cons -1.166204 .6317957 -1.85 0.065 -2.404501 .0720931

D_Lab_Con
L_Lab_Con -.518055 .0867466 -5.97 0.000 -.6880752 -.3480347
D_all_pidW -.3734059 .6283616 -0.59 0.552 -1.604972 .8581602

D_all_LabLe~W .2362032 .047641 4.96 0.000 .1428285 .329578
D_all_ConLe~W -.1499786 .0348656 -4.30 0.000 -.2183139 -.0816433
D_all_LDLea~W .0069452 .0430183 0.16 0.872 -.0773692 .0912595
D_all_nat_r~W .0800081 .0817055 0.98 0.327 -.0801318 .2401479

L_all_pidW 1.717006 .6624619 2.59 0.010 .4186047 3.015408
L_all_LabLe~W .175037 .0474261 3.69 0.000 .0820835 .2679904
L_all_ConLe~W -.0118403 .0384271 -0.31 0.758 -.0871561 .0634754
L_all_LDLea~W .0167159 .0248444 0.67 0.501 -.0319783 .0654101
L_all_nat_r~W .096921 .050539 1.92 0.055 -.0021337 .1959757
D_all_b_mii~t 1.656847 .3144173 5.27 0.000 1.040601 2.273094
L_all_b_mii~t .0960153 .2307912 0.42 0.677 -.3563272 .5483577
recession_dum .002554 .0410924 0.06 0.950 -.0779857 .0830937

_cons -1.551414 .3766141 -4.12 0.000 -2.289564 -.8132639

Simulating main parameters. Please wait....

Note: Clarify is expanding your dataset from 68 observations to 1000
observations in order to accommodate the simulations. This will append
missing values to the bottom of your original dataset.

% of simulations completed: 3% 6% 10% 13% 16% 20% 23% 26% 30% 33% 36% 40% 43% 46
> % 50% 53% 56% 60% 63% 66% 70% 73% 76% 80% 83% 86% 90% 93% 96% 100%

Simulating Sigma matrix. Please wait..
% of simulations completed: 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Number of simulations : 1000
Names of new variables : b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16
> b17 b18 b19 b20 b21 b22 b23 b24 b25 b26 b27 b28 b29 b30 b31 b32 b33

Please Wait...Simulation in Progress (40)
1 2 3 4 5

................................................. 50

........................................
file dynsimpie_results.dta saved
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Figure 4. One standard-deviation increase in those who think Labour is the best man-
ager of the most important issue during the Great Recession

In addition to plotting the simulated effect of a single shock, dynsimpie allows for up
to three shocks to occur at the same point in time.10 For instance, in figure 5, we show
the estimated effects of a one standard-deviation increase in the percentage of those
who think Labour is the best manager of the most important issue and a one standard-
deviation increase in Labour leader evaluations. This is done using the shockvar2()

option.11 These both take effect at time t = 18 over a total range of t = 30:

. dynsimpie all_pidW all_ConLeaderEval_W all_LDLeaderEval_W all_nat_retW,
> dvs(Con Ldm Lab) t(18) range(30) shock(0.054) shockvar(all_b_mii_lab_pct)
> shockvar2(all_LabLeaderEval_W) shock2(0.367) graph

Seemingly unrelated regression

Equation Obs Parms RMSE "R-sq" chi2 P

D_Ldm_Con 68 13 .1051191 0.7159 183.70 0.0000
D_Lab_Con 68 13 .0584838 0.7902 273.01 0.0000

10. This is particularly helpful if compositional variables make up some of the independent variables.
For instance, if we included something like previous vote share, we would have to include two
of the three previous party-vote variables (Labour and Liberal Democrats, for instance, without
loss of generality). Thus a one standard-deviation increase in Labour must necessitate a drop
in either the Liberal Democrats or the Conservatives (this would occur if we left the Liberal
Democrats unchanged at the shock time) or both. By giving half the corresponding loss to the
Liberal Democrats (and thus saving the other half for the Conservatives), we provide the most
informative counterfactual, also called a “ratio-preserving counterfactual” (Adolph 2013), because
we get as close to observing the response to one variable’s change—increase to Labour.

