%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

‘l) Check for updates

The Stata Journal (2016)
16, Number 3, pp. 550—589

Nonparametric frontier analysis using Stata

Oleg Badunenko Pavlo Mozharovskyi
University of Cologne Agrocampus Ouest
Cologne, Germany Rennes, France
obadunen@uni-koeln.de pavlo.mozharovskyi@univ-rennesl.fr
Abstract. In this article, we describe five new Stata commands that fit and

provide statistical inference in nonparametric frontier models. The tenonradial
and teradial commands fit data envelopment models where nonradial and radial
technical efficiency measures are computed (Fare, 1998, Fundamentals of Produc-
tion Theory; Fare and Lovell, 1978, Journal of Economic Theory 19: 150-162;
Fére, Grosskopf, and Lovell, 1994a, Production Frontiers). Technical efficiency
measures are obtained by solving linear programming problems. The teradialbc,
nptestind, and nptestrts commands provide tools for making statistical inference
regarding radial technical efficiency measures (Simar and Wilson, 1998, Manage-
ment Science 44: 49-61; 2000, Journal of Applied Statistics 27: 779-802; 2002,
European Journal of Operational Research 139: 115-132). We provide a brief
overview of the nonparametric efficiency measurement, and we describe the syntax
and options of the new commands. Additionally, we provide an example showing
the capabilities of the new commands. Finally, we perform a small empirical study
of productivity growth.

Keywords: st0444, tenonradial, teradial, teradialbc, nptestind, nptestrts, nonpara-
metric efficiency analysis, data envelopment analysis, technical efficiency, radial
measure, nonradial measure, linear programming, bootstrap, subsampling boot-
strap, smoothed bootstrap, bias correction, frontier analysis

1 Introduction

The concept of efficiency is at the core of production economics. Beginning with the
pioneering work by Cobb and Douglas (1928), there have been many attempts to pa-
rameterize the production process, for example, via the Leontief constant elasticity of
substitution, transcendental logarithmic production, and cost functions. Conceptually,
researchers looked at the average input—output relationship assuming no inefficiency.
However, it was not plausible to assume that all units are homogeneous, that is, operat-
ing at the same level of efficiency. Among the first to offer an appropriate modification
was Farrell (1957), who built on the concept of efficiency postulated by Koopmans
(1951) and Debreu (1951) and introduced a foundation that has become a distinct field
in economics: the efficiency analysis. Fire (1998); Fare, Grosskopf, and Lovell (1994a);
and Fire and Primont (1995) provide many insights into nonparametric efficiency mea-
surement.

Data envelopment analysis (DEA), a leading analytical technique for measuring rel-
ative efficiency, has been widely used by both academic researchers and practitioners in
evaluating the efficiency of decision-making units in terms of converting inputs into out-
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puts. Researchers choose this technique because it does not impose a priori functional
form and it allows for multiple output technologies.

Although the DEA method is typically considered to be deterministic, the efficiency
is still computed relative to the estimated frontier and not the true frontier. The effi-
ciency scores obtained from a finite sample are subject to sampling variation of the es-
timated frontier. Simar and Wilson (1998, 2000, 2002) have laid out a statistical model
and proposed consistent bootstrap procedures to provide statistical inference regarding
technical efficiency measures in nonparametric frontier models.

The estimation of DEA models can be readily performed in Stata with the user-
written command dea (Ji and Lee 2010). However, dea is limited in its capability and
is slow with even moderate datasets. We provide a time comparison of dea and our
commands. The five new Stata commands described here fit and provide statistical
inference in nonparametric frontier models. tenonradial and teradial fit data envel-
opment models where nonradial and radial technical efficiency measures are computed
(Fare 1998; Fére and Lovell 1978; Fiare, Grosskopf, and Lovell 1994a). teradialbc,
nptestind, and nptestrts provide tools to make statistical inference regarding radial
technical efficiency measures (Simar and Wilson 1998, 2000, 2002).

The remainder of this article is structured as follows: section 2 provides an overview
of nonparametric frontier models; sections 3—7 contain the syntax and explain the op-
tions of the new commands; section 8 illustrates the capabilities of the new commands
using a dataset for program follow-through at 70 U.S. primary schools and performs the
analysis of the changes in productivity for 52 countries using Penn World Tables; sec-
tion 9 details the features and limitations of the new commands; section 10 emphasizes
the differences between our commands and the dea command; and section 11 concludes
the article.

2 Nonparametric frontier analysis

In this section, we introduce two types of nonparametric efficiency measurement: radial
and nonradial. We also discuss recent statistical developments regarding radial mea-
sures. The exposition here is only introductory. For more details, refer to the cited
works.

2.1 Radial efficiency analysis

Our measures of technical efficiency for the production data points are conventional
radial Debreu—Farrell measures of efficiency loss (Debreu 1951; Farrell 1957). For each
data point k (k = 1,..., K), vector o = (Tg1,...,2pn) € RV denotes N inputs and
vector Y, = (Y1, - - -, Yrar) € RM denotes M outputs. We assume that under technology
T the data (y,x) are such that outputs are producible by inputs,

T = {(x,y) : y are producible by x} (1)
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The technology is fully characterized by its production possibility set,

Px)={y: (z,y) € T} (2)

or input requirement set,
Liy)={z: (z,y) €T} (3)

Conditions (2) and (3) imply that the available outputs and inputs are feasible.
The upper boundary of the production possibility set and lower boundary of the input
requirement set define the frontier. How far a given data point is from the frontier
represents its efficiency. In output-based radial efficiency measurement, the amount of
necessary (proportional) expansion of outputs to move a data point to a boundary of
the production possibility set P(z) serves as a measure of technical efficiency. In input-
based radial efficiency measurement, it is instead the amount of necessary (proportional)
reduction of inputs to move a data point to a boundary of the input requirement set

L(y).

Empirically, technical efficiencies are fit via activity analysis models, widely known
as DEA models. For K data points, M outputs, and N inputs, an estimate of the
radial Debreu—Farrell output-based measure of technical efficiency can be calculated by
solving a linear programming problem for each data point k (k=1,...,K):

F{ (ye, @, y, 2| CRS) = max 0 (4)
s 2
K
s.t. Z ZkYkm 2 ykmemvm =1,... aM
k=1
K
sziﬂkn <Tgp,m=1,...,N
k=1
zr >0

y is a K x M matrix of available data on outputs, and x is a K x N matrix of available
data on inputs. The estimate of P(x) is the smallest convex free-disposal hull that
envelops the observed data, the upper boundary of which is a piecewise linear estimate
of the true best-practice frontier of P(x). Equation (4) gives us constant returns to scale

(CRsS) specification. Other returns to scale are modeled by adjusting process operating
K

levels zy: for variable returns to scale (VRS), a convexity constraint > zx = 1 is added,’
k=1

K

while for nonincreasing returns to scale (NIRS), the > z; < 1 inequality is added? to
k=1

the set of restrictions in the linear programming problem in (4).

1. This equality ensures that data point k is compared only with data points of similar size; under
the CRS assumption, data points of different sizes might be compared with one another.

2. This inequality ensures that data point k£ is not compared with other data points that are consid-
erably larger. It may be compared with smaller data points.
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To facilitate the discussion, figures 1 and 2 present hypothetical one-input one-
output production processes with three different technologies: CRS, VRS, and NIRS.
Conceptually, in figure 1 (figure 2) the vertical (horizontal) distance from a data point
(x;,y:) or (xj,y;) to the CRS, VRS, and NIRS best-practice frontier stands for output-
based (input-based) technical efficiency under the assumption of CRS, VRS, and NIRS
technology. In a multidimensional case, the required distance is the radial path from a
data point that is parallel to axes along which all outputs (inputs) are measured.

4 Output :

, 1]

. CRS
NIRS

SE°
(z;,95)
(xiayi)
= VRS

Inpuz

Figure 1. Output-based technical and scale efficiency
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4 Output
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Figure 2. Input-based technical and scale efficiency

2.2 Nonradial efficiency analysis

For data point (y, zx), the radial measure expands (shrinks) all M outputs (yx = g1,

...y yeam) and N inputs (xg = Tk, . .

., TN ) proportionally until the frontier is reached.

At the reached frontier point, some but not all outputs (inputs) can be expanded
(shrunk) while remaining feasible. If such possibility is available for a given data point
k for output m (input n), then the reference point FY (yx, zk) X Ymk [Fi(Yk, Tk) X Tnk]
is said to have slack in output y,, (input z,). A nonradial measure of technical ef-
ficiency, the Russell measure (RM), accommodates such slacks (Fére and Lovell 1978;
Fare, Grosskopf, and Lovell 1994a). The output-based nonradial measure for data point
j is defined by

RMY, (Yk, Tk, ¥, ©|CRS) = max

M
M=% O (0ryirs-- -, Omyen) € P(x),
m=1
emzo,mzl,...,M

The input-based counterpart is given by

RM, (Yx, Tk, Y, Z|CRS) = min

N

N=US A (M@kt, -, Avuen) € L(y),
n=1

A >0n=1,...,N
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The output-based RM can be calculated for positive outputs as a solution to the
linear programming problem

M
L, o
RN (g ok, 2 ORS) = M max Z_:l O (5)

K
s.t. szykm > ykmemvm =1..., M
k=1
K
szl’kn <Tgp,n=1,...,N
k=1
Zk 2 0

and the input-based RM can be calculated for positive inputs as a solution to the linear
programming problem

N
—~ 1 —1 .
RM CRS) = N A 6
k(ykyl’kvyaﬂ ) n;}?; n ( )
K
s.t. szykm 2 Ykm, M = 17"'7M
k=1
K
szxkn < TgpAp,n=1,...,N
k=1
Zk 2 0

If output ygm = 0 (Txn = 0), then the linear programming problem in (5) [in (6)] is
modified and 6,,, (\,) is set to 1.

