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Abstract. The mict package provides a method for multiple imputation of cat-
egorical time-series data (such as life course or employment status histories) that
preserves longitudinal consistency, using a monotonic series of imputations. It
allows flexible imputation specifications with a model appropriate to the target
variable (mlogit, ologit, etc.). Where transitions in individual units’ data are
substantially less frequent than one per period and where missingness tends to
be consecutive (as is typical of life course data), mict produces imputations with
better longitudinal consistency than mi impute or ice.
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1 Missingness in longitudinal data

In this article, I describe an approach for multiple imputation of categorical cross-
sectional time-series data, such as labor market or other life course histories. The
method is implemented in the mict package. The approach focuses on filling gaps from
their edges, using a monotonic series of imputations. It uses mi impute mlogit (or
mi impute ologit if appropriate) to carry out single imputations, but it manages the
sequencing of imputations independently of the mi impute infrastructure. It respects
the longitudinal consistency of the data in a way that is difficult or impossible to achieve
with standard mi impute or ice approaches, while allowing flexible imputation models
and full access to the power of Stata’s mi postimputation infrastructure.

The approach presented is well adapted for the sort of data typically seen in life
course histories: a categorical state space observed on a regular basis (for example,
monthly) over a reasonably extended period (for example, a small number of years),
with transitions occurring at a relatively low rate. Hence, we observe spells in states
that are significantly longer than one observation. Similarly, missing values will also tend
to occur in runs (as gaps), due to a mixture of data-collection problems (respondent
absence at consecutive data-collection points) and data structure (for example, part or
complete spells being nonreported or misreported). In effect, these data are typified by
having a discrete state space in continuous time approximated by discrete observations
(for example, monthly) and will usually be collected retrospectively at one or more
well-separated time points (for example, annually), often in terms of start and end
dates of spells. Such data contain a relatively high amount of redundancy, such that
information in the observed proportion is a good predictor of the missing part, and
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the runs of missingness mean missing observations tend to have one or more missing
neighbors.

Of course, forms of data other than life course histories may well also have these
features, and the approach is equally valid for those data. Data with higher transition
rates, or truly discrete time, will be harder to impute because there is more variation
from observation to observation.

1.1 Longitudinal data and missingness

The availability of longitudinal data (such as labor market, family formation, or res-
idential histories) is ever increasing, and methods for its analysis are becoming ever
more common and widely used. However, longitudinal data are subject to missingness,
often to a greater degree than cross-sectional data. While some methods can deal with
missingness (for example, duration models can “censor” data from the first occurrence
of missing observations onward), others cannot and so require full data. Throwing away
individual histories because of a small proportion of missingness is wasteful (even for
duration models), and if missingness is not “completely at random”, to use Rubin’s
(1987) term, such deletion of cases may cause bias. Indeed, it is particularly likely that
missingness is not random, in that volatile histories are disproportionately likely to re-
sult in missingness. This is not only because people who experience volatility will be
more likely to miss data-recording opportunities (for example, annual interviews) but
also because volatile histories have more opportunity for incompleteness. For instance,
if you are in the same job for 10 years, missing an occasional interview will not impact
the record, whereas if you have changed job five times since the last interview, there are
far more opportunities for error to enter and for information to be lost.

2 Multiple imputation as a solution

Introduced by Rubin (1987), multiple imputation has become a standard way of dealing
with missing data. Where data are missing in a manner that is random conditional on
the fully observed variables (missing at random [MAR]), regression models can be used
to predict the incompletely observed variables using the fully observed ones. These
are then used to impute values to replace the missing, drawn at random from the
prediction distribution of the fit regression model. Rubin’s key insight is that if multiple
imputations are drawn, creating multiple imputed datasets, and if the results of analyses
on the multiple datasets are averaged, then unbiased estimates of the desired quantity
(such as a regression coefficient) can be made.1 Stata has implemented a package of
commands for creating, managing, and analyzing such imputations (see mi impute).

However, cross-sectional time-series data such as life histories put a substantial strain
on standard imputation. If in wide format (with one variable per time unit), there are
many very similar variables, all likely to be subject to missingness. Consider the example

1. More strictly, parameter estimates are averaged across the multiple imputed datasets, and the
variance depends on both the variance within and the variance between analyses.
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of five years of monthly employment statuses, yielding 60 very similar observations.
Imputing each on the basis of all others will be computationally challenging, if not
impossible, and it is (at best) difficult to define selective-imputation models for each
time-unit observation. Moreover, as will be shown below, while standard approaches
perform well in terms of the distribution of individual variables, consecutive imputed
variables will tend to vary too much relative to each other; thus, from a longitudinal
point of view, the imputed data will have transition rates that are significantly biased
upward.

