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Abstract. We provide a command, locmtest, that implements a test for exogene-
ity that is robust when the true relationship between the outcome variable and a
discrete potentially endogenous variable is nonlinear. This test was developed in
Lochner and Moretti (2015, Review of Economics and Statistics 97: 387–397), and
it can be implemented even when only a single valid instrument is available. We
present the motivation and general idea of the test. We also describe locmtest,
which calculates the test, and provide empirical applications of the test and the
command.
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1 Introduction

Recent work by Lochner and Moretti (2015) develops a new test for exogeneity that
is robust to nonlinearities in the relationship between the outcome variable and a dis-
crete potentially endogenous variable. Nonlinear relationships arise naturally in many
economic applications, as in the case of schooling and earnings where there is the pos-
sibility of finding sheepskin effects of education on earnings. In such cases, even though
the potentially endogenous variable enters the relationship nonlinearly, the estimation
approach often assumes it enters linearly and applies a Hausman test. However, in the
presence of these nonlinearities, the Hausman test is uninformative about exogeneity of
the potentially endogenous variable.

To better understand Lochner and Moretti’s (2015) test, let’s suppose we are inter-
ested in estimating the effect of variable si on outcome yi, where si ∈ {0, 1, 2, 3, . . . , S},
and that in the population, the conditional mean of yi is given by

yi =

S∑
j=1

Dijβj + x′
iγ + εi (1)

c© 2016 StataCorp LP st0454
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where Dij = 1(si ≥ j) is an indicator that equals 1 if si ≥ j and 0 otherwise,1 E(εi) = 0,
and E(εi|xi) = 0, so that xi is a k × 1 vector of exogenous covariates (including an
intercept).2 If si is potentially endogenous in (1), instrumental-variable (IV) estimation
requires several valid instruments, yet we are typically limited with the number of valid
instruments at hand.3 As a result, researchers typically estimate specifications that
assume a linear relation between yi and si such as

yi = siβ
L + x′

iγ
L + νi (2)

where xi is the same vector of covariates (including an intercept) that appears in (1).4

Equation (2) is commonly used in empirical studies, and it implicitly assumes that the
effect of si on the outcome is uniform across all levels of si, while (1) allows si to affect
the outcome variable differently for different levels of si.

Lochner and Moretti (2015) show that estimating (2) when the true relationship is
described by (1) can lead to different ordinary least-squares (OLS) and IV or two-stage
least-squares (2SLS) estimates even in the absence of endogeneity. The problem is that
conclusions about the exogeneity of si in (2) are typically based on the comparison
of the OLS and IV or 2SLS estimates (as in the standard Hausman test)—hence the
potential of incorrectly rejecting exogeneity of si when the problem is a misspecifica-
tion of the relationship between si and the outcome variable. The test proposed by
Lochner and Moretti (2015) is robust to this misspecification and has the advantage of
requiring only a single instrument that can be binary.

Note that the test developed in Lochner and Moretti (2015) does not apply to all
nonlinear models, only the specific case described in (1) and (2). It also follows from
these two equations that three conditions are crucial: i) a single finite-valued discrete
potentially endogenous regressor si must be present; ii) exogenous regressors xi are
additively separable and enter the equation linearly; and iii) all coefficients are homo-
geneous in the population. These assumptions are usually made in many empirical
studies.

Section 2 shows that estimates of β̂L in the linear specification (2) when the nonlinear
specification (1) is the correct one lead to different weighted averages for OLS and IV or
2SLS, which can in turn lead to the wrong conclusion if the standard Hausman test is
applied. Section 3 describes the test for exogeneity. Section 4 describes the locmtest

command to compute the Lochner–Moretti (LM) test for exogenity. Finally, section 5
presents three examples in which the LM test and the command can be used to test
exogeneity of years of education with a discrete potentially endogenous variable in many
empirical studies.

1. Note that to avoid perfect multicollinearity, we provide no dummy variable for the first category
of si.

2. Because (1) is a specification for the conditional mean of yi, exogeneity of xi requires E(εi|xi) = 0.
However, all results presented below hold under the weaker assumption E(xiεi) = 0.

3. For example, if si represents years of education, S could be 18, and so we would need to estimate
18 different grade-specific βj parameters associated with all levels of schooling.