The RM allows for nonproportional expansions (reductions) in each positive output
(input). The nonradial output-based (input-based) RM collapses to the radial measure
when 0,, = 0,¥Ym, where yx, > 0 (A, = A\, Vn, where xy, > 0). However, because the
RM can expand (shrink) an output (input) vector at most (least) as far as the radial
measure can, we have the result that

fay —~ 0
1> Flg(yka Tk, Y, .I‘CRS) 2 RMk(ykv Tk, Y, I|CRS)
and
—~ 1 .
O<RMk(ykvxkayvx|CRS) < lz(ykafk»%ﬂCRS) < 1
Technologies under NIRS and VRS can be modeled by imposing respective restrictions

on the intensity vector, z, in the piecewise linear technology, that is, in (5) and (6). Then
the RM can be calculated relative to these technologies.

With just one input (output), the input-based (output-based) RM is equal to the
Debreu—Farrell radial measure of technical efficiency.
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2.3 Statistical inference in the radial frontier model

Although the DEA method is typically considered to be deterministic, the efficiency is
still computed relative to the estimated frontier and not the true frontier. The efficiency
scores obtained from a finite sample [in (4) from K data points| are subject to sampling
variation of the estimated frontier. The estimated technical efficiency measures are
too optimistic, caused by the DEA estimate of the production set necessarily being a
weak subset of the true production set under standard assumptions underlying DEA.
The statistical inference regarding the radial DEA estimates can be provided via the
bootstrap technique. The details of the concept and implementation of the bootstrap
mechanism are given in Simar and Wilson (1998, 2000) and Kneip, Simar, and Wilson
(2008). The bootstrapping procedure allows estimation of the bias and the confidence
interval of the original estimate. Badunenko, Henderson, and Kumbhakar (2012) study
statistical properties of the bias-corrected estimator in finite samples.

2.4 Type of bootstrap for statistical inference

The bootstrapping technique mentioned in the previous section relies on several as-
sumptions. In output-based efficiency measurement, the major assumption depends on
whether the estimated output-based measures of technical efficiency are independent
of the mix of outputs. In input-based efficiency measurement, the major assumption
depends on whether the estimated input-based measures of technical efficiency are in-
dependent of the mix of inputs. This dependency is testable given the assumption of
returns to scale of the global technology (Wilson 2003). If output-based measures of
technical efficiency are independent of the mix of outputs, the smoothed homogeneous
bootstrap can be used. This type of bootstrap is not computer intensive. If, on the
contrary, output-based measures of technical efficiency are not independent of the mix
of outputs, then the heterogeneous bootstrap must be used to provide valid statistical
inference. The latter type of bootstrap is quite demanding computationally and may
take a while for large datasets.

2.5 Returns to scale and scale analysis

The assumption regarding the global technology is crucial in DEA. Depending on this
assumption, (4) and resulting measures of technical efficiency will vary. The assumption
about returns to scale should be made using prior knowledge about the particular in-
dustry. If this knowledge does not suffice or is not conclusive, then the returns to scale
assumption can be tested econometrically. Moreover, if technology is not CRS globally,
then estimating the measure of technical efficiency under CRS will lead to inconsistent
results (Simar and Wilson 2002).

The measures of radial technical efficiency in (4) under CRS, NIRS, and VRS can
be used to calculate the measures of scale efficiency, originally proposed by Fare and
Grosskopf (1985),




O. Badunenko and P. Mozharovskyi 557

~

Fk?(yk7xk7y’x‘CRS>

Slg(ybxk) ==
F]?(yk7xk7y7‘r|VRS)

and

Fko(yk7 Tk,Y, Z‘|NIRS)

Se (Y, k) =
F]g(ykaxk7y7x‘VRs)

for output-based analysis, and

(ykv Tk, Y, JU|CRS)
(yk7 Ty Y, I|VRS)

Si(yk, vx) = ==
Fy

and N
i F! (yx, xr, y, |NIRS
S;C (ykwfk) — lcl(y Yy | )
Fk<yk7xk7y7x|VRS)

for input-based analysis. Scale efficiency Sy measures how close the data point (yx, zx)
is to potentially optimal scale, also known as maximum productive scale size, which
is the portion of the frontier where the CRS and VRS frontiers coincide in figures 1
and 2 (denoted by SE® and SE', respectively). If S¢(yx,xr) = 1 [Si(yk,zx) = 1 in
input-based efficiency measurement], then a data point (yx,zr) is scale efficient. If
S¢(yk, k) > 1 [Sh(yx, o) < 1 in input-based efficiency measurement|, then a data point
(yk, xr) is scale inefficient because it operates under the decreasing returns portion of
technology if S¢*(yk, zx) = 1 [Si*(yk, zx) = 1 in input-based efficiency measurement] or
because it operates under the increasing returns portion of technology if Sp*(yx, zx) > 1
[Si*(yk, zx) < 1 in input-based efficiency measurement].

On one hand, if global technology T in (1) represents CRS, then the VRS estimator
is less efficient than CRS. On the other hand, if global technology 7" in (1) is not CRS
at some mix of outputs (inputs), then the CRS estimator is inconsistent. Therefore,
Simar and Wilson (2002) suggest the following tests:

Test #1: Hy : T is globally CRS
H, : T is VRS

If null hypothesis Hy is rejected (that is, if technology is not CRS everywhere), then the
following test with a less restrictive null hypothesis may be performed:

Test #2: H|, : T is globally NIRS
Hy : T is VRS

Using scale efficiency measures for all K data points, the statistics for testing test #1
and test #2 are defined by

k?(yk7xk>y’x‘CRS)

M=

R

3

Il
M| T

®

]g(ylm Tk, Y, Z‘|VRS)

£l
Il
-
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and

~

R lg(yk}7xk7y"r|NIRS)
Syl =k (9)
©(Yks Tk, Y, T|VRS)

M=

I
—

M=

k

1

The idea of testing the null hypothesis that the technology is globally CRS versus the
alternative hypothesis that the technology is globally VRS, test #1, boils down to testing
how far the test statistic (8) is from its bootstrap analog. This statistic represents the
ratio of the average measures of technical efficiency under the assumption of VRS and
CRS technologies. If the null hypothesis is true, then the average distance between the
VRS and CRS frontiers is small. If the alternative hypothesis is true, then the average
distance between the VRS and CRS frontiers is large—the null hypothesis Hy is rejected
if Sgn is significantly larger than 1 [if SZN, defined similarly to (8), is smaller than 1 in
input-based efficiency measurement). If Hy is rejected, then test #2 can be performed to
test the null hypothesis H| that the technology is globally NIRS versus the alternative
hypothesis that the technology is globally VRS. Analogously to test #1, if the null
hypothesis H{, is true, then the average distance between the VRS and NIRS frontiers
is small. If the alternative hypothesis is true, then the average distance between the
VRS and NIRS frontiers is large—the null hypothesis H{) is rejected if S9,, is significantly
larger than 1 [if SQn, defined similarly to (9), is smaller than 1 in input-based efficiency
measurement.

Because of the importance of the returns to scale assumption for the DEA estimator,
this data-driven test should be performed before applying any DEA model.

Additionally, this testing procedure can be used to perform the scale analysis for each
data point. The CRS assumption is only feasible when all data points are operating at
an optimal scale, that is, when scale efficiency is unity. However, for many reasons
(for example, imperfect competition or financial constraints), it is more appropriate to
assume VRS (see Coelli, Rao, O’Donnell, and Battese [2005] for history and development
of this stream). Assuming CRS when VRS should be assumed in reality overestimates
the technical efficiency estimate exactly by scale efficiency. Therefore, performing the
individual returns to scale test is fairly important in the case of scale efficiency analysis.

First, for each data point k, the null hypothesis of test #1; that measures of technical
efficiency are equal under CRS and VRS, or SP(yx,xr) = 1, against the alternative
hypothesis that S (yk,zx) > 1 [S}(yk, k) < 1 in input-based case] is tested.” Because
by definition S (yx,xx) > 1 [Si(yk, zx) > 1 in input-based case], this null hypothesis is
rejected if S (yx, xx) is significantly greater than 1 [S} (yx, ) < 1 in input-based case].
The data point SP(yk, k), for which this null hypothesis is rejected, S¢(yg,xr) > 1
[S! (yk, k) < 1 in input-based case], is said to be scale inefficient.

Second, for all scale inefficient data points, the null hypothesis of test #2; that
the measures of technical efficiency are equal under NIRS and VRS, or Sp*(yg, zx) =1
(S (yk, ) = 1 in input-based case|, against the alternative that SP*(yp,zr) > 1

3. Note that Sy (yx, k) is the test statistic of test #1.
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[Si*(yk, zx) < 1 in input-based case] can be performed. Test #2; concludes that data
point (yx, zx) is operating under increasing returns to scale [such as a data point (z;,y;)
in terms of figure 1 or 2] if SP*(yx,xy) is significantly larger than 1 [Si*(yy, xx) < 1
in input-based case], or is operating under decreasing returns to scale [such as a data
point (x;,y;) in terms of figure 1] otherwise. All tests in this subsection are based on
bootstrap techniques mentioned in the previous section.

3 The tenonradial command

tenonradial uses reduced linear programming to compute the nonradial output- or
input-based measure of technical efficiency, which is known as the RM. In input-based
nonradial efficiency measurement, the RM allows for nonproportional (different) reduc-
tions in each positive input, and this is what permits it to shrink an input vector all
the way back to the efficient subset. In output-based nonradial efficiency measurement,
the RM allows for nonproportional (different) expansions of each positive output.