11. If a shock to an additional variable was desired, this would be performed using the shockvar3()

option.
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Coef. Std. Err. z P>|z| [95% Conf. Interval]

D_Ldm_Con
L_Ldm_Con -.5776355 .0986824 -5.85 0.000 -.7710496 -.3842215
D_all_pidW -2.243771 1.071513 -2.09 0.036 -4.343899 -.1436436

D_all_ConLe~W -.2779544 .0627374 -4.43 0.000 -.4009174 -.1549915
D_all_LDLea~W .4820017 .0779929 6.18 0.000 .3291385 .6348649
D_all_nat_r~W .1491226 .1410416 1.06 0.290 -.1273139 .4255591

L_all_pidW 1.247393 1.016881 1.23 0.220 -.7456575 3.240443
L_all_ConLe~W -.0948527 .0702979 -1.35 0.177 -.232634 .0429286
L_all_LDLea~W .1754929 .0494942 3.55 0.000 .078486 .2724998
L_all_nat_r~W .0994187 .0545379 1.82 0.068 -.0074737 .2063111
D_all_b_mii~t .2725831 .5676606 0.48 0.631 -.8400113 1.385177
D_all_LabLe~W -.0317277 .0857915 -0.37 0.712 -.1998759 .1364205
L_all_b_mii~t -.4906083 .4268449 -1.15 0.250 -1.327209 .3459924
L_all_LabLe~W -.0485621 .0740909 -0.66 0.512 -.1937775 .0966533

_cons -1.068066 .6230965 -1.71 0.087 -2.289313 .1531808

D_Lab_Con
L_Lab_Con -.5165434 .0867791 -5.95 0.000 -.6866273 -.3464596
D_all_pidW -.3706903 .620695 -0.60 0.550 -1.58723 .8458495

D_all_ConLe~W -.1501075 .0348201 -4.31 0.000 -.2183536 -.0818614
D_all_LDLea~W .0072788 .0428209 0.17 0.865 -.0766487 .0912063
D_all_nat_r~W .0783334 .0781189 1.00 0.316 -.0747769 .2314437

L_all_pidW 1.726958 .6186231 2.79 0.005 .514479 2.939437
L_all_ConLe~W -.0119387 .037973 -0.31 0.753 -.0863644 .0624869
L_all_LDLea~W .0168671 .0248225 0.68 0.497 -.0317841 .0655182
L_all_nat_r~W .0942601 .0321303 2.93 0.003 .0312859 .1572342
D_all_b_mii~t 1.658563 .3142354 5.28 0.000 1.042673 2.274453
D_all_LabLe~W .2363446 .0475815 4.97 0.000 .1430866 .3296025
L_all_b_mii~t .094476 .2301271 0.41 0.681 -.3565649 .5455169
L_all_LabLe~W .1743062 .0471755 3.69 0.000 .081844 .2667684

_cons -1.544897 .3709526 -4.16 0.000 -2.271951 -.8178433

Simulating main parameters. Please wait....

Note: Clarify is expanding your dataset from 68 observations to 1000
observations in order to accommodate the simulations. This will append
missing values to the bottom of your original dataset.

% of simulations completed: 3% 7% 10% 14% 17% 21% 25% 28% 32% 35% 39% 42% 46% 50
> % 53% 57% 60% 64% 67% 71% 75% 78% 82% 85% 89% 92% 96% 100%

Simulating Sigma matrix. Please wait..
% of simulations completed: 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Number of simulations : 1000
Names of new variables : b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16
> b17 b18 b19 b20 b21 b22 b23 b24 b25 b26 b27 b28 b29 b30 b31

Please Wait...Simulation in Progress (30)
1 2 3 4 5

................................................. 50

..............................
file dynsimpie_results.dta saved
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Figure 5. One standard-deviation increase in those who think Labour is the best man-
ager of the most important issue and a one standard-deviation increase in Labour leader
evaluations

Clearly, there is a sizable short-run increase in Labour support that does not diminish
over time. This appears to be roughly evenly split between the Conservatives and the
Liberal Democrats over the long run; however, over the short run, the Conservatives
are predicted to have the largest negative change in support.

5 Conclusion

In this article, we introduced a new command for Stata, dynsimpie, that fits and
interprets dynamic models of compositional dependent variables. We agree with Philips,
Rutherford, and Whitten (2016, 282) that “once researchers start looking for dynamic
compositional variables, they will find them everywhere.”
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