4. Recall that this vector of covariates is exogenous in (1).
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2 The motivation of the LM test

To develop their test for exogeneity, Lochner and Moretti (2015) start by noticing that

under standard IV assumptions, IV estimates of β̂L in the linear specification (2) con-
verge in probability to a weighted average of the level-specific βj from the nonlinear
specification (1).5 To see this, consider the case in which one valid instrument zi is
available, and it is used to estimate βL in (2), which is the coefficient in the potentially
endogenous variable si. Define the annihilator matrix Mx = I − x(x′x)−1x′, and for
any variable w, let w̃ = Mxw. Then, the IV estimator of βL is given by

β̂L
IV = (z′Mxs)

−1z′Mxy

= (z′Mxs)
−1z′Mx

⎛⎝ S∑
j=1

Djβj + xγ + ε

⎞⎠
=

S∑
j=1

ω̂IV
j βj + (z̃′s̃)−1

z̃ε

where Dj is the N × 1 vector of indicator variables corresponding to level j, ω̂IV
j =

(z̃′s̃)−1z̃′Dj , and ε is the N × 1 vector of error terms in (1).

Next, to derive the probability limit of β̂L
IV and the necessary assumptions for con-

vergence to that limit, we consider two linear projections: i) the linear projection of
si on xi given by si = x′

iδs + ηi, where δs = {E(xix
′
i)}−1E(xisi) by construction

and E(xiηi) = 0; and ii) the linear projection of zi on xi given by zi = x′
iδz + ζi,

where δz = {E(xix
′
i)}−1E(xizi) by construction and E(xiζi) = 0. Finally, consider the

following assumption:

Assumption 1. The instrument is uncorrelated with the error in the population out-
come equation, E(ziεi) = 0, and correlated with si after linearly controlling for xi,
E(ziηi) �= 0.

Then, Lochner and Moretti (2015) show that if assumption 1 holds,

β̂L
IV

p−→
S∑

j=1

ωIV
j βj (3)

and the weights ωIV
j sum to 1 over all j = 1, 2, . . . , S and can be written as

ωIV
j =

Pr(si ≥ j|xi)E(ζi|si ≥ j)
S∑

q=1

Pr(si ≥ q|xi)E(ζi|si ≥ q)

≥ 0

5. Other studies have also noticed that estimates from a misspecified linear model yield weighted
averages of the level-specific effects, for example, Yitzhaki (1996), Angrist and Imbens (1995), and
Heckman, Urzua, and Vytlacil (2006).
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The sample analogs of the IV weights ωIV
j are given by ω̂IV

j = (z̃′s̃)−1z̃′Dj , which are
simply the IV estimates of the coefficient on si using zi as an instrument for si in the
regressions given by

Dij = ωjsi + x′
iαj + ψij , j = 1, 2, . . . , S (4)

Given the assumptions above, it can be shown that ω̂IV
j

p−→ ωIV
j .

A difficulty with the IV weights is that they can be negative, which complicates
their interpretation. If a condition that Lochner and Moretti (2015) call “monotonic-
ity” holds, then the weights are all nonnegative. This condition is very similar to the
monotonicity assumption in Imbens and Angrist (1994) and requires that increases in
zi causes everyone to weakly increase si or causes everyone to weakly decrease si.

6

Note that monotonicity is often a point of contention in applied work (see Barua and
Lang [2009], de Chaisemartin [2014], Aliprantis [2012], and Klein [2010]).7 However, the

monotonicity assumption is necessary neither to derive the probability limit of β̂L
IV nor

to derive the Wald test presented below. Nonetheless, if satisfied, the monotonicity
assumption facilitates interpretation of the IV weights.

The case of estimation with multiple instruments zi = (zi1, . . . , ziI) that leads to
the 2SLS estimator of βL in (2) also converges in probability to a weighted average, and
the weights can also be consistently estimated from the data. For this result to hold,
it is necessary to have sufficient variation in the instruments conditional on xi. That
is, consider the linear projection of each instrument zil on xi given by zil = x′

iδzl + ζil,
where δzl = {E(xix

′
i)}−1E(xizil) by construction and E(xiζil) = 0 for l = 1, 2, . . . , I.