3.1 Syntax

tenonradial outputs = inputs [ (ref-outputs = ref_inputs) ] [zf] [m] [ ,
rts(rtsassumption) base(basetype) reference(varname) tename(newvar)
noprint]

Specification

outputs is the list of output variables.

inputs is the list of input variables.

ref_outputs is the optional list of output variables for the reference set. The number
of variables in ref_outputs must be equal to the number of variables in outputs. If
ref_outputs is specified, then ref inputs must also be specified.

ref_inputs is the optional list of input variables for the reference set. The number of
variables in ref_inputs must be equal to the number of variables in inputs. If ref_inputs
is specified, then ref_outputs must also be specified.

3.2 Options

Technology
rts (rtsassumption) specifies the returns to scale assumption.

Specifying rts(crs) requests that the measure of technical efficiency be computed
under the assumption of CRS. This is the default.
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Specifying rts(airs) requests that the measure of technical efficiency be computed
under the assumption of NIRS.

Specifying rts(vrs) requests that the measure of technical efficiency be computed
under the assumption of VRS.

base (basetype) specifies the type of optimization.

Specifying base(output) requests that the output-based measure be computed.
This is the default.

Specifying base (input) requests that the input-based measure be computed.
Reference set

reference (varname) specifies the indicator variable that defines which data points of
outputs and inputs form the technology reference set. If ref outputs and ref inputs
are specified, then varname defines which data points of ref_outputs and ref_inputs
form the technology reference set.

Variable generation

tename (newvar) creates newwvar containing the nonradial measures of technical effi-
ciency.

Miscellaneous

noprint suppresses the estimation details, description of the data, and reference set.

3.3 Output, generated variable, and stored results

If noprint is not specified, then tenonradial produces the summary of the model,
the data, and a note about the reference set. Specifying tename (newvar) will generate
newvar containing the nonradial measures of technical efficiency in the current dataset.
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tenonradial stores the following in e():

Scalars

e(M) number of outputs

e(N) number of inputs

e(K) number of data points

e(Kref) number of data points for the reference set
Macros

e(cmd) tenonradial

e(cmdline) command as typed

e(title) title in estimation output

e(rts) CRS, NIRS, or VRS

e(base) output or input

e (outputs) list of output variables

e(inputs) list of input variables

e(ref_outputs) list of output variables for the reference set

e(ref_inputs) list of input variables for the reference set
Matrices

e(te) K x 1 matrix with measures of technical efficiency
Functions

e(sample) marks estimation sample

4 The teradial command

The syntax, options, output, generated variable, and stored results are identical to those
of tenonradial.

5 The teradialbc command

teradialbc performs statistical inference about the radial measure of technical effi-
ciency.

5.1 Syntax

teradialbc outputs = inputs [(ref,outputs = ref,inputs)] [zf] [m] [,
rts(rtsassumption) base(basetype) reference(varname) subsampling
kappa(#) smoothed heterogeneous reps(#) level(#) tename(newvar)
tebc (newvar) biasboot(newvar) varboot(newvar) biassqvar (newvar)

telower (newvar) teupper(newvar) noprint nodots]
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Specification

The “specifications” are identical to those of tenonradial.

5.2 Options

Technology

The “technology” options are identical to those of tenonradial.
Reference set

The “reference set” option is identical to that of tenonradial.
Bootstrap

subsampling requests that the reference set be bootstrapped with subsampling. If
subsampling is not specified, then bootstrap with smoothing is used.

kappa(#) sets the size of the subsample as K¥®P2 where K is the number of data
points in the original reference set. The default is kappa(0.7). # may be between
0.5 and 1.

smoothed requests that the reference set be bootstrapped with smoothing. This is the
default. This option is for keeping track of the bootstrap type.

heterogeneous requests that the reference set be bootstrapped with heterogeneous
smoothing. If heterogeneous is not specified, then bootstrap with homogeneous
smoothing is used.

reps (#) specifies the number of bootstrap replications to be performed. The default is
reps(999); the minimum is reps (200). Adequate estimates of confidence intervals
using bias-corrected methods typically require 1,000 or more replications.

Statistical inference

level (#) sets the confidence level; the default is 1level (95).

Variable generation

tename (newvar) creates newvar containing the radial measures of technical efficiency.

tebc (newvar) creates newvar with the bias-corrected radial measures of technical effi-
ciency.

biasboot (newvar) creates newvar with the bootstrap bias estimate for the original
radial measures of technical efficiency.

varboot (newvar) creates newvar with the bootstrap variance estimate for the radial
measures of technical efficiency.

biassqvar (newvar) creates newvar with three times the ratio of bias squared to vari-
ance for the radial measures of technical efficiency.
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telower (newvar) creates newvar with the lower-bound estimate for the radial measures
of technical efficiency.

teupper (newvar) creates newvar with the upper-bound estimate for the radial mea-
sures of technical efficiency.

Miscellaneous
noprint suppresses the estimation details, description of the data, and reference set.

nodots suppresses display of the replication dots. By default, one dot character is
displayed for each successful replication. A red “x” is displayed if the command
returns an error.

5.3 Details

teradialbc performs bias correction of the radial output- or input-based measure of
technical efficiency under the assumption of CRS, NIRS, or VRS technology. It also
computes bias and constructs confidence intervals.

If a reference set is not specified, then the reference set is formed by data points for
which measures of technical efficiency are computed.

Statistical inference (computation of bias, variance, and confidence interval) is per-
formed for data points where the real number of bootstrap replications is at least 100.
Matrix e(realreps) stores the real number of bootstrap replications, which may be
smaller than reps (#).

If at least one input-based bias-corrected Farrell measure of technical efficiency is
negative, then the analysis and statistical inference is performed in terms of Shephard
distance functions, a reciprocal of the Debreu—Farrell measure.

5.4 Dependency of teradialbc

teradialbc depends on the Mata functions kdens_bw() and mm_quantile(). If not
already installed, you can install these functions by typing ssc install kdens and
ssc install moremata, respectively.

5.5 Output, generated variables, and stored results

If noprint and nodots are not specified, then teradialbc produces the summary of
the model, the data, and a note about the reference set, and it displays replication dots.
Several variables related to statistical inference can be generated in the current dataset
by specifying options. For example, specifying tename (newvar) will generate newvar
containing the radial measures of technical efficiency.
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teradialbc stores the following in e():

e(ref_outputs)
e(ref_inputs)

Scalars

e(M) number of outputs

e(N) number of inputs

e(K) number of data points

e(Kref) number of data points for the reference set

e(reps) number of bootstrap replications
Macros

e(cmd) teradialbc

e(cmdline) command as typed

e(title) title in estimation output

e(rts) CRS, NIRS, or VRS

e(base) output or input

e(outputs) list of output variables

e(inputs) list of input variables

list of output variables for the reference set
list of input variables for the reference set

Matrices
e(te) K x 1 matrix with measures of technical efficiency
e(tebc) K x 1 matrix with bias-corrected radial measures of technical
efficiency
e(biasboot) K x 1 matrix with bootstrap bias estimate for original radial

e(varboot)

measures of technical efficiency
K x1 matrix with bootstrap variance estimate for radial measures
of technical efficiency

e(telow) K x 1 matrix with lower-bound estimate for radial measures of
technical efficiency
e (teupp) K x 1 matrix with upper-bound estimate for radial measures of

e(biassqvar)

e(realreps)

technical efficiency

K x1 matrix with three times the ratio of bias squared to variance
for radial measures of technical efficiency

K x 1 matrix with number of bootstrap replications used for
statistical inference

Functions

e(sample) marks estimation sample

6 The nptestind command

nptestind performs nonparametric tests of independence.

6.1 Syntax

nptestind outputs = inputs [zf} [m] [ , rts(rtsassumption) base (basetype)
reps(#) alpha(#) noprint nodots}

Specifications

outputs is the list of output variables.

inputs is the list of input variables.
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6.2 Options

Technology
The “technology” options are identical to those of tenonradial.
Bootstrap

reps (#) specifies the number of bootstrap replications to be performed. The default is
reps(999); the minimum is reps (200). Adequate estimates of confidence intervals
using bias-corrected methods typically require 1,000 or more replications.

Statistical inference
alpha(#) sets the significance level. The default is alpha(0.05).
Miscellaneous

The “miscellaneous” options are identical to those of teradialbc.

6.3 Dependency of nptestind

nptestind depends on the Mata function kdens_bw (). If not already installed, you can
install this function by typing ssc install kdens.

6.4 Output and stored results

If noprint and nodots are not specified, then nptestind produces the summary of the
model, the data, and a note about the reference set, and it displays replication dots.

nptestind stores the following in e():

Scalars
e (M) number of outputs
e(N) number of inputs
e(X) number of data points
e(pvalue) p-value of the test that the measure of technical efficiency and
the mix of inputs (or outputs) are independent
e(t4n) T4n statistic
e(reps) number of bootstrap replications
Macros
e(cmd) nptestind
e(cmdline) command as typed
e(title) title in estimation output
e(rts) CRS, NIRS, or VRS
e(base) output or input
e(outputs) list of output variables
e(inputs) list of input variables
Matrices

e(t4nboot) reps X 1 matrix with bootstrap values of the T4n statistic
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7 The nptestrts command

nptestrts performs nonparametric tests of returns to scale.

7.1 Syntax

nptestrts outpuls = inputs [zf} [m] [, base (basetype) heterogeneous

reps(#) alpha(#) testtwo tecrsname(newvar) tenirsname(newvar)
tevrsname (newvar) sefficiency(newvar) psefficient(newwvar)
sefficient (newvar) nrsovervrs(newvar) pineffdrs(newvar)

sineffdrs(newvar) noprint nodots]

Specifications

The “specifications” are identical to those of nptestind.

7.2 Options

Technology
base (basetype) specifies the type of optimization.

Specifying base(output) requests that the output-based measure be computed.
This is the default.

Specifying base (input) requests that the input-based measure be computed.
Bootstrap

heterogeneous requests that the reference set be bootstrapped with heterogeneous
smoothing. If heterogeneous is not specified, then bootstrap with homogeneous
smoothing is used.

reps (#) specifies the number of bootstrap replications to be performed. The default is
reps(999); the minimum is reps (200). Adequate estimates of confidence intervals
using bias-corrected methods typically require 1,000 or more replications.