Where a single variable is subject to missingness, imputation is straightforward.
When multiple variables have missing values, the complication may arise that cases to
be imputed have missing values in the predictor variables. It may be the case that
variables to be imputed can be arranged in an order such that the first has no missing
predictors, the next has missing predictors only on the first, the next only on the first and
second, and so on. If such a monotonic pattern of missingness is present, imputation can
proceed following the same order, such that at each predictive step, all the predictors are
either fully observed or already imputed. If so, imputation with multiple variables to be
imputed becomes a simple extension of imputation of a single variable. However, such
a monotonic pattern is not likely to emerge without a structural reason for it (attrition
in longitudinal data is a typical example). In its absence, there are two approaches to
multiple imputation with multiple variables subject to missingness: modeling the joint
distribution of the variables directly (JM) or multiple imputation by chained equations
(MICE).

JM is attractive where the variables are, or can be, transformed such that the joint
distribution is multivariate normal. It is efficient and has good theoretical foundations.
Where some variables are categorical, conventional practice is to use linear predictions
of dummy variables. However, this has been shown to produce poor results in certain
conditions (Allison 2005; van Buuren 2007). The alternative is so-called fully conditional
specification (FCS) where, rather than modeling the joint distribution, the conditional
distributions are modeled. This allows variable-specific imputation models to be used
(including models appropriate to categorical data) and is thus more flexible. MICE

implements FCS.

Monotonic imputation, where applicable, is also flexible, allowing variable-specific
imputation models and permitting forms such as logistic regression (van Buuren 2007).

MICE works as follows: In the first round, all missing values are imputed with a
minimal model (hot-decking, or regressions using fully observed predictors only). Then,
the imputations are replaced by better imputations based on a full model using ob-
served and imputed values. This process is repeated for a number of cycles, effectively
diluting the influence of the poor-quality first-round imputations. It has been imple-
mented for R by van Buuren, Boshuizen, and Knook (1999), van Buuren (2007), and
van Buuren and Groothuis-Oudshoorn (2011), and for Stata by Royston (2004, 2009).

More recent versions of Stata have incorporated equivalent functionality in the core
mi impute infrastructure. These are excellent implementations, providing good impu-
tations and tools that make mi easy to use, but they do not suit time-series data in either
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wide or long format. In wide format, there are many poorly distinguished variables with
wide incidence of missingness; it is hard to write adequate imputation models, and they
will tend to have severe problems in estimation. In long format, the relevant predictors
are lags and leads, and the infrastructure is not adapted to using and updating lagged
and leading variables.

Two other packages address imputation of longitudinal data: Amelia (for R and
Stata) (Honaker and King 2010), and twofold (for Stata) (Welch, Bartlett, and Pe-
tersen 2014; Nevalainen, Kenward, and Virtanen 2009). Amelia is written explicitly to
respect the longitudinal logic of time series. However, it implements the JM approach
to imputation. So, while its authors make passing reference to imputing categorical
variables, it is likely to generate poorer imputations for categorical data than pack-
ages that can use appropriate forms of model, such as binary or multinomial logistic.
The twofold package uses an FCS approach, using moving time-windows to restrict the
number of predictor variables, in a chained-equation framework. It thus captures the
longitudinal logic in a manner comparable but not identical to multiple imputation for
categorical time series (MICT). While twofold is not specific to categorical time-series
data, the FCS approach is capable of dealing with it well. mict and twofold also differ
in that the former fits a monotonic series of models, while the latter estimates chained
equations (requiring burn-in, etc.). The main benefit of twofold is that it makes it
much easier to express MICE models with longitudinal data.

3 Filling gaps in life course data

When data contain multiple observations per individual, the long format (one observa-
tion per person–time-unit) is natural, though (particularly when all individuals should
be observed for the same time span) the wide format is also appropriate, if a little less
natural. However, Stata’s mi impute infrastructure is not designed to deal with data
in a long format, requiring imputation variables to be in the same record. The method
reported here exploits the mi impute mlogit command, but it uses the long format
and handles the management of predictor variables (in particular, lags and leads of
the target state), the storing of imputed values, and the sequencing of the imputations
independently of Stata’s mi infrastructure.