Let ζi = (ζi1, . . . , ζiI)
′. Then, for the result to hold, it is necessary that the following

assumption holds:

Assumption 2. The covariance matrix for zi after controlling for xi, E(ζiζ
′
i), is full

rank.

Thus Lochner and Moretti (2015) show that if assumptions 1 and 2 hold,

β̂L
2SLS

p−→
S∑

j=1

ω2SLS
j βj (5)

where the weights ω2SLS
j sum to 1 over all j = 1, 2, . . . , S. The overall intuition is

similar to the case of a single instrument, but the weights formulation is more cum-
bersome, so we leave it to the reader to verify these in the article (see proposition 2
of Lochner and Moretti [2015, 391]). Nonetheless, the 2SLS weights ω2SLS

j can also be
consistently estimated, and they are the 2SLS estimates of the coefficient on si using
zi = (zi1, . . . , ziI) as instruments for si in the regressions in (4).

6. That is, if two levels of the IV zi, zi = z0 and zi = z1, where z1 > z0, then Pr{si(z1) < si(z0)} = 0
if si is weakly increasing in zi or Pr{si(z1) > si(z0)} = 0 if si is weakly decreasing in zi.

7. We thank an anonymous referee for pointing out this to us.
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Finally, to see why the standard Hausman test can lead to the incorrect conclusion
in this framework, we consider the OLS estimation of (2). The OLS estimator of βL is
given by

β̂L
OLS = (s′Mxs)

−1s′Mxy

=
S∑

j=1

ω̂OLS
j βj + (s̃′s̃)−1s̃ε

where ω̂OLS
j = (s̃′s̃)−1s̃′Dj . Then, in the absence of endogeneity—that is, if the condi-

tion E(ε|si) = 0 holds—it can be shown that

β̂L
OLS

p−→
S∑

j=1

ωOLS
j βj (6)

where the weights ωOLS
j are nonnegative, sum to 1 over all j = 1, 2, . . . , S, and can be

written as

ωOLS
j =

Pr(si ≥ j|xi)E(ηi|si ≥ j)
S∑

q=1

Pr(si ≥ q|xi)E(ηi|si ≥ q)

The sample analog of the OLS weights ωOLS
j is simply the OLS estimates of the coefficient

on si in the regressions in (4), and given the exogeneity assumptions above, it can be

shown that ω̂OLS
j

p−→ ωOLS
j .

The standard Hausman test is based on the difference between the OLS and IV or 2SLS

estimates. However, the analysis presented above illustrates that even in the absence of
endogeneity, the OLS and IV or 2SLS estimators converge to different weighted averages;
see (3), (5), and (6). If the OLS and IV or 2SLS weights are substantially different,
this can produce different OLS and IV or 2SLS estimates, which in turn can lead to
rejecting exogeneity using the standard Hausman test. The next section presents the
test for exogeneity developed in Lochner and Moretti (2015) that is robust to this type
of misspecification.

3 Wald test for consistency of OLS of all βj’s

Lochner and Moretti (2015) notice if si is exogenous, so that E(εi|si) = 0, then OLS

estimates of B = (β1, . . . , βS) in the nonlinear specification (1) are consistent. Thus this

result combined with the results in the probability limit of β̂L
2SLS, given in (5), suggests

that if one uses i) consistent estimators of the 2SLS weights, ω′
2SLS = (ω2SLS

1 , . . . , ω2SLS
S ),

and ii) consistent estimators for the level-specific effects of si on outcome yi, that is

B = (β1, . . . , βS), the weighted average ω̂2SLSB̂ would have the same probability limit

as β̂L
2SLS. In other words,

β̂L
2SLS − ω̂′

2SLSB̂
p−→ 0 (7)

which will not be true in general if E(εiDij) �= 0 for any j.
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The test is derived in two steps: i) frame estimation of all parameters as a stacked
generalized method of moments (GMM) problem to derive their asymptotic distribution
and ii) use of the delta method to derive the asymptotic distribution of the transforma-
tion suggested by (7). To write the system GMM, we define the following vectors and
matrices, X1i = (D′

i x
′
i), X2i = (si x

′
i), Z2i = (z′i x

′
i), and

Xi =

(
X1i 0
0 I2 ⊗X2i

)
, Zi =

(
X1i 0
0 I2 ⊗ Z2i

)
, Yi =

⎛⎝ yi
yi
Di

⎞⎠ , and

Ui =

⎛⎝εiνi
ψi

⎞⎠
where I2 is an (S+1) identity matrix and the 0s reflect conformable matrices of 0s. We
define the vector of parameters as