Statistical inference
alpha(#) sets the significance level. The default is alpha(0.05).
testtwo specifies that test #2 be performed.

If testtwo is not specified, then nptestrts performs only test #1, which consists
of two parts. First, the null hypothesis that the technology is globally CRS (versus
VRS) is tested. Second, the null hypothesis that the data point is scale efficient is
tested.
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If testtwo is specified, then nptestrts may also perform test #2. If the null hypoth-
esis that the technology is CRS is rejected, then testtwo requests that nptestrts
tests the null hypothesis that the technology is NIRS (versus VRS). If not all data
points are scale efficient, then nptestrts tests that the reason for scale inefficiency
is operating under decreasing returns to scale (DRS). If the null hypothesis that
the technology is CRS is not rejected and all data points are scale efficient, then
nptestrts will not perform test #2 even if testtwo is specified.

Variable generation

tecrsname (newvar) creates newvar containing the radial measures of technical effi-
ciency under the assumption of CRS.

tenirsname (newvar) creates newvar containing the radial measures of technical effi-
ciency under the assumption of NIRS.

tevrsname (newvar) creates newvar containing the radial measures of technical effi-
ciency under the assumption of VRS.

sefficiency(newvar) creates newvar containing scale efficiency, the ratio of the mea-
sures of technical efficiency under CRS and VRS.

psefficient (newvar) creates newvar containing the p-value of the test that the data
point is statistically scale efficient.

sefficient (newwvar) creates indicator newvar equal to 1 if the data point is statistically
scale efficient.

nrsovervrs (newvar) creates mewvar containing the ratio of the measures of technical
efficiency under NIRS and VRS.

pineffdrs(newvar) creates newvar containing the p-value of the test that the data
point is scale inefficient due to operating under DRS.

sineffdrs(newvar) creates indicator newvar equal to 1 if the data point is statistically
scale inefficient due to operating under DRS.

Miscellaneous
noprint suppresses the estimation details, description of the data, and reference set.

nodots suppresses display of the replication dots. One dot character is displayed for
each successful replication.

7.3 Details

nptestrts performs nonparametric tests of returns to scale.

If testtwo is not specified, then nptestrts performs only test #1, which consists
of two parts. First, the null hypothesis that the technology is globally CRS (versus VRS)
is tested. Second, the null hypothesis that the data point is scale efficient is tested.
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If testtwo is specified, then nptestrts may also perform test #2. If the null
hypothesis that the technology is CRS is rejected, then testtwo requests that nptestrts
tests the null hypothesis that the technology is NIRS (versus VRS). If not all data points
are scale efficient, then nptestrts tests that the reason for scale inefficiency is operating
under DRS. If the null hypothesis that the technology is CRS is not rejected and all data
points are scale efficient, then nptestrts will not perform test #2 even if testtwo is
specified.

7.4 Dependency of nptestrts

nptestrts depends on the Mata function kdens_bw (). If not already installed, you can
install this function by typing ssc install kdens.

7.5 Output, generated variables, and stored results

If noprint and nodots are not specified, then nptestrts produces the summary of the
model, the data, and a note about the reference set, and it displays replication dots.
Several variables related to nonparametric tests can be generated in the current dataset
by specifying options. For example, specifying tecrsname (newvar) will generate newvar
containing the radial measures of technical efficiency under the assumption of CRS.

nptestrts stores the following in e():

Scalars
e(M) number of outputs
e(N) number of inputs
e(X) number of data points
e(sefficiencyMean) ratio of means of technical efficiency measures under CRS and
VRS
e(nsefficient) number of scale efficient data points
e (nrsOVERvrsMean) ratio of means of technical efficiency measures under NIRS and
VRS (if testtwo)
e(pGlobalCRS) p-value of test that technology is globally CRS
e(pGlobalNRS) p-value of test that technology is globally NIRS (if testtwo)
e(reps) number of bootstrap replications
Macros
e(cmd) nptestrts
e(cmdline) command as typed
e(title) title in estimation output
e(base) output or input
e(outputs) list of output variables
e(inputs) list of input variables

e(smoothtype) homogeneous or heterogeneous
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Matrices
e(tecrsname) K x 1 matrix with measures of technical efficiency under the
assumption of CRS
e(tenirsname) K x 1 matrix with measures of technical efficiency under the
assumption of NIRS
e(tevrsname) K x 1 matrix with measures of technical efficiency under the
assumption of VRS
e(sefficiency) K x 1 matrix containing scale efficiency
e(psefficient) K x 1 matrix containing p-value of the test that the data point
is statistically scale efficient
e(sefficient) K x 1 matrix containing 1s if statistically scale efficient
e(nrsovervrs) K x 1 matrix containing ratio of measures of technical efficiency
under NIRS and VRS (if testtwo)
e(pineffdrs) K x 1 matrix containing p-value of the test that the data point
is scale inefficient due to DRS (if testtwo)
e(sineffdrs) K x 1 matrix containing 1s if statistically scale inefficient due to
DRS (if testtwo)
Functions
e(sample) marks estimation sample

8 Empirical application

In this section, we show how to use the new commands and interpret the output based
on two widely used datasets.

8.1 Data: CCRS81

The first dataset comes from Charnes, Cooper, and Rhodes (1981). The data were
originally used to evaluate the efficiency of public programs and their management. In
what follows, we stick to output-based efficiency measurement.

We artificially create a variable, dref, to illustrate the capabilities of the new com-
mands. We do not suppress the estimation details, description of the data, and reference
set for the output-based radial measure of technical efficiency under the assumption of
CRS technology. (We do suppress these for the remaining radial and all the nonradial
measures.) Finally, we list the measures for the first seven observations:

. set seed 717117

. use ccr8l
(Program Follow Through at 70 US Primary Schools)

. generate dref = x5 != 10

. teradial y1 y2 y3 = x1 x2 x3 x4 x5, rts(crs) base(output) reference(dref)
> tename (TErdCRSo)

Radial (Debreu-Farrell) output-based measures of technical efficiency under
assumption of CRS technology are computed for the following data:

Number of data points (K) = 70
Number of outputs ™ =3
Number of inputs N) =5

Reference set is formed by 68 provided reference data points

. teradial y1 y2 y3 = x1 x2 x3 x4 x5, rts(nirs) base(output) reference(dref)
> tename (TErdNRSo) noprint
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. teradial y1 y2 y3 = x1 x2 x3 x4
> tename (TErdVRSo) noprint

. tenonradial y1 y2 y3 = x1 x2 x3
> tename (TEnrCRSo) noprint

. tenonradial yl1 y2 y3 = x1 x2 x3
> tename (TEnrNRSo) noprint

. tenonradial yl1 y2 y3 = x1 x2 x3
> tename (TEnrVRSo) noprint

. list TErdCRSo TErdNRSo TErdVRSo

Nonparametric frontier analysis

x5, rts(vrs) base(output) reference(dref)

x4 x5, rts(crs) base(output) reference(dref)
x4 x5, rts(nirs) base(output) reference(dref)
x4 x5, rts(vrs) base(output) reference(dref)

TEnrCRSo TEnrNRSo TEnrVRSo in 1/7

TErdCRSo TErdNRSo TErdVRSo TEnrCRSo TEnrNRSo TEnrVRSo
1. 1.087257 1.032294 1.032294 1.11721 1.05654 1.05654
2. 1.110133 1.109314 1.109314 1.383089 1.277123 1.277123
3. 1.079034 1.068429 1.068429 1.17053 1.116582 1.116582
4. 1.119434 1.107413 1.107413 1.489086 1.471301 1.471301
5. 1.075864 1.075864 1 1.196779 1.196779 1
6. 1.107752 1.107752 1.105075 1.380214 1.378378 1.378378
7. 1.125782 1.119087 1.119087 1.575288 1.547186 1.547186

teradial and tenonradial compute measures of technical efficiency for all 70 data
points using the reference set based on the restriction x5 != 10, which leaves two data
points out. As expected, the radial measures are at least not worse than the nonradial
measures for each returns to scale assumption. Figure 3 visualizes this observation,
indicating slacks in outputs. However, for radial and nonradial measures, the measures
under VRS are at least not worse than those under NIRS. The measures under NIRS are
at least not worse than those under CRS. For data points 1, 2, 3, 4, and 7, measures
under NIRS and VRS are equal. For data points 5 and 6, measures under NIRS and CRS
are equal. We come back to scale analysis shortly when we discuss nptestrts.
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Figure 3. Scatterplot of Debreu—Farrell and RM of technical efficiency under the as-
sumption of CRS (left panel) and under the assumption of VRS (right panel)
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Before teradialbc is run, we need to know what type of bootstrap to use. We
therefore perform the nonparametric test of independence by typing the new command
nptestind. To illustrate, we run the test for all returns to scale assumptions for both
output- and input-based frontier models. We show the output only for the output-based
model under the assumption of CRS technology. We suppress the log for the remaining
five models.

. matrix testsindpv = J(2, 3, .)
. matrix colnames testsindpv = CRS NiRS VRS
. matrix rownames testsindpv = output-based input-based

. nptestind y1 y2 y3 = x1 x2 x3 x4 x5, rts(crs) base(output) reps(999)
> alpha(0.05)

Radial (Debreu-Farrell) output-based measures of technical efficiency
under assumption of CRS, NIRS, and VRS technology are computed for the
following data:

Number of data points (K) = 70
Number of outputs ™ =3
Number of inputs m =5

Reference set is formed by 70 data points, for which measures of
technical efficiency are computed.