Conceiving of the data as longitudinal in nature reduces the many variables to
a single state variable (indexed by time) and places the focus on gaps rather than
individual missing variables. We can use a single form of model to predict all candidate
observations. However, the presence of gaps means that no single model can apply to
all time points [for example, the state at (t+ 1) will not be observed for all cases]. By
focusing directly on gaps, we can nonetheless define a family of models that can be fit in
a monotonic series. We start by imputing the first (or, equally validly, the last) element
of the longest gap with data from the nearest observed points, before and after. That is,
the first element of a gap is predicted by data from the element immediately preceding
the gap and the element immediately following the gap. If we restrict ourselves to
internal gaps, the lag and lead data are guaranteed not to be missing.
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Once the first element of the longest gap has been filled, it holds that for the next-
longest gap, the lag and lead data are either observed or already imputed. Thus, we
continue by imputing the last element of the next-longest gap, using the last observed
(or imputed) value before the gap and the immediately subsequent value. The process
continues (alternating between first and last elements of the gaps) until all internal gaps
are filled. Gaps at the start and end of the series can be imputed using an analogous
approach that uses only information from, respectively, after and before the gap.

We can illustrate gap filling with the following example, with two sequences con-
taining a six-element and a three-element gap, respectively (see table 1). We begin (in
line two) by imputing the first element of six-unit gaps, using information pertaining to
the last observed (t− 1) and next observed (t+6) time points. Nothing happens to the
shorter sequence. Then, we impute the fifth element of five-unit gaps, using (t+1) and
(t − 5), and then the first element of four-unit gaps. The remaining steps affect both
sequences because the six-unit gap has been reduced to three, and it imputes the third
element of three-unit gaps. The process continues until all gaps are filled.

Table 1. Gap-filling sequence of imputation

Six-unit gap Three-unit gap

Observed data with gaps XX......XXX XXX...XXXXX

Impute first element of 6-unit gaps XXi.....XXX XXX...XXXXX

Impute last element of 5-unit gaps XXI....iXXX XXX...XXXXX

Impute first element of 4-unit gaps XXIi...IXXX XXX...XXXXX

Impute last element of 3-unit gaps XXII..iIXXX XXX..iXXXXX

Impute first element of 2-unit gaps XXIIi.IIXXX XXXi.IXXXXX

Impute only element of 1-unit gaps XXIIIiIIXXX XXXIiIXXXXX

X: observed data; .: missing data; i: data being imputed; X: observed data
used as predictor; I: imputed data used as predictor; I: previously imputed
data

The data used to predict must at least include the state at the prior and subsequent
observed time points. It should also include summaries of the prior and subsequent ex-
perience, and it can contain any other data keyed to these time points (that is, state in
another time-dependent state space) and contain fixed individual-level information. All
the considerations regarding the requirements of a good imputation model in conven-
tional circumstances apply equally here—in particular, the imputation model should
be “congenial” (Allison 2009, 84) with the analysis model—but with the additional
requirement that longitudinal information in the imputed state must be included.
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4 Syntax

mict consists of two key commands: mict prep sets up the data and mict impute car-
ries out the imputations. The imputation models are specified in further helper com-
mands (mict model gap, mict model initial, and mict model terminal), which the
user will usually overwrite to specify more appropriate models (as outlined on page 598).

mict prep must be called first, with the following syntax:

mict prep stublist, id(varname)

The stublist refers (at a minimum) to the variables in the categorical time series,
which should be consecutive and named from stublist1 to stublistN in wide format. The
stublist value will be passed internally to reshape (see [D] reshape). The id(varname)
option designates an ID variable. id() is required. The mict prep command puts the
data in long format and creates several variables that will be used by mict impute. If
other time-dependent variables exist that might be used on the right-hand side of the
imputation, they can be included in the stublist. For example, if the main variable is
state1 to stateN and a parallel time series exists as auxvar1 to auxvarN, then both
can be made available as follows:

. mict prep state auxvar, id(id)

The variable auxvar can then be used in the imputation model specification, but it
needs to be fully observed.

mict prep creates several internal variables that are used by mict impute:

• mct state: A copy of the state variable (that is to be imputed).

• mct next: The next observed state (after the current gap).

• mct last: The prior observed state (before the current gap).

• mct after*: The proportion of time after the current gap in each state (one
variable for each category of the state variable).

• mct before*: The proportion of time before the current gap in each state (one
variable for each category of the state variable).

• mct t: A time index, running from 1 to the length of the time series.

Once mict prep has been run, mict impute carries out the imputation and has the
following syntax:

mict impute
[
, maxgap(#) maxitgap(#) nimp(#) offset(#)

]
The option maxgap() sets the maximum length of the internal gap to impute (the

default is maxgap(12)). maxitgap() sets the maximum length of the initial or terminal



596 Multiple imputation for categorical time series

gap to impute (the default is maxitgap(6)). nimp() specifies the number of imputa-
tions (the default is nimp(5)). And offset() numbers the imputations (the default
is offset(0) and will number the imputations from 1 to 5); this is useful for parallel
runs.

If performing multiple parallel runs, you should set a different random seed for each
run; that is, use

set seed #
mict_impute ...

where # is different for each run. If you want reproducible imputations, you should
also set the seed for a single run. See [R] set seed.