θ = (B′, γ′, βL, γL
′
, ω1, α

′
1, . . . , ωS , α

′
S)

which is of dimension {2S + 1 + (S + 2)k} × 1, so the system of equations is given by

Yi = Xiθ +Ui

and the GMM estimator of θ is defined by

θ̂ = arg min
θ ∈ Θ

{
1

n

∑
i

Z′
i(Yi −Xiθ)

}′
Ω̂

{
1

n

∑
i

Z′
i(Yi −Xiθ)

}

where the weighting matrix Ω̂ = [1/n
∑

i Z
′
iZi]

p−→ E(Z′
iZi)

−1 = Ω, which is a sym-
metric and positive-definite matrix. Then, if assumptions 1 and 2 hold,

√
n
(
θ̂ − θ

)
d−→ N(0, V )

and it is straightforward to show that

V = {E(X′
iZi)ΩE(Z′

iXi)}−1
E(X′

iZi) Ω E(Z′
iUiU

′
iZi) Ω E(Z′

iXi)

{E(X′
iZi)ΩE(Z′

iXi)}−1

or, more compactly,
V = AΛA′

where

A = {E(X′
iZi)ΩE(Z′

iXi)}−1
E(X′

iZi) Ω

Λ = E(Z′
iUiU

′
iZi)

and the sample analogs of A and Λ are given by

Â =

(
[X′

1X1]
−1 0

0 I2 ⊗ {X′
2Z2[Z

′
2Z2]

−1Z′
2X2}−1X′

2Z2[Z
′
2Z2]

−1

)
(8)
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and

Λ̂ =
1

N

N∑
i=1

⎛⎜⎝ ε̂2i (X
′
1iX1i) ε̂iν̂i(X

′
1iZ2i) ε̂iΨ̂

′
i ⊗ (X′

1iZ2i)

ε̂iν̂i(Z
′
2iX1i) ν̂2i (Z

′
2iZ2i) ν̂iΨ̂

′
i ⊗ (Z′

2iZ2i)

ε̂iΨ̂i ⊗ (Z′
2iX1i) ν̂iΨ̂i ⊗ (Z′

2iZ2i) Ψ̂iΨ̂
′
i ⊗ (Z′

2iZ2i)

⎞⎟⎠ (9)

where ε̂i = yi −D′
iB̂ − x′

iγ̂, ν̂i = yi − siβ̂
L
2SLS − x′

iγ̂
L, and Ψ̂i = Di − siω̂

2SLS − α̂′xi.

Next, we consider the transformation T (·) : R(2S+1+(S+2)k) → R
1, defined by T (θ) =

(βL − ω′
2SLSB), which has continuous first derivatives given by

G = {−ω′,0′
x, 1,0

′
x, (−β1,0′

x), . . . (−βs,0′
x)}

where 0x is a k×1 vector of 0s, so that the dimension of the Jacobian vector G is equal
to 1× {2S + 1 + (S + 2)k}. Then, using (7) and the delta method, we see that

√
n
{
T
(
θ̂
)
− T (θ)

}
d−→ N(0,GVG′)

A consistent estimator of the asymptotic variance of T (θ̂) is given by ĜV̂Ĝ′, where

Ĝ =
{
−ω̂′,0′

x, 1,0
′
x,
(
−β̂1,0′

x

)
, . . .

(
−β̂s,0′

x

)}
and V̂ = ÂΛ̂Â′ is given by (8) and (9).

The main result of Lochner and Moretti (2015) is summarized in the following the-
orem:

Theorem 3. Under assumptions 1 and 2, if E(εi|si) = 0, then

Wn = n

⎧⎪⎨⎪⎩
(
β̂L
2SLS − ω̂′

2SLSB̂
)2

ĜV̂Ĝ′

⎫⎪⎬⎪⎭ d−→ χ2(1)

As Lochner and Moretti (2015) note, this Wald test represents only a partial so-
lution to the problem of estimating multiple per-unit treatment effects with limited
instruments. This is because if the test fails to reject exogeneity, then researchers can
gain some confidence in the OLS estimates of B = (β1, . . . , βS) in (1); but if the test
rejects exogeneity, it does not provide any help in fitting the true model.