Test

Ho: T4n = O (radial (Debreu-Farrell) output-based measure of technical
efficiency under assumption of CRS technology and mix of outputs are
independent)

Bootstrapping test statistic T4n (999 replications)

p-value of the Ho that T4n = 0 (Ho that radial (Debreu-Farrell)
output-based measure of technical efficiency under assumption of CRS
technology and mix of outputs are independent) = 0.0671:

hat{T4n} = 0.0310 is not statistically greater than O at the 5%
significance level

Heterogeneous bootstrap should be used when performing output-based
technical efficiency measurement under assumption of CRS technology

. matrix testsindpv[1,1] = e(pvalue)

. nptestind y1 y2 y3 = x1 x2 x3 x4 x5, rts(nirs) base(output) reps(999)
> alpha(0.05) noprint

. matrix testsindpv[1,2] = e(pvalue)

. nptestind y1 y2 y3 = x1 x2 x3 x4 x5, rts(vrs) base(output) reps(999)
> alpha(0.05) noprint

. matrix testsindpv[1,3] = e(pvalue)

. nptestind y1 y2 y3 = x1 x2 x3 x4 x5, rts(crs) base(input) reps(999)
> alpha(0.05) noprint

. matrix testsindpv[2,1] = e(pvalue)

. nptestind y1 y2 y3 = x1 x2 x3 x4 x5, rts(nirs) base(input) reps(999)
> alpha(0.05) noprint

. matrix testsindpv[2,2] = e(pvalue)
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. nptestind y1 y2 y3 = x1 x2 x3 x4 x5, rts(vrs) base(input) reps(999)
> alpha(0.05) noprint

. matrix testsindpv[2,3] = e(pvalue)
. matrix list testsindpv
testsindpv([2,3]

CRS NiRS VRS
output-based .06706707 .2002002 .04204204
input-based .02902903 .003003 .22522523

Depending on the assumption about the technology and base of measurement, the
nptestind command concludes differently about the type of bootstrap. In output-based
efficiency measurement, the independence assumption is rejected at the 5% significance
level only for VRS technology. In input-based efficiency measurement, it is only for
VRS technology that the independence assumption is not rejected at the 5% significance
level.

The teradialbc command can provide statistical inference for three types of boot-
strap: 1) smoothed homogeneous, 2) smoothed heterogeneous, and 3) subsampling (het-
erogeneous).

We performed each of these types under the assumption of VRS technology. The
results of nptestind indicate that the heterogeneous bootstrap should be used, so
the results for the homogeneous bootstrap cannot be trusted. We report them here
for illustrative purposes only. By using the tebc(), biassqvar(), telower (), and
teupper () options, we generate new variables in the current dataset that contain bias-
corrected output-based measures of technical efficiency, the statistic that compares the
bias and the variance of the bootstrap (we also report its summary right after the
command), and the lower and upper bounds of the 95% confidence interval for each of
the three types of bootstrap. Table 1 lists the measures for the first 34 data points. We
let teradialbc output the log and bootstrap dots for the first type but suppress them
for the other two.

. teradialbc yl1 y2 y3 = x1 x2 x3 x4 x5, rts(vrs) base(output) reference(dref)
> reps(999) tebc(TErdVRSoBC1) biassqvar (TErdVRSoBC1bv) telower (TErdVRSoLB1)
> teupper (TErdVRSoUB1)

Radial (Debreu-Farrell) output-based measures of technical efficiency
under assumption of VRS technology are computed for the following data:

Number of data points (K) = 70
Number of outputs ™ =3
Number of inputs (N) =5

Reference set is formed by 68 provided reference data points.

Bootstrapping reference set formed by 68 provided reference data points
and computing radial (Debreu-Farrell) output-based measures of technical
efficiency under assumption of VRS technology for each of 70 data points
relative to the bootstrapped reference set

Smoothed homogeneous bootstrap (999 replications)

it 2t 38— f 415
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. summarize TErdVRSoBClbv
Variable ‘ Obs Mean Std. Dev. Min Max

TErdVRSoBC~v ‘ 70 3.648973 1.266609 1.927135 8.160317

. teradialbc y1 y2 y3 = x1 x2 x3 x4 x5, rts(vrs) base(output) reference(dref)
> heterogeneous reps(999) tebc(TErdVRSoBC2) biassqvar (TErdVRSoBC2bv)
> telower (TErdVRSoLB2) teupper (TErdVRSoUB2) noprint

. summarize TErdVRSoBC2bv
Variable ‘ Obs Mean Std. Dev. Min Max

TErdVRSo-~2bv ‘ 58 40.70504 44.65367 5.851912  272.2176

. teradialbc yl1 y2 y3 = x1 x2 x3 x4 x5, rts(vrs) base(output) reference(dref)
> subsampling reps(999) tebc(TErdVRSoBC3) biassqvar (TErdVRSoBC3bv)
> telower (TErdVRSoLB3) teupper (TErdVRSoUB3) noprint

. summarize TErdVRSoBC3bv
Variable ‘ Obs Mean Std. Dev. Min Max

TErdVRSo~3bv ‘ 70 3.428358 2.247708 0 14.89988

Statistic BV in table 1 is three times the ratio of bias squared to the variance of
the bootstrap values of the radial measures of technical efficiency. Bias correction and
statistical inference should be performed only if this statistic is well above unity. For all
three types of bootstrap, the measure is satisfactory. For the smoothed homogeneous
and subsampling bootstraps, the values of BV are much smaller than those for the
smoothed heterogeneous bootstrap. If the BV is small, the variance of the bootstrap
values is relatively large, and the mean squared error of the bias-corrected estimate of
the technical efficiency measure is much higher than that of the original measure. We
also know from running nptestind that the results from the smoothed homogeneous
bootstrap should not be trusted.

Panels “Smoothed heterogeneous” and “Subsampling” in table 1 show the results
for the heterogeneous bootstrap. Statistic BV indicates that the subsampling bootstrap
introduces much noise. The bias-corrected measure is estimated imprecisely, and results
for the subsampling bootstrap should not be used. This leaves us with reliable statistical
inference using the heterogeneous smoothed bootstrap. Here the BV statistic is well
above unity.




574 Nonparametric frontier analysis

Table 1. Statistical inference about the radial output-based measure of technical
efficiency under the assumption of VRS

# TE* Smoothed homogeneous  Smoothed heterogeneous Subsampling
BCP Bve LBY UB® BC BV LB UB BC BV LB UB

1.032 1.056 2.473 1.033 1.135 1.177 61.184 1.117 1.295 1.152 3.479 1.040 1.407
1.109 1.125 3.797 1.110 1.159 1.220 26.897 1.155 1.335 1.186 4.107 1.116 1.346
1.068 1.087 2.846 1.069 1.138 1.157 45.492 1.112 1.219 1.138 5.293 1.070 1.249
1.107 1.116 4.455 1.108 1.136 1.143 20.759 1.122 1.178 1.136 6.394 1.109 1.176
1.000 1.051 2.782 1.000 1.196 . . . . 1.000 14.900 1.000 1.000
1.105 1.123 3.934 1.106 1.160 1.328 19.102 1.205 1.833 1.195 1.413 1.114 1.919
1.119 1.130 4.771 1.120 1.146 1.155 22.890 1.134 1.191 1.150 6.664 1.121 1.184
1.104 1.125 2.082 1.105 1.207 1.359 44.379 1.235 1.659 1.258 2.886 1.107 1.667
9 1.161 1.174 4.261 1.161 1.201 1.202 20.787 1.175 1.242 1.215 7.070 1.162 1.282
10 1.055 1.078 3.116 1.055 1.137 1.173 61.596 1.122 1.257 1.146 3.788 1.056 1.325
11 1.000 1.036 3.901 1.000 1.111 1.137 55.950 1.088 1.259 1.077 2.555 1.000 1.282
12 1.000 1.033 3.522 1.000 1.106 1.165 41.808 1.096 1.348 1.096 2.907 1.000 1.341
13 1.156 1.164 6.258 1.156 1.177 1.183 11.772 1.164 1.220 1.192 3.944 1.159 1.247

0~ Uk WN -

14 1.016 1.034 3.293 1.016 1.079 . . . . 1.050 1.526 1.018 1.156
15 1.000 1.050 2.638 1.000 1.194 . . . . 1.170 2.306 1.000 1.524
16 1.052 1.069 2.029 1.053 1.128 1.242 30.769 1.130 1.468 1.182 2.312 1.052 1.494
17 1.000 1.047 2.457 1.000 1.196 1.227 3.124 1.000 1.657

18 1.000 1.031 4.134 1.000 1.091 1.108 28.727 1.052 1.225 1.065 2.505 1.000 1.236
19 1.049 1.065 2.794 1.049 1.110 1.123 21.704 1.075 1.200 1.122 2.791 1.050 1.297
20 1.000 1.048 3.125 1.000 1.160 1.290 62.403 1.198 1.737 1.141 2.731 1.000 1.532
21 1.000 1.042 3.372 1.000 1.134 1.170 54.187 1.103 1.330 1.107 2.867 1.000 1.356
22 1.000 1.020 5.006 1.000 1.053 1.205 20.126 1.092 1.672 1.065 1.319 1.000 1.354
23 1.025 1.037 2.824 1.026 1.068 1.069 13.484 1.035 1.123 1.095 2.043 1.027 1.269
24 1.000 1.043 2.965 1.000 1.158 1.355 43.519 1.232 2.241 1.141 2.479 1.000 1.952
25 1.021 1.030 8.160 1.022 1.041 1.047 15.717 1.031 1.075 1.044 4.358 1.028 1.080
26 1.060 1.069 4.685 1.061 1.089 1.095 12.386 1.069 1.139 1.103 3.181 1.062 1.201
27 1.000 1.036 3.633 1.000 1.107 1.208 53.891 1.148 1.482 1.100 1.917 1.000 1.412
28 1.012 1.027 3.366 1.013 1.067 1.212 18.807 1.100 1.680 1.089 1.170 1.022 1.839
29 1.180 1.201 2.812 1.180 1.257 . . . . 1.271 6.202 1.184 1.385
30 1.117 1.130 4.322 1.118 1.156 1.252 19.150 1.177 1.437 1.177 1.654 1.121 1.365
31 1.193 1.204 5.712 1.193 1.224 1.245 15.942 1.212 1.311 1.226 6.794 1.195 1.274
32 1.000 1.047 2.587 1.000 1.191 . . . . 1.000 0.742 1.000 1.000
33 1.049 1.069 6.165 1.051 1.102 1.097 11.647 1.060 1.161 1.139 3.084 1.051 1.333
34 1.161 1.173 3.258 1.161 1.205 1.206 15.450 1.172 1.256 1.231 3.231 1.161 1.381