A minimal run will take the following form:

use mvadmar
mict_prep state, id(id)
mict_impute

Internally, the mict impute command calls mict model gap, mict model initial,
and mict model terminal, which define the imputation models. The models defined
by default by these commands are excessively simple and need to be overwritten by the
user, as described on page 598. For internal gaps, the default model definition is as
follows:

program mict_model_gap
mi impute mlogit _mct_state i._mct_next i._mct_last, add(1) force ///

augment iterate(40)
end

This declares mlogit as the imputation model. If the dependent variable is ordinal,
this can be replaced by ologit or even regress; the user has full access to the power of
the built-in mi impute at this point. The imputation model uses only the next and the
prior state to predict. Of the options, add(1) and force are necessary, and augment

is useful (it causes mi impute mlogit to use augmented logistic regression in the case
of perfect prediction, which is likely to occur at least some of the time when imputing
categorical data). The iterate(40) option is not necessary, except when trying to trap
nonconvergence problems.

The model specification is presented as a user-definable program, to allow more
complex code to be run, for instance, defining new variables (for example, recordings of
mct next or mct last).

We redefine the imputation models in the following manner. The exact model spec-
ification will depend on the user; this one simply adds mct before* and mct after*

(summaries of the proportion of time spent in each state before and after the current
gap) to (the required) mct next and mct last. Note that the initial and terminal gap
models are simplified versions of the internal gap model.
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capture program drop mict_model_gap
program mict_model_gap

mi impute mlogit _mct_state ///
i._mct_next i._mct_last ///
_mct_before* _mct_after*, ///
add(1) force augment

end

capture program drop mict_model_initial
program mict_model_initial

mi impute mlogit _mct_state i._mct_next _mct_after*, add(1) force augment
end

capture program drop mict_model_terminal
program mict_model_terminal

mi impute mlogit _mct_state i._mct_last _mct_before*, add(1) force augment
end

4.1 Postimputation use

mict generates the imputations in memory, in what mi impute would consider flong
format. To use these data in the standard mi estimate framework, you must mi import

them:

mi import flong, id(id) m(_mct_iter) imputed(state*) clear
mi estimate: ...

where id is the ID variable designated in mict prep’s option id(), state* refers to the
sequence of state variables, and mct iter is the variable numbering the imputation
(created by mict impute and equivalent to the mi m created by Stata’s imputations).

If you wish to include the unimputed data alongside the imputations, then before do-
ing mi import, you should append the original dataset to the imputed and set mct iter

to 0 for the nonimputed cases.

5 Demonstrations

To demonstrate how mict works and assess its performance, I present some examples:

1. Real data (school-to-work transitions) with simulated longitudinal missingness,
allowing comparison between the true state and the imputations.

2. Wholly simulated data using a simple structure, permitting comparison between
MICT and MICE.

3. Real data (mothers’ labor market histories) with real missingness, using a realistic
model.

4. The same data as demonstration three, using an enhanced model that accounts for
knowledge about the data-generation process to generate superior imputations.
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5.1 Real data with simulated missingness

The first demonstration of the algorithm uses data from McVicar and Anyadike-Danes
(2002), which report six years of the life course of Northern Irish young people, starting
at the completion of compulsory schooling, in a state space concerned with the transition
from school to work (the six states are secondary education, further education, higher
education, training, unemployment, and employment). The 712 individuals are observed
over 72 months. To demonstrate and assess the performance of the algorithm, we impose
missingness at random such that each month has a 1.25% chance of being missing, but
with a 66% chance if the previous month is missing. This generates a pattern of runs
of missingness, which are MAR with respect to the observed data. The simulated data
are stored in wide format (one variable per monthly observation, state1 to state72,
and one row per individual).

Redefining default imputation models

We carry out the imputation with the following Stata code:

// Load the modified data
use mvadmar
// Prepare it for imputation
mict_prep state, id(id)
// Run the imputation (accepting default options)
mict_impute

As described in section 4, the default imputation model is simple, using only the
most recent and the nearest future observation as predictors:

mi impute mlogit _mct_state i._mct_next i._mct_last, add(1) force augment

(Initial and terminal gaps are imputed using only, respectively, subsequent and prior
information.) In effect, the model assumes a zero-order Markov process where the
transition rates are constant over time and across individuals, and it should normally
be overridden by more adequate models, for example, to relax the zero-order assumption,
to allow transition rates to change over time, or to incorporate other variables.