Lochner and Moretti (2015) also note that failure to reject exogeneity, which sug-

gests that T (θ̂)
p−→ 0, may not imply that the OLS estimates of B = (β1, . . . , βS) are

consistent for two reasons. First, this test cannot tell anything about whether β̂j
p−→ βj

for some j if ωj = 0; however, the rest of the OLS estimates would be consistent. Second,

β̂j may be upward biased for some j and downward biased for others; however, if ωj > 0

for all j and E(εjDij) are either all nonnegative or all nonpositive, then all β̂j are biased

in the same direction, so failure to reject exogeneity implies that B̂ are consistent.
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Monte Carlo simulations performed by Lochner and Moretti (2015) show that for
1,000 observations, the Wald test proposed by Lochner and Moretti (2015) performs
similarly to the Durbin–Wu–Hausman (DWH) test when si is exogenous and the true
specification is given by (2), both rejecting 5% of the time at a significance level of 0.05.
If the true relation between yi and si is nonlinear, the LM test continues to reject 5%
of the time, while the DWH rejects at an increasing rate as the degree of nonlinearity
increases (see online appendix B of Lochner and Moretti [2015]). The three numerical
examples provided in section 5 have sample sizes larger than 1,000 observations, so the
asymptotic results should work well.

4 The locmtest command

4.1 Syntax

locmtest depvar (varlist1 = varlist iv)
[
indepvars

] [
if
] [

, graph

coefficients
]

where depvar is the dependent variable to be used, varlist1 is the discrete endogenous
variable, varlist iv is the set of instruments, and indepvars is a list of exogenous vari-
ables. While this command permits factor variables in indepvars (see [U] 11.4.3 Factor
variables), it does not permit factor variables in varlist iv.

4.2 Options

graph displays a graph of the estimated level-specific OLS coefficients from (1), B =
(β1, . . . , βS), the estimated OLS weights, ω̂′

OLS = (ω̂OLS
1 , . . . , ω̂OLS

S ), and the esti-
mated 2SLS weights, ω̂′

2SLS = (ω̂2SLS
1 , . . . , ω̂2SLS

S ).

coefficients displays a matrix of the estimated level-specific OLS coefficients from
(1), B = (β1, . . . , βS), the estimated OLS weights, ω̂′

OLS = (ω̂OLS
1 , . . . , ω̂OLS

S ), the
estimated 2SLS weights, ω̂′

2SLS = (ω̂2SLS
1 , . . . , ω̂2SLS

S ), and their standard errors.
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4.3 Stored results

locmtest stores the following in e():

Scalars
e(BLols) OLS coefficient on the endogenous regressor from the linear equation
e(SDBLols) standard error of OLS coefficient on the endogenous regressor from the

linear equation
e(BLiv) 2SLS coefficient on the endogenous regressor from the linear equation
e(SDBLiv) standard error of 2SLS coefficient on the endogenous regressor from the

linear equation
e(DIVOLS) difference between e(BLiv) and e(BLols)
e(SDDIVOLS) standard error of difference between e(BLiv) and e(BLols)
e(WBols) reweighted OLS using 2SLS weights
e(SDWBols) standard error of reweighted OLS
e(T) difference between e(BLiv) and e(WBols)
e(SDT) standard error of difference between e(BLiv) and e(WBols)
e(wm) LM test statistic
e(pwm) p-value of LM test statistic
e(nw) näıve Wald test statistic
e(pnw) p-value of näıve Wald test statistic
e(dwh) DWH test statistic
e(pdwh) p-value of DWH test statistic

Matrices
e(B) OLS coefficients on dummies in the nonlinear equation
e(VB) standard errors of OLS coefficients on dummies in the nonlinear equation
e(Wols) OLS weights
e(VWols) standard errors of OLS weights
e(W) 2SLS weights
e(VW) standard errors of 2SLS weights