2 original output-based measures of technical efficiency under assumption of VRS technology
b bias-corrected radial measures of technical efficiency

¢ three times the ratio of bias squared to variance for radial measures of technical efficiency
dJower-bound estimate for radial measures of technical efficiency

¢ upper-bound estimate for radial measures of technical efficiency
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The bias for the heterogeneous smoothed bootstrap is larger than that of the ho-
mogeneous smoothed bootstrap, which is implied by larger bias-corrected estimates of
efficiency measures. This means that the homogeneous bootstrap provides optimistic
estimates of the bootstrapped frontier. The 95% confidence interval is also wider but
not as wide as that for the subsampling bootstrap; this might be a result of the large
variance of the bootstrap values for the subsampling bootstrap. Statistical inference
cannot be provided for observations 5, 14, 15, 17, 29, and 32. The reason for this is too
few bootstrap replications, where these observations lie within the bootstrap frontier,
making the solution of the linear programming problem infeasible. Indeed, e (realreps)
after teradialbc for the mentioned data points is 0(5), 1(14), 3(15), 0(17), 3(29), and
0(32).

Finally, we turn our discussion to the new command nptestrts, which performs
nonparametric tests of returns to scale and analysis of scale efficiency. We have already
determined that the heterogeneous smoothed bootstrap should be used for this dataset.
We still provide the results using the homogeneous bootstrap and emphasize the caveat
of using an incorrect bootstrap procedure.

. nptestrts y1 y2 y3 = x1 x2 x3 x4 x5, base(output) reps(999) alpha(0.05)
> testtwo sefficiency(SE_o) sefficient(SEffnt_hom) sineffdrs(SiDRS_hom)

Radial (Debreu-Farrell) output-based measures of technical efficiency
under assumption of CRS, NIRS, and VRS technology are computed for the
following data:

Number of data points (K) = 70
Number of outputs M =3
Number of inputs ) =5

Reference set is formed by 70 data points, for which measures of
technical efficiency are computed.

Test #1

Ho: mean(F_i"CRS)/mean(F_i"VRS) = 1

and
Ho: F_i"CRS/F_i"VRS = 1 for each of 70 data point(s)
Bootstrapping reference set formed by 70 data points and computing
radial (Debreu-Farrell) output-based measures of technical efficiency
under assumption of CRS and VRS technology for each of 70 data points
relative to the bootstrapped reference set
Smoothed homogeneous bootstrap (999 replications)

it 2t 38— f 415

p-value of the Ho that mean(F_i"CRS)/mean(F_i"VRS) = 1 (Ho that the
global technology is CRS) = 0.0010:

mean (hat{F_i"CRS})/mean(hat{F_i"VRS}) = 1.0164 is statistically greater
than 1 at the 5, significance level

All data points are scale efficient
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Test #2
Ho: mean(F_i"NiRS)/mean(F_i"VRS) = 1

Bootstrapping reference set formed by 70 data points and computing
radial (Debreu-Farrell) output-based measures of technical efficiency
under assumption of NIRS and VRS technology for each of 70 data points
relative to the bootstrapped reference set

Smoothed homogeneous bootstrap (999 replications)

it 2t 38— f 415

p-value of the Ho that mean(F_i"NiRS)/mean(F_i"VRS) = 1 (Ho that the
global technology is NiRS) = 0.0030:

mean (hat{F_i"NiRS}) /mean(hat{F_i"VRS}) = 1.0085 is statistically greater
than 1 at the 5J, significance level

. table SEffnt_hom

Indicator

variable if

statistically

scale efficient Freq.
scale efficient 70

The p-value of the null hypothesis that the global technology is CRS (test #1) using
the homogeneous smoothed bootstrap is very small, implying that CRS is not an ap-
propriate assumption. Further, the null hypothesis that the global technology is NIRS
(test #2) is also rejected. Hence, the nonparametric test of returns to scale advises
performing efficiency measurement under the assumption of VRS technology. Addition-
ally, the message A11 data points are scale efficient implies that test #1 is not
rejected for a single data point. That the global returns to scale is not CRS is at odds
with the latter finding. We now perform the test using the heterogeneous smoothed
bootstrap:

. nptestrts y1 y2 y3 = x1 x2 x3 x4 x5, base(output) heterogeneous reps(999)
> alpha(0.05) testtwo sefficient(SEffnt_het) sineffdrs(SiDRS_het)

Radial (Debreu-Farrell) output-based measures of technical efficiency
under assumption of CRS, NIRS, and VRS technology are computed for the
following data:

Number of data points (K) = 70
Number of outputs ™ =3
Number of inputs ) =5

Reference set is formed by 70 data points, for which measures of
technical efficiency are computed.
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Test #1

Ho: mean(F_i"CRS)/mean(F_i"VRS) = 1
and
Ho: F_i"CRS/F_i"VRS = 1 for each of 70 data point(s)

Bootstrapping reference set formed by 70 data points and computing
radial (Debreu-Farrell) output-based measures of technical efficiency
under assumption of CRS and VRS technology for each of 70 data points
relative to the bootstrapped reference set

Smoothed heterogeneous bootstrap (999 replications)

it 2t 38— f 415

p-value of the Ho that mean(F_i"CRS)/mean(F_i"VRS) = 1 (Ho that the
global technology is CRS) = 1.0000:

mean (hat{F_i"CRS}) /mean(hat{F_i"VRS}) = 1.0164 is not statistically
greater than 1 at the 5% significance level

Test #2
Ho: F_i"NiRS/F_i"VRS = 1 for each of 1 scale inefficient data point(s)

Bootstrapping reference set formed by 70 data points and computing
radial (Debreu-Farrell) output-based measures of technical efficiency
under assumption of NIRS and VRS technology for each of 1 data points
relative to the bootstrapped reference set

Smoothed heterogeneous bootstrap (999 replications)

i 2~ f 38—t 44— 5

. table SEffnt_het

Indicator
variable if
statistically
scale efficient Freq.

scale inefficient 1
scale efficient 69

. table SiDRS_het

Indicator variable if
statistically scale
inefficient due to DRS Freq.

scale inefficient due to DRS 1

Using the heterogeneous smoothed bootstrap, the nonparametric test fails to reject
the null hypothesis that the global technology is CRS. This means there is no need to
test that the global technology is NIRS (test #2). Performing test #1x, k = 1,...,70,
however, suggests that one of the 70 data points is scale inefficient. Because we specified
the testtwo option, test #2j is performed for this single data point to determine
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the nature of its scale inefficiency. Using the sineffdrs() option, we generated the
indicator variable SiDRS_het equal to 1 if the data point is statistically scale inefficient
due to DRS. The table SiDRS_het command identifies that the data point is scale
inefficient due to operating under the DRS portion of the technology [such as a data
point (z;,y;) in terms of figure 1]. Table 2 lists the original measures of technical
efficiency under the assumption of CRS and VRS technology, the scale efficiency measure,
the indicator variables if statistically scale efficient, and the nature of scale inefficiency.
Consider data point 1: that it is statistically scale efficient means that 1.053 is not
statistically larger than 1. Consider data point 5: that it is not statistically scale efficient
using the heterogeneous bootstrap means that 1.076 is statistically larger than 1.

Table 2. Scale analysis

# CRS® VRSP SE  Scale efficient® Scale efficient Scale inefficient due to DRS¢
(homogeneous) (heterogeneous) (heterogeneous)

1 1.087 1.032 1.053 scale efficient scale efficient

2 1.110 1.109 1.001 scale efficient  scale efficient

3 1.079 1.068 1.010 scale efficient scale efficient

4 1.119 1.107 1.011 scale efficient  scale efficient .

5 1.076 1.000 1.076 scale efficient scale inefficient scale inefficient due to DRS
6 1.108 1.105 1.002 scale efficient  scale efficient

7 1.126 1.119 1.006 scale efficient  scale efficient

8 1.111 1.104 1.006 scale efficient  scale efficient

9 1.184 1.161 1.020 scale efficient  scale efficient
10 1.077 1.055 1.021 scale efficient  scale efficient
11 1.025 1.000 1.025 scale efficient  scale efficient
12 1.028 1.000 1.028 scale efficient  scale efficient
13 1.166 1.156 1.009 scale efficient  scale efficient
14 1.076 1.016 1.059 scale efficient  scale efficient
15 1.000 1.000 1.000 scale efficient  scale efficient
16 1.065 1.052 1.012 scale efficient  scale efficient
17 1.000 1.000 1.000 scale efficient  scale efficient
18 1.000 1.000 1.000 scale efficient  scale efficient
19 1.058 1.049 1.008 scale efficient  scale efficient
20 1.000 1.000 1.000 scale efficient scale efficient
21 1.000 1.000 1.000 scale efficient scale efficient
22 1.000 1.000 1.000 scale efficient scale efficient
23 1.044 1.025 1.018 scale efficient  scale efficient
24 1.000 1.000 1.000 scale efficient scale efficient
25 1.041 1.021 1.020 scale efficient  scale efficient
26 1.074 1.060 1.013 scale efficient scale efficient
27 1.000 1.000 1.000 scale efficient scale efficient
28 1.059 1.012 1.046 scale efficient  scale efficient
29 1.206 1.180 1.023 scale efficient  scale efficient
30 1.123 1.117 1.005 scale efficient  scale efficient
31 1.202 1.193 1.007 scale efficient  scale efficient
32 1.117 1.000 1.117 scale efficient  scale efficient
33 1.079 1.049 1.028 scale efficient  scale efficient
34 1.182 1.161 1.019 scale efficient  scale efficient

2 measure of technical efficiency under the assumption of CRS

b

¢ statistically scale efficient

measure of technical efficiency under the assumption of VRS

d statistically scale inefficient due to DRS
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The nonparametric test of returns to scale concludes differently about the null hy-
pothesis depending on the type of bootstrap. This is not surprising because it is a
consequence of using an inconsistent bootstrap procedure. The results of the test are
based on correct mimicking of the data-generating process. If this is not guaranteed,
then the bootstrap procedure is inconsistent and results of the nonparametric test cannot
be trusted. For these particular data and base of efficiency measurement, the smoothed
heterogeneous bootstrap should be used.