Before running the imputations, we can override the built-in models by redefining
the commands mict model gap, mict model initial, and mict model terminal, as
follows:
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capture program drop mict_model_gap
program mict_model_gap

mi impute mlogit _mct_state ///
i._mct_next##c._mct_t i._mct_last##c._mct_t ///
_mct_before* _mct_after*, ///
add(1) force augment

end

capture program drop mict_model_initial
program mict_model_initial

mi impute mlogit _mct_state i._mct_next _mct_after*, add(1) force augment
end

capture program drop mict_model_terminal
program mict_model_terminal

mi impute mlogit _mct_state i._mct_last _mct_before, add(1) force augment
end

Variables mct before1 to mct beforeC and mct after1 to mct afterC (where
C is the number of categories) are created by mict prep and represent the proportion
of time before and after the gap spent in each of the C categories of the state variable.
Thus, these variables offer a means of including in the model some history prior to and
after the nearest observed time units.

The interactions i. mct next##c. mct t and i. mct last##c. mct t allow the ef-
fects of the prior and the next state to vary in a linear fashion with time, relaxing
the assumption that transition rates are constant. Depending on the data, it may be
desirable to relax this constraint even further, perhaps with time as a quadratic. Other
variables may also be entered, including fixed individual variables (such as gender or
social class) and variables indicating time-dependent state in another domain. The
imputation model must contain all the variables needed to satisfy the MAR assumption.

The options add(1), force, and augment to mi impute mlogit are required, to
make a single imputation, to force imputation even where the predictor variables are
not fully observed, and to use augmented multinomial regression if perfect prediction is
encountered. Other options may be used as appropriate.

Simulated missing on McVicar and Anyadike-Danes (2002) data: Some results

Using this model, we generate 10 imputations. Figure 1 shows four typical cases, with
the fully observed data, the data with random runs of missingness imposed, and the
10 imputations shown as horizontal lines.2 These display features that are typical of the
full dataset. For example, short gaps with the same state before and after tend to get
filled in with that state, which is often correct (for example, case 33 and the first two
gaps in case 62). When longer, such gaps show a quite small tendency to have other
states interpolated (imputation 10 for case 85 shows an example). Where a gap has two
different states as neighbors, the majority of imputations show a single transition from
one to the other, where the timing of the transition is randomly distributed in the gap

2. The figure, an indexplot, is created using the sqindexplot command from the sq package
(Kohler and Brzinsky-Fay 2005; Brzinsky-Fay, Kohler, and Luniak 2006).
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(case 13). Such gaps show a larger tendency to interpolate one or more other states,
particularly as the gaps get longer (more so than gaps bracketed by a single state).
However, if the run of missingness completely obliterates a spell in the original data
(which is something we can only know because we have the fully observed data; see the
third gap in case 62), the imputations are very unlikely to pick up that state (though
in this case, one of the imputations does create such a state, if somewhat different in
timing and duration).
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Figure 1. Sample imputations for four typical cases, with horizontal lines representing
the fully observed data (first line), data with imposed missings (second line, missing is
white), and 10 imputations

Thus, we see how to use MICT to program imputations by using a simple but more-or-
less realistic predictive model. We also see that, in general, the imputations approximate
the true data quite well because there is a lot of redundancy in data like these. However,
where a gap envelopes a complete spell, the redundancy is markedly less.
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5.2 Simulated data with simulated missingness

It is difficult to compare the performance of the gap-filling approach with MICE, either
via the official mi impute or via Royston’s ice, because it is difficult to specify analogous
models. To facilitate comparison, I present a simulation that permits much simpler
models. A zero-order Markov process with time-constant transition rates is used to
create sequences that are 36 elements long and with four states, with random gaps
imposed. Because the generating process is zero-order, only adjacent last and next
observations carry information with which to impute. Thus, for the MICT approach, the
only meaningful imputation model uses just mct last and mct next as predictors,
while for MICE, only the immediately adjacent states, st−1 and st+1, are used. Two
thousand sequences are generated, and for each method—MICT, mi impute chained,
and ice—10 imputations are made.

In what follows, I use both the mi impute chained and the ice implementations
of MICE. In this more conventional framework, chained imputation takes care of the
fact that, given the data in a wide format, missingness is nonmonotonic (that is, that
predictors of missing values may well themselves be missing).