5 Implementing the LM test

5.1 Example 1

To demonstrate this test, we first use data from Card (1995a), who estimates the effect
of education on earnings using the following specification,

lnwi = siβ
L + x′

iγ
L + νi (10)

where lnwi is the logarithm of the hourly earnings, si ∈ {1, 2, . . . , 18} is years of edu-
cation, and xi is a vector of covariates including the constant. The concern is that in
this case, si is endogenous because there are unobserved individual characteristics that
determine both earnings and the years of education, for example, an individual’s unob-
served ability. Card (1995a) uses an IV approach to estimate βL, and the instrument
used, zi, is an indicator variable equal to one if the individual grew up in a local labor
market with a four-year college and zero otherwise.

In this case, the monotonicity condition would require that an individual who grew
up in a local labor market with a four-year college would get at least as much education
as that individual would have gotten if he or she had grown up in a local labor market
without a four-year college. However, remember that this condition is not necessary for
the validity of the results that we present below.
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Now, suppose that in the population, the relationship between lnwi and si is non-
linear because of sheepskin effects and can be written as

lnwi =
18∑
j=2

Dijβj + x′
iγ + εi

Then, even if si is exogenous so that E(εi|si) = 0, we could obtain different estimates
from OLS and IV using (10), which can lead to the incorrect conclusion if we use only
the standard Hausman test—hence, the relevance of the LM test.

To implement the LM test, we have lnw = lwage, s = educ, and z = near4. The
covariates include only the constant, labor market experience, and its square. Applying
the test yields the following results:

. use http://www.stata.com/data/jwooldridge/eacsap/card

. locmtest lwage (educ = nearc4) exper expersq

===================================================
Output for the Lochner & Moretti (2015) Wald Test
===================================================

Output Variable y: lwage
Endogenous Variable s: educ
Instruments z: nearc4

Number of observations = 3010
Number of Categories of Endogenous variable is: 18
Number of Dummies is: 17

The number of Excluded Instruments is: 1

Estimated Coefficients

Coef. Std. Err.

OLS .09317071 .00357785
IV .25871555 .03373941

RWOLS .09072257 .00573885

Estimated Test Statistics
Test p-value

LM-Wald 24.196549 8.699e-07
Naive Wald 30.124769 4.051e-08

DWH Test 41.823869 1.162e-10

NOTES:

RWOLS = Reweighted OLS using TSLS Weights

LM-Wald = Lochner-Moretti Wald Test

Naive Wald = [ (IV - OLS) / SD(IV-OLS) ]^2

DWH Test: Durbin-Wu-Hausman Test (Augmented Regression)



M. P. Babington and J. Cano-Urbina 771

Note that the OLS and IV estimates of βL from (10) are different. In particular, the IV

estimate is larger than the OLS estimate, contrary to the common idea that the endo-
geneity of schooling would overestimate the effect of education in OLS. While there are
several explanations to this result, such as measurement error and individual heterogene-
ity in the effects of schooling (see Card [1995b]), nonlinearity in the earnings–schooling
relationship may play a role. This seems particularly relevant given the possible sheep-
skin effects. In this framework, both the näıve Wald and DWH tests reject exogeneity.
The LM test also rejects exogeneity, which lowers the concerns that the conclusions from
the former tests are due to misspecification.

5.2 Example 2

Next, we use one of the examples of Lochner and Moretti (2015). This example is
based on Lochner and Moretti (2004), who study the effect of education on crime. The
empirical specification they estimate is given by

pi = siβ
L + x′

iγ
L + νi (11)

where pi is an indicator equal to 1 if the respondent is in prison and 0 otherwise,
si ∈ {0, 1, 2, . . . , 18} is years of education, and xi is a vector of covariates including the
constant. The concern here is that years of education, si, may be endogenous because
there are unobserved factors (for example, patience) that determine an individual’s
educational attainment and that may also determine that individual’s propensity to
commit crime.

Lochner and Moretti (2004) propose using as instruments for si the compulsory at-
tendance laws in the state of birth of individuals when they were age 14. This instrument
was previously used in Acemoglu and Angrist (2001).8 The compulsory attendance laws
are then summarized in four indicator variables: ca8i, ca9i, ca10i, and ca11i.