8.2 Data: PWT5).6

For our second dataset, we use the Penn World Tables, which were used by Kumar and
Russell (2002) among others. See Summers and Heston (1991) for more details on the
dataset. The purpose of this short study is to construct a Malmquist productivity index
(MPI) between 1965 and 1990, and to perform analysis of the productivity change by
decomposing the MPI. MPI uses the output distance function, which is the reciprocal
of the Debreu—Farrell measure of technical efficiency (Caves, Christensen, and Diewert
1982; Fare, Grosskopf, and Lovell 1994a).

The Malmquist output-based productivity index from time period b to time period
c for data point k is given by

1/2
MPIOYe {Fo(yk,mxk,b,ybaxmes) » Fo(yk,b,$k,b7QC7$c|CRS)} /
g F"(yk,c,ﬂik,myb,fﬁb\CRS) Fo(yk,caxk,caycaxc‘CRs)

This index may be decomposed as

wprete — FOWnbs hbs Yo, 25| CRS)
b Fo(yk,c,zk,cayc,zc|CRS)

1/2
{Fo(yk,mxk,ca yCVIC‘CRS) Fo(yk,baxk,bay67$C|CRS) } / (10)
Fo(yk,caxk,myhxb'CRs) Fo(yk,byxk,b7yc7xc|CRS)

where F° (Y, d, Tk,d> Ya, Ta|CRS) is the Debreu—Farrell measure calculated for data point k
in time period d to the frontier formed by observations (y,,x,) under the assumption
of CRS technology. The first term in (10) measures the contribution of the technical
efficiency change to the productivity change. The second term in (10) measures the
contribution of the technical change to the productivity change:

MPI = EFF X TECH

If EFF > 1 (< 1 in input-based measurement), then the change in efficiency has pos-
itively contributed to the productivity change from time period b to time period c.
The meaning of TECH is the following: TECH > / = / < 1 implies that technical
progress/stagnation /regress has occurred between periods b and ec.
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The decomposition of the MPI in (10) can be extended. Calculating the Debreu—
Farrell measure under VRS, MPI can be decomposed into three components attributable
to 1) pure technical efficiency change (PEFF), 2) technological change (TECH), and
3) scale efficiency change (SEC) (Fére et al. 1994b). The decomposition of the output-
based MPI from time-period b to time period ¢ for data point k is given by

MPIOYE — F°(Yr by T by Yo, Tp| VRS)
Fo(yr,c, T,c, Ye, Tc|VRS)
{ Fo(Yk.c, Thocr Yo, Tc|CRS) FO(Yk by Thob, Ye, Te|CRS) }1/2
F(Yp,c, T,cs Yo, To|CRS) FO(Yk b, The by Yo Te|CRS)
SP(Yk by T b) (11)
SP(Ykcr Theyc)

where SY is scale efficiency defined in (7).

From the outset, it is not clear which of the decompositions, (10) or (11), should be
used. We first perform the nonparametric test of returns to scale using the heterogeneous
bootstrap:

. use pwtb6, clear

. reshape wide y k 1, i(nu country) j(year)
(note: j = 1965 1990)

Data long -> wide
Number of obs. 104 -> 52
Number of variables 6 -> 8
j variable (2 values) year ->  (dropped)

xij variables:
y —> yl1l965 y1990
k -> k1965 k1990
1 -> 11965 11990

. nptestrts y1965 = k1965 11965, base(output) heterogeneous reps(999) alpha(0.05)

Radial (Debreu-Farrell) output-based measures of technical efficiency
under assumption of CRS, NIRS, and VRS technology are computed for the
following data:

Number of data points (K) = 52

Number of outputs m =1

Number of inputs m =2
Reference set is formed by 52 data points, for which measures of
technical efficiency are computed.

Test #1
Ho: mean(F_i"CRS)/mean(F_i"VRS) = 1

and
Ho: F_i"CRS/F_i"VRS = 1 for each of 52 data point(s)

Bootstrapping reference set formed by 52 data points and computing
radial (Debreu-Farrell) output-based measures of technical efficiency
under assumption of CRS and VRS technology for each of 52 data points
relative to the bootstrapped reference set

Smoothed heterogeneous bootstrap (999 replications)
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p-value of the Ho that mean(F_i"CRS)/mean(F_i"VRS) = 1 (Ho that the
global technology is CRS) = 0.9860:

mean (hat{F_i"CRS}) /mean(hat{F_i"VRS}) = 1.1196 is not statistically
greater than 1 at the 5% significance level

All data points are scale efficient

The null hypothesis that the global technology is CRS cannot be rejected. And
anyway, all the countries are scale efficient, so that the third component in (11) is
essentially 1. We therefore proceed with decomposition (10). We calculate the required
efficiency measures as follows:

. teradial y1965 = k1965 11965 (y1965 = k1965 11965), rts(crs) base(output)
> tename(F11) noprint

. teradial y1990 = k1990 11990 (y1965 = k1965 11965), rts(crs) base(output)
> tename(F21) noprint

. teradial y1965 = k1965 11965 (y1990 = k1990 11990), rts(crs) base(output)
> tename(F12) noprint

. teradial y1990 = k1990 11990 (y1990 = k1990 11990), rts(crs) base(output)
> tename (F22) noprint

. generate mpi = sqrt(F12 / F22 * F22 / F21)
(7 missing values generated)

. generate effch = F11 / F22

. generate techch = mpi / effch
(7 missing values generated)

We present the results of the decomposition for the first 34 out of 52 data points in
table 3, and we discuss selected results.

Argentina was on the frontier in 1965 but moved away from the 1990 frontier. Hong
Kong was quite inefficient in 1965, but in 1990 it defines the frontier. We also observe
that the productivity of industrialized countries such as Australia, Austria, and Belgium
has increased, while productivity has fallen for Argentina, Bolivia, and Ecuador, among
others. The productivity has increased, for example, in Australia because of both
improved efficiency and improved technology. In Bolivia, the main reason for decreased
productivity was loss in efficiency. In Malawi, on the contrary, efficiency change has
positively contributed to the growth of productivity, but technology has deteriorated so
much that overall productivity has decreased.




582

9 Sample restriction, discussion, and runtime

Table 3. Measures of technical efficiency and MP1

# Country 19652 1990 MPI EFFch TECHch
1 Argentina 1.000 1.546 0.818 0.647 1.264
2 Australia 1.277 1.202 1.062

3 Austria 1.174 1.374 1.260 0.854 1.475
4 Belgium 1.419 1.153 1.549 1.231 1.258
5 Bolivia 2.002 2.457 0.948 0.815 1.163
6 Canada 1.247 1.046 . 1.193 .

7 Chile 1.180 1.549 0.889 0.762 1.167
8 Columbia 2.415 2.243 1.062 1.077 0.987
9 Denmark 1.324 1.432 1.240 0.924 1.342
10 Dominican Rep. 1.383 1.953 0.914 0.708 1.291
11 Equador 2.664 2.756 0.961 0.966 0.994
12 Finland 1.963 1.303 . 1.506 .
13 France 1.257 1.208 1.437 1.040 1.381
14 Germany, West 1.450 1.204 . 1.204

15 Greece 1.828 1.673 1.119 1.093 1.025
16 Guatemala 1.228 1.369 1.037 0.897 1.156
17 Honduras 2.224 2.431 1.022 0.915 1.117
18 Hong Kong 2.202 1.000 1.519 2.202 0.690
19 Iceland 1.041 1.146 0.997 0.909 1.097
20 India 2.723 2.417 1.226 1.127 1.088
21 Ireland 1.411 1.184 1.134 1.192 0.952
22 Israel 1.664 1.192 1.238 1.396 0.887
23 Ttaly 1.490 1.131 1.443 1.318 1.096
24 Jamaica 1.774 1.930 1.017 0.919 1.107
25 Japan 1.684 1.617 1.447 1.041 1.390
26 Kenya 3.902 3.411 1.328 1.144 1.161
27 Korea, Rep 2.309 1.632 1.228 1.415 0.868
28 Malawi 3.515 2.996 0.621 1.173 0.529
29 Mauritius 1.062 1.025 1.115 1.036 1.076
30 Mexico 1.171 1.347 0.950 0.869 1.093
31 Netherlands 1.190 1.130 1.285 1.054 1.219
32 New Zealand 1.175 1.406 1.148 0.836 1.373
33 Norway 1.000 1.210 . 0.826 .
34 Panama 2.266 3.021 0.859 0.750 1.146

#measure of technical efficiency under the assumption of

CRS in 1965

b

CRS in 1990

3 Technical note

measure of technical efficiency under the assumption of

Nonparametric frontier analysis

All functions create Stata matrices and feed them to plugins. The number of data
points that can be used in all functions is thus limited by matsize (see [R] matsize).
Stata/IC allows a maximum of 800, while Stata/MP and Stata/SE allow up to 11,000.