For ice, the models are defined as follows:

ice m.m1 m.m2 m.m3 m.m4 m.m5 m.m6 m.m7 m.m8 m.m9 m.m10 ///
m.m11 m.m12 m.m13 m.m14 m.m15 m.m16 m.m17 m.m18 m.m19 m.m20 ///
m.m21 m.m22 m.m23 m.m24 m.m25 m.m26 m.m27 m.m28 m.m29 m.m30 ///
m.m31 m.m32 m.m33 m.m34 m.m35 m.m36, ///

saving(puresim_ice_cycles, replace) persist m(10) cycles(10) ///
eq(m1: i.m2 , ///

m36: i.m35 , ///
m2: i.m1 i.m3, ///
m3: i.m2 i.m4, ///

(code omitted)
m35: i.m34 i.m36)

For mi impute chained, the following, rather verbose, code is used (note omissions):

mi set flong
mi register imputed m*
mi impute chained ///

(mlogit, omit( i.m3 i.m4 [ . . . ] i.m34 i.m35 i.m36 )) m1 ///
(mlogit, omit( i.m4 [ . . . ] i.m34 i.m35 i.m36 )) m2 ///
(mlogit, omit(i.m1 [ . . . ] i.m34 i.m35 i.m36 )) m3 ///
(mlogit, omit(i.m1 i.m2 [ . . . ] i.m34 i.m35 i.m36 )) m4 ///
(mlogit, omit(i.m1 i.m2 i.m3 [ . . . ] i.m34 i.m35 i.m36 )) m5 ///
[ . . . ]
(mlogit, omit(i.m1 i.m2 i.m3 i.m4 [ . . . ] )) m35 ///
(mlogit, omit(i.m1 i.m2 i.m3 i.m4 [ . . . ] i.m34 )) m36, ///
add(10) force augment

For MICT, the Markov process generating the data is captured fully by the default
imputation models, so it is enough to do the following:

mict_prep m, id(id)
mict_impute, maxgap(21) maxitgap(14) nimp(10)
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The maxgap() and maxitgap() options need to be set, because the maximum gap
lengths in the simulated data are longer than the defaults.

Given the way the data are simulated, each of the three imputations has the best
possible model in its framework.

Figure 2 shows some example imputations for a handful of cases across the three
strategies. As can be seen, mi impute and ice show somewhat more transitions in the
imputed sections. To test whether this is a systematic feature, we compare the number
of spells in the imputed sequences with the true number (in the simulated data, before
imposition of missingness). We can use mi estimate to test the null that the difference
is 0 by running a null regression and looking at the t statistic for cons (this is a way
of getting mi estimate to run a t test).

Method cons Std. err. t p

MICT 0.01025 0.0253 0.40 0.687
mi impute 0.2878 0.0437 6.59 0.000
ice 0.31645 0.0347 9.12 0.000

Over the 10 imputations of 2,000 sequences, MICT does not significantly increase the
mean number of spells, while mi impute and ice do (by 0.29 and 0.32, respectively).
Thus, in this simple comparison, MICT retains longitudinal consistency whereas MICE

does not.3 Analysis using twofold (not presented) shows that it behaves in a similar
manner to the two MICE implementations.4

3. Experiments with increasing the number of cycles in the MICE chains were attempted, to see
if greater consistency could be achieved with a longer burn-in, but there was no tendency to a
systematic improvement.

4. The main, and substantial, advantage of twofold in this context is that it makes it easy to express a
good imputation model for longitudinal data in the MICE framework, unlike the unwieldy examples
above.
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Figure 2. Three example sequences of imputations by MICT, mi impute chained, and
ice

5.3 Mothers’ labor market histories

Let us now consider how MICT performs with real missingness. Using data drawn from
the British Household Panel Survey (BHPS, a large annual household panel study, col-
lected in the UK from 1991 to 2008), I created six-year monthly employment status
histories for women who have a birth at the end of the second year (Taylor et al. 2010;
Halpin 1998). The state space consists of full-time and part-time employment, unem-
ployment, and nonemployment. This dataset contains 706 fully observed sequences, 190
with gaps of up to 12 months, and 425 with longer gaps. I choose to impute gaps of up
to 12 months but use data from sequences with longer gaps to provide information for
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the imputation models. See figure 3, which shows the overall picture of a retreat from
paid work as the birth approaches, and a qualified return afterward, predominantly to
part-time work.

30
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Time

Full time employed Part time employed
Unemployed Non−employed

Figure 3. State distribution of fully observed mothers’ labor market sequences

We use the following predictive model for imputing the internal gaps (analogous
models are used for initial and terminal gaps):

capture program drop mict_model_gap
program mict_model_gap

mi impute mlogit _mct_state ///
i._mct_next##c._mct_t##c._mct_t i._mct_last##c._mct_t##c._mct_t ///
_mct_before* _mct_after*

end

This is a relatively simple model, implying that transition patterns vary in a nonlin-
ear pattern, and using the prior and subsequent cumulative distributions of states. That
is, the effects of the last and next observed states vary in interaction with a quadratic
time term, and the mct before* and mct after* terms represent the proportion of
time spent in the various states before and after the gap.