9 Because
the four dummies represent collectively exhaustive events, ca8 is an omitted category
for the instrument.

For this example, the monotonicity condition would require that a given individual
born in a state with tough compulsory attendance laws when he or she was age 14 would
have at least as much education as he or she would if that individual had been born in
a state with weak compulsory attendance laws when he or she was age 14.10

8. See Acemoglu and Angrist (2001) for a detailed explanation of the instruments.
9. These indicator variables are the following: i) ca8 equals 1 if the compulsory attendance law is

8 or less years of schooling and 0 otherwise; ii) ca9 equals 1 if the compulsory attendance law is
9 years of schooling and 0 otherwise; iii) ca10 equals 1 if the compulsory attendance law is 10 years
of schooling and 0 otherwise; and iv) ca11 equals 1 if the compulsory attendance law is 11 or more
years of schooling and 0 otherwise.

10. Note that in this case, the instrument has no effect on individuals already intending to stay in
school longer than the compulsory schooling age; it has an effect only on those who intended to
leave before the compulsory schooling age (see Oreopoulos [2006]). These individuals are commonly
referred to as the “compliers” (see Angrist, Imbens, and Rubin [1996]). Compulsory schooling age
is associated with finishing high school; thus the monotonicity assumption implies that the effect
of this instrument not only increases the fraction of high school graduates but also increases the
fraction of college graduates. We thank an anonymous referee for providing us with this example.
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Once again, suppose that in the population, the incarceration–schooling relationship
is given by

pi =
18∑
j=1

Dijβj + x′
iγ + εi (12)

For this example, we focus on the analysis that Lochner and Moretti (2004) do on
black males; the next example focuses on white males. The data were obtained from
Moretti’s webpage, and we use the same covariates as described in their article. To
implement the LM test, we have p = prison, s = educ, and z = ca9, ca10, ca11.
The covariates include a constant and dummies for age groups, year, state of residence,
and state of birth. For black males, the covariates also include state-of-birth dummies
interacted with a dummy for black men born in the South who turned age 14 in 1958
or later to account for the impact of Brown v. Board of Education. Applying the test
yields the following results:

(output omitted )

. locmtest prison (educ = ca9 ca10 ca11) i.rage i.year i.state i.birthpl
> i.birthpl#i.BBeduc

===================================================
Output for the Lochner & Moretti (2015) Wald Test
===================================================

Output Variable y: prison
Endogenous Variable s: educ
Instruments z: ca9 ca10 ca11

Number of observations = 401529
Number of Categories of Endogenous variable is: 19
Number of Dummies is: 18

The number of Excluded Instruments is: 3

Estimated Coefficients

Coef. Std. Err.

OLS -.00369034 .00008333
IV -.0047513 .00115743

RWOLS -.00073792 .00017873

Estimated Test Statistics
Test p-value

LM-Wald 11.944147 .00054819
Naive Wald .97566386 .32327168

DWH Test .51540357 .47280942
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NOTES:

RWOLS = Reweighted OLS using TSLS Weights

LM-Wald = Lochner-Moretti Wald Test

Naive Wald = [ (IV - OLS) / SD(IV-OLS) ]^2

DWH Test: Durbin-Wu-Hausman Test (Augmented Regression)

Note that the OLS and IV estimates of β̂L from (11) are different. In particular, the IV

estimate is larger in magnitude than the OLS estimate. Both the näıve Wald and DWH

tests fail to reject exogeneity, but the LM test rejects it. The reweighted OLS reveals
that on average, the OLS estimates of βj from (12) are significantly biased toward zero
because the reweighted OLS is substantially smaller in magnitude than the 2SLS estimate
of βL from (11). This is an example in which differences in level-specific effects may
lead the standard Hausman test to fail to reject exogeneity when it should be rejected.