]

3 Technical note

Earlier versions of Stata can probably also be used but have not been tested.

Stata 11.2 and above can be used to run the new commands described in this article.

u]
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3 Technical note

Plugins for solving linear programming problems use the quickhull algorithm (Bar-
ber, Dobkin, and Huhdanpaa [1996]; http://www.qhull.org/) and GLPK version 4.55
(GNU Linear Programming Kit [2012]; available at http://www.gnu.org/software/glpk/)
coded in C. The required plugins are compiled with C code. The plugins are available

for Mac OS X, Ubuntu, and Windows systems. a

Because the linear programming is coded in low-level language, the new commands
are very fast. We have recorded the time required to do the calculations in this pa-
per. The calculations were computed on an iMac (late 2012) desktop with a 2.9 GHz
Processor.

. timer clear
. timer on 1

. use ccr81, clear
(Program Follow Through at 70 US Primary Schools)

. generate dref = x5 != 10

. tenonradial y1 y2 y3 = x1 x2 x3 x4 x5, rts(crs) base(output) reference(dref)
> tename (TErdCRSo) noprint

. timer off 1
. timer on 2

. nptestind y1 y2 y3 = x1 x2 x3 x4 x5, rts(crs) base(output) reps(999)
> alpha(0.05) noprint

. timer off 2
. timer on 3

. teradialbc y1 y2 y3 = x1 x2 x3 x4 x5, rts(vrs) base(output) reference(dref)
> reps(999) tebc(TErdVRSoBC1) biassqvar (TErdVRSoBC1lbv) telower (TErdVRSoLB1)
> teupper (TErdVRSoUB1) noprint

. timer off 3
. timer on 4

. teradialbc yl1 y2 y3 = x1 x2 x3 x4 x5, rts(vrs) base(output) reference(dref)
> heterogeneous reps(999) tebc(TErdVRSoBC2) biassqvar (TErdVRSoBC2bv)

> telower (TErdVRSoLB2) teupper (TErdVRSoUB2) noprint

. timer off 4

. timer on 5

. nptestrts y1 y2 y3 = x1 x2 x3 x4 x5, base(output) reps(999) alpha(0.05)
> sefficient (SEffnt_hom)

Radial (Debreu-Farrell) output-based measures of technical efficiency
under assumption of CRS, NIRS, and VRS technology are computed for the
following data:

Number of data points (K) = 70
Number of outputs m =3
Number of inputs (N) =5

Reference set is formed by 70 data points, for which measures of
technical efficiency are computed.
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Test #1

Ho: mean(F_i"CRS)/mean(F_i"VRS) = 1
and
Ho: F_i"CRS/F_i"VRS = 1 for each of 70 data point(s)

Bootstrapping reference set formed by 70 data points and computing
radial (Debreu-Farrell) output-based measures of technical efficiency
under assumption of CRS and VRS technology for each of 70 data points
relative to the bootstrapped reference set

Smoothed homogeneous bootstrap (999 replications)

it 2t 38— f 415

.................................................. 100
.................................................. 150
.................................................. 200
.................................................. 250
.................................................. 300
.................................................. 350
.................................................. 400
.................................................. 450
.................................................. 500
.................................................. 550
.................................................. 600
.................................................. 650
.................................................. 700
.................................................. 750
.................................................. 800
.................................................. 850
.................................................. 900
.................................................. 950

p-value of the Ho that mean(F_i"CRS)/mean(F_i"VRS) = 1 (Ho that the
global technology is CRS) = 0.0050:

mean (hat{F_i"CRS})/mean(hat{F_i"VRS}) = 1.0164 is statistically greater
than 1 at the 5, significance level

All data points are scale efficient

. timer off 5
. timer on 6

. nptestrts y1 y2 y3 = x1 x2 x3 x4 x5, base(output) heterogeneous reps(999)
> alpha(0.05) sefficient(SEffnt_het)

Radial (Debreu-Farrell) output-based measures of technical efficiency
under assumption of CRS, NIRS, and VRS technology are computed for the
following data:

Number of data points (K) = 70
Number of outputs ™ =3
Number of inputs (N) =5

Reference set is formed by 70 data points, for which measures of
technical efficiency are computed.
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Test #1

Ho: mean(F_i"CRS)/mean(F_i"VRS) = 1

and
Ho: F_i"CRS/F_i"VRS = 1 for each of 70 data point(s)
Bootstrapping reference set formed by 70 data points and computing
radial (Debreu-Farrell) output-based measures of technical efficiency
under assumption of CRS and VRS technology for each of 70 data points
relative to the bootstrapped reference set

Smoothed heterogeneous bootstrap (999 replications)
T 1 T 2 T 3 T 4 T 5

.................................................. 100
.................................................. 150
.................................................. 200
.................................................. 250
.................................................. 300
.................................................. 350
.................................................. 400
.................................................. 450
.................................................. 500
.................................................. 550
.................................................. 600
.................................................. 650
.................................................. 700
.................................................. 750
.................................................. 800
.................................................. 850
.................................................. 900
.................................................. 950

p-value of the Ho that mean(F_i"CRS)/mean(F_i"VRS) = 1 (Ho that the
global technology is CRS) = 1.0000:

mean (hat{F_i"CRS})/mean(hat{F_i"VRS}) = 1.0164 is not statistically
greater than 1 at the 5% significance level

All data points are scale efficient

. timer off 6

. timer list

1: 0.13 / 1= 0.1330
2 2.63 / 1= 2.6350
3: 9.26 / 1= 9.2560
4: 19.85 / 1= 19.8490
5 299.50 / 1= 299.5040
6 1095.99 / 1= 1095.9890

tenonradial is trivial and runs instantly. This remains true even if the dataset
has a sample size of several thousands. nptestind is also quite fast but may slow
down as the sample size grows. The smoothed homogeneous bootstrap in teradialbc
runs relatively quickly on small samples (9 seconds), but the heterogeneous bootstrap
is more demanding (20 seconds) and that time will increase with sample size. Running
the nonparametric test of returns to scale, nptestrts, is the most involved because,
instead of doing calculations for each of K data points on each bootstrap replication as in
teradialbc, the binomial test requires bootstrap replications for each of K data points
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independently. This is time demanding, especially when the smoothed heterogeneous
bootstrap is used. On a sample of 70 data points, it took about 5 minutes for the
homogeneous bootstrap and 18 minutes for the heterogeneous bootstrap.

Displaying dots does not add to the output but rather indicates how long the whole
bootstrap is going to take. It can be suppressed by specifying the nodots option in each
of the new commands.

10 Comparison with the dea command

The new command teradial performs radial technical efficiency analysis, which the
user-written command dea (Ji and Lee 2010) also offers. The latter command has two
serious limitations for a practitioner. First, it is slow with even moderate datasets.
We have recorded the time it takes to compute an input-based measure of technical
efficiency under VRS using both commands for samples of 10 to 70 in steps of 10 data
points:

. use ccr81, clear
(Program Follow Through at 70 US Primary Schools)

. rename nu dmu
. timer clear

. * number of observations: 10(10)70
. forvalues nobs 10(10)704{
2. 1local nobs “nobs”
local nobs2 = "nobs”™ + 1
timer on “nobs”
quietly dea x1 x2 x3 x4 x5 = y1 y2 y3 in 1/ nobs”, rts(vrs) ort(in)
timer off “nobs”
timer on “nobs2”
8. quietly teradial y1 y2 y3 = x1 x2 x3 x4 x5 in 1/ nobs”, rts(vrs)
> base(input) tename(TErdVRSi_ nobs~)
9. timer off “nobs2~

~NoO oW

10. }

. timer list
10: 8.85 / 1= 8.8470
11: 0.00 / 1= 0.0030
20: 33.87 / 1= 33.8680
21: 0.01 / 1= 0.0070
30: 71.71 / 1= 71.7090
31: 0.02 / 1= 0.0180
40: 849.43 / 1= 849.4260
41: 0.04 / 1= 0.0360
50: 1067.00 / 1= 1066.9960
51: 0.09 / 1= 0.0890
60: 1839.14 / 1= 1839.1440
61: 0.15 / 1= 0.1470
70: 1990.05 / 1= 1990.0520
71: 0.22 / 1= 0.2180

The time it takes increases for both dea and teradial, but dea becomes slow very
quickly. For a sample size of 70 data points, teradial completes in a fifth of a second,
while dea needs 33 minutes. This can be a real bottleneck in actual empirical analysis.
Thus, using dea for making statistical inference is next to infeasible.
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Second, teradial can calculate the measure of technical efficiency of a data point
relative to the frontier defined by the user by specifying the reference () option. This is
required, for example, for analysis of productivity change as demonstrated in section 8.2.
Such analysis is not possible using dea.

11 Concluding remarks

We introduced five new Stata commands that fit and provide statistical inference in
nonparametric frontier models. tenonradial and teradial calculate nonradial Russell
and radial Debreu—Farrell measures of technical efficiency, respectively. The measures
can be computed for different assumptions about the technology and base of the anal-
ysis, as well as relative to the frontier formed by data points provided by the user.
These frontier models are deterministic, and resulting measures are subject to sampling
variation.

teradialbc can accommodate different types of bootstrapping techniques to pro-
vide statistical inference regarding these deterministic measures. For obtaining reliable
results from teradialbc, the bootstrap type must correctly mimic the data-generating
process. nptestind provides a simple tool to determine the type of bootstrap consistent
with the data. Finally, nptestrts uses the bootstrap to provide inference with regard
to the underlying technology and performs a scale analysis of each data point.

We have presented two empirical examples. In the first example, we illustrated the
capabilities of the new commands and discussed the implications for empirical analysis.
In the second example, we showed that these commands can be used to analyze the
changes in productivity for 52 countries from 1965 to 1990.
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