The following code runs the whole example, with the maxgap(12) and maxitgap(6)

options to mict impute limiting the imputations to cases with maximum internal gap
lengths of 12 and initial/terminal gaps of 6 months. The nimp(10) option causes it to
generate 10 imputations.
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mict_prep state, id(pid)

capture program drop mict_model_gap
program mict_model_gap

mi impute mlogit _mct_state i._mct_next##c._mct_t##c._mct_t ///
i._mct_last##c._mct_t##c._mct_t ///
_mct_before* _mct_after*, ///
add(1) force augment noisily iterate(40)

end

capture program drop mict_model_initial
program mict_model_initial

mi impute mlogit _mct_state i._mct_next##c._mct_t _mct_after*, ///
add(1) force augment iterate(40)

end

capture program drop mict_model_terminal
program mict_model_terminal

mi impute mlogit _mct_state i._mct_last##c._mct_t _mct_before*, ///
add(1) force augment iterate(40)

end

mict_impute, maxgap(12) maxitgap(6) nimp(10)
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Figure 4. Imputations for selected cases, mothers’ labor market history, first model

We can examine the performance of the imputation model in figure 4. In outline,
the performance is similar to the simulations: gaps bracketed by a single state tend to
be filled in by that state, with a certain amount of interpolation of other states that
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increases as the gap length increases; gaps between different states are often filled by
the two states with a distribution of transition points but are also quite likely to feature
extra transitions and third states, again more so for longer gaps.

Which sequences get imputed?

In real-life data, there tends to be a strong relationship between the nature of a life course
sequence and its probability of having gaps. In particular, volatile life courses are more
subject to interruptions in data collection, and in being complex are more vulnerable
to missed measurement opportunities. We can see this by looking at indicators of
complexity, such as the number of spells, or the Shannon entropy.5

. table gap, c(n ent mean ent mean nsp) format(%5.2f)

gap N(ent) mean(ent) mean(nsp)

0 7,060 0.53 2.39
1 1,900 1.03 3.80

Fully observed sequences have a mean of 2.39 spells, compared with 3.80 for se-
quences that have been imputed. Similarly, fully observed sequences have a mean
entropy of 0.53 compared with 1.03 for imputed. The number of spells tracks how
transition-prone sequences are, and the entropy additionally indicates how diverse the
states visited are. On average, gappy sequences that are imputed have more transitions
and are more diverse.6 This is important because complex sequences are often substan-
tively interesting and their exclusion reduces the useful information in the dataset, as
well as potentially introducing bias.

5.4 Refining models

The model used above is relatively simple. Various ways to improve its quality as
an imputation model are available, most readily the inclusion of fixed individual-level
variables and the incorporation of more interactions. Fully observed time-dependent
variables in another domain may also be included, such as residential or marital histories.
Where that variable is also subject to missing, a simple imputation strategy such as carry
forward may be adequate.7

5. Commands to calculate the number of spells and the Shannon entropy are available in the sadi

package (Halpin 2014).
6. This is not an artifact of the imputation process. If instead we mechanically carry forward the

previous state to fill gaps, thus not increasing the number of spells or the diversity, we get very
similar results.

7. In the typical case where data in the other domain are missing at the same time as the main
variable, MICT could in principle draw information in that domain from the prior and subsequent
time points determined by the current gap length, but that would require updating (imputing) the
observations for the other domain as the process fills in the gaps. This would add another layer of
complexity to the package, so simpler imputations are preferred.
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To add a completely observed (or filled-in) time series in another domain, add that
variable name (as a reshape-style stub) to the mict prep statement. For example, if
the variable to be imputed is state1 to stateN and the second variable is resid1 to
residN, the command would take this form:

mict_prep state resid, id(pid)

The resid variable is then available for use in the model statement. More than one
extra time-series variable can be added in this fashion.

Picking up the missingness process

In what follows, I demonstrate the inclusion of an extra time-dependent variable, and
address a substantive issue raised above, by the simulations. It was observed that in
general there tends to be a high degree of redundancy in gappy life course data like
these, such that imputations resemble the observed data well except where the gap
overlaps a complete spell. If this happens at random, it is not a serious problem for
the imputation/estimation process; but if the occurrence of gaps is somehow associated
with the spell structure of the history represented by the data, then the imputations
will understate the true variability. Depending on the domain, and on how data are
collected, this is quite likely to occur.

The mothers’ labor market histories are drawn from the BHPS, whose data collection
is annual, with retrospective accounts covering the period between the interview and
the start date of the last year’s fieldwork (Halpin 1998). This assures continuity if no
interviews are missed and the retrospective accounts are without measurement error
(assumptions that are frequently violated). In the BHPS work-life histories, gaps may
occur because of omitted spells, spells whose start or end date is misreported, or missed
data-collection points. In the first case, the gap may be exactly coterminous with the
spell; in the second, the gap will start at the beginning of the spell if the misreported
date is late; and in the third, the gap will begin just after the previous data-collection
point and end at the start of the account at the next data-collection point. This means
that the process of missingness is quite structured.