5.3 Example 3

Now, we implement the LM test for the analysis of Lochner and Moretti (2004) described
in example 2 but focus on white males. All the variables have the same definition;
however, for the sample of white males, the authors do not account for the effect of
Brown v. Board of Education. The linear and nonlinear specifications are once again
described by (11) and (12), respectively, and the monotonicity condition is the same as
for black males. The implementation of the test using the graph and coefficients

options is as follows:

(output omitted )

. locmtest prison (educ = ca9 ca10 ca11) i.rage i.year i.state i.birthpl,
> graph coefficients

===================================================
Output for the Lochner & Moretti (2015) Wald Test
===================================================

Output Variable y: prison
Endogenous Variable s: educ
Instruments z: ca9 ca10 ca11

Number of observations = 3209138
Number of Categories of Endogenous variable is: 19
Number of Dummies is: 18

The number of Excluded Instruments is: 3
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Estimated Coefficients

Coef. Std. Err.

OLS -.00099111 .00001191
IV -.00114869 .00036243

RWOLS -.00120313 .000034

Estimated Test Statistics
Test p-value

LM-Wald .02247255 .88083682
Naive Wald .20211212 .65302138

DWH Test .16365057 .68581755

NOTES:

RWOLS = Reweighted OLS using TSLS Weights

LM-Wald = Lochner-Moretti Wald Test

Naive Wald = [ (IV - OLS) / SD(IV-OLS) ]^2

DWH Test: Durbin-Wu-Hausman Test (Augmented Regression)

Estimated Coefficients:

B seB W2SLS seW2sls Wols seWols

1 -.0004088 .0011741 .0037614 .0004353 .0072537 .0000132
2 .0045219 .0012997 .0061937 .00047 .0085221 .0000143
3 -.001657 .0009236 .01063 .0005368 .0109205 .0000164
4 -.0010993 .0007393 .0224401 .0006503 .0145451 .0000194
5 .0012797 .0006386 .0393125 .0008261 .0187105 .0000225
6 -.0001663 .0005139 .0590797 .0010652 .0236794 .0000259
7 .0000373 .0003851 .0833742 .0013781 .0316599 .0000307
8 -.0020164 .000276 .1191036 .0018339 .0426187 .0000363
9 .0013537 .000223 .1539329 .0021541 .0668838 .0000444

10 -.0023834 .0002292 .1452373 .0019494 .0809498 .0000476
11 -.001019 .0002225 .1335972 .0018293 .0928632 .0000511
12 -.0046185 .0001729 .151474 .0020407 .0986295 .000055
13 -.0014042 .0001508 .0016496 .0028537 .1147939 .0000602
14 -.0004354 .0001853 .0166923 .002551 .1120058 .000057
15 -.0014717 .0002178 .0173397 .0023118 .0993689 .0000538
16 .0007271 .0002121 .0225779 .0020952 .0889882 .0000522
17 -.0003403 .00023 .0088103 .001667 .0512865 .0000451
18 .0009268 .0002471 .0047934 .0014149 .0363205 .0000395
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Figure 1. Effect of schooling on the probability of incarceration for white males

The results indicate that the 2SLS estimate is 10% larger in magnitude than the OLS

estimate. In this framework, both the näıve Wald and DWH tests fail to reject exogeneity
of si. That the LM test also fails to reject exogeneity of si lowers the concern that the
conclusion of the former tests are due to nonlinearities in the incarceration–schooling
relationship, which in the previous example proved to be important in the case of black
males.

Because both DWH and the LM tests fail to reject exogeneity of si, this suggests that
the OLS estimates of the βj from (12) are consistent. These estimates are depicted in
figure 1 and in the matrix of estimated coefficients from the Stata output. Both the
matrix and figure 1 also present the estimates for the OLS and 2SLS weights. Figure 1
shows that the OLS weights are high for years of schooling between 12 and 16, while the
2SLS are high between 9 and 12. This implies that the effect of the transitions between
9 and 12 years of schooling have a substantial effect on the 2SLS estimate, which could
partly explain the higher magnitude of the 2SLS compared with the OLS estimate.

6 Conclusions

We provided a command, locmtest, that implements a test for exogeneity recently
proposed by Lochner and Moretti (2015). This test is robust to nonlinearities in the
relationship between the potentially endogenous variable and the outcome variable. The
assumptions necessary for the main results are very standard in the literature on IV

estimation. We provided detailed description of the test and presented three examples
to illustrate the implementation of locmtest and how the results can be used to test
exogeneity. Additionally, if exogeneity is not rejected, we can use the results from
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locmtest to give a partial explanation of the differences between the OLS and 2SLS

estimates.
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