We have data relating to this process on which we can draw. If the previously
observed state was reported as a spell end in the retrospective account, we know there
is greater probability that the current state is different because a transition is indicated
(although it could be a transition to the same state); likewise if the next observed state
is reported as a spell start. If the previous observation was the date of an interview,
then the current state is more likely to be the same as that at the interview because
no transition is reported. However, in the observed data, there is a distinct pattern
of seam effects, where the account from the following interview clashes with the prior
data, often by backdating a spell start such that it precedes the earlier interview. In
the data used, this is represented as a transition immediately after the interview, on
the logic that the current state reported at time (t− 1) is more authoritative than the
retrospective report from time t (Halpin 1998). Thus, whether months of interview tend
to be followed by elevated transition risk is an empirical question.
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To account for these effects, a variable is created that distinguishes between “neutral”
months, explicitly reported spell starts from the interwave job history (where a start
may be a reported start from a spell with missing state information but valid dates, or
one month after the end of a fully reported spell), explicitly reported spell starts of the
spell current at interview, and months in which the annual interview fell. Where no
information is available, it is allowed to default to neutral. This variable, obstype, is
incorporated in the imputation model as follows:

program mict_model_gap
capture drop _mct_n2 _mct_l2
recode _mct_last 3=2, generate(_mct_l2)
recode _mct_next 3=2, generate(_mct_n2)
mi impute mlogit _mct_state i._mct_next##c._mct_t##c._mct_t ///

i._mct_last##c._mct_t##c._mct_t ///
_mct_before* _mct_after* ///
i.obstype##i._mct_n2 ///
i.obstype##i._mct_l2, ///
add(1) force augment

end

It is modeled in interaction with the next and prior states because its effect is via
the transition pattern. However, in these data, there are relatively few transitions to
and from unemployment, which causes problems in estimation. Therefore, obstype is
interacted with recoded versions of these variables, which are re-created each iteration.8

Sample imputations are shown in figure 5 for the models with and without the
observation structure variable. In each panel, the first row indicates the structure
(black is the month of interview, dark gray is a spell start in the interwave job history,
and light gray is the spell start current at the interview). As can be seen, taking
account of the meta-information regarding spell structure has a systematic effect: first,
the imputations are more likely to contain transitions at the key points, and second,
they are more likely to interpolate spells in third states. Both of these are desirable
because the model without the meta-information understates not only the transition
rates around these key points but also the variability of the imputations.

8. In general, creation of any sort of transformed variable can be carried out within the mict model gap,
mict model initial, and mict model terminal commands.
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Figure 5. Selected imputations without (left) and with (right) data-collection informa-
tion

This illustration is guided by the particular data-collection structure of the BHPS,
but it is likely that many longitudinal datasets will contain meta-information that could
inform the imputation model in an analogous way.
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6 Conclusion

mict offers a flexible and longitudinally consistent means of multiply imputing categor-
ical time-series data, particularly when it is characterized by relatively long spells in
states and consecutive runs of missingness, as is typically the case in life course data.
As the second simulation (section 5.2) shows, mict produces imputations with largely
plausible patterns of transitions, while MICE (via either mi impute chained or ice)
generates unrealistically elevated rates of transition.

The key advantage is that mict structures the imputations as a series of monotonic
imputations, focusing on filling gaps. This allows a good deal of flexibility, including
the use of binary, multinomial, or ordinal logistic regression models as appropriate.
mict offers a reasonably user-friendly interface to defining models for mi impute, such
that it is relatively easy to define good imputation models incorporating fixed and
time-dependent effects. It produces imputations that can be used by the mi impute

postimputation infrastructure.

mict does have some disadvantages, not least that it presents yet another interface
to imputation, a compatible but separate solution to mi impute. It can deal with only
a single target variable for imputation. It does not update created variables such as
mct before*, nor does it update other time-series variables that may be used in the
model (thus effectively falling back on carry-forward imputation for these variables).
Extending the package to cope with these would be complicated. However, it presents
a relatively lightweight and effective solution for imputing single categorical time-series
variables.

6.1 Existing applications

This approach has already been used in practice (based on the functionally equivalent
but less user-friendly approach described in Halpin [2012, 2013]). Fuller and Stecy-
Hildebrandt (2015) apply it to the Canadian Survey of Labour and Income Dynamics,
and McMunn et al. (2015) and Lacey et al. (2016) apply it to the British cohort study
datasets (the MRC National Survey of Health and Development 1946 birth cohort, the
National Child Development Study 1958 birth cohort, and the British Cohort Study
1970 birth cohort).
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