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1 Introduction

Antibody and cytokine concentrations are often measured in studies of the immune
response to, for example, Bacillus Calmette-Guérin or measles vaccination (MV). The
effect of such an exposure or a treatment on a continuous outcome variable can be
evaluated by a randomized control-group design with a pretest or baseline measurement
and a posttest or follow-up measurement (Jensen et al. 2014). Three common analyses
of such designs are 1) analysis of the posttest measurement, 2) analysis of the posttest—
pretest difference (change score), and 3) analysis of the posttest measurement adjusted
for the pretest. The posttest analysis (POST) and the change score analysis (CHANGE)
are conducted by analysis of variance. The third analysis is conducted by analysis
of covariance (ANCOVA) with the posttest measurement as outcome and the pretest
measurement as independent variable. A treatment indicator is included to estimate the
treatment effect. In randomized trials, the difference at baseline between the treatment
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and control groups is expected to be zero; therefore, POST, CHANGE, and ANCOVA are
expected (in the statistical sense) to measure the same thing (Senn 2006). That is, the
expected value of the treatment-effect estimates are the same. However, ANCOVA is the
most efficient method with the highest statistical power to detect the treatment effect
(Vickers 2001; Vickers and Altman 2001; Van Breukelen 2006).

Immunological measurement methods are often bounded by lower and upper de-
tection limits (DL) creating nondetectable (ND) concentrations. In statistical terms,
these observations can be regarded as left- and right-censored; the true concentration
is only known to be smaller or greater than the lower or upper DL. Because the pretest
and posttest measurements are measures of the same quantity, it is common that both
variables have censored observations. Hence, in the ANCOVA analysis, we both have
a censored outcome and a censored covariate. The issues of a left-censored outcome
variable (Uh et al. 2008; Lubin et al. 2004) or a left-censored covariate (Nie et al. 2010;
Austin and Hoch 2004) have previously been studied separately. Andersen et al. (2013)
explored methods to conduct the CHANGE analysis with censored pretest and posttest
measurements, showing that tobit regression and multiple imputation give very similar
results. As of Stata 12, new extensive multiple-imputation commands are available,
including the possibility to apply tobit regression in multivariate imputation methods
using chained equations. This facilitates estimation of ANCOVA with censored pretest
and posttest measurements. However, it is not obvious that this useful tool exists and
how it should be applied. Our aim is to make users aware of this tool and to give them
a practical guide and examples of how to apply it.

2 Methods

For independent subjects ¢ = 1,...,n, we denote the pretest measurement by X; and the
posttest measurement by Y;. Let T; be the treatment indicator. The POST, CHANGE,
and ANCOVA analyses can be written as

Y, = a1 +nT; + €1, €14 ~ i.i.d. N(07 O'%) (POST)
Y, — X; = as + T + €3, €9; ~ 1.i.d. N(O, O’g) (CHANGE)
Y, = a3+ ’73Tz + ﬁ3XZ + €34, €3; ~ i.i.d. N(O7 0'32)) (ANCOVA) (1)

ANCOVA with censored pretest and posttest measurements can be estimated by a
multivariate imputation method using chained equations, also known as fully condi-
tional specification (van Buuren, Boshuizen, and Knook 1999) or sequential regression
multivariate imputation (Raghunathan et al. 2001). The Stata command is mi impute
chained (see [MI] mi impute chained). The pretest and posttest variables are imputed
iteratively through a sequence of univariate imputation models with fully conditional
specification of the prediction equation. In iteration (¢ + 1), X ® is included in the
prediction equation for Y+ and Y(*+V is included in the prediction equation for
X+ Each univariate imputation model is fit by tobit regression, and the draws are
made from the estimated distribution truncated at the DL ([MI] mi impute intreg).
Formally, the imputations are drawn from the prediction equations
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vy g (YIXW, T, ¢,) (2)
XD~ g (XYY T, 6,) (3)

where ¢, and ¢, are the model parameters with uniform prior distributions. The
univariate imputation models g, (-) and g,(-) are normal-based tobit models. After the
censored observations have been imputed, the final treatment-effect estimate is obtained
by mi estimate (see [MI] mi estimate).

3 ANCOVA: mi impute chained using intreg

To fit ANCOVA, we can use mi impute chained (see [MI] mi impute chained) with
intreg (see [R] intreg) as the univariate imputation method.

3.1 Syntax

mi impute chained lhs [= z'ndepvars] [zf] [weight] [, impute_options options]

3.2 Description

Before we can use the mi commands, we must mi set the dataset. All the mi set styles
can be used.

In mi impute chained, the left-hand side, lhs, specifies the prediction (2) and (3)
used to impute values of the censored variables. Each censored variable requires speci-
fication of the univariate imputation method (uvmethod) and the name of the variable
containing the imputations (newivar). With two censored variables, the syntax for lhs is
(uvmethod1) newivarl (uvmethod?2) newivar?2. The uvmethod for the censored pretest
and posttest variables is the tobit model implemented in the intreg command for
interval-censored regression. The censoring interval is specified by the two dependent
variables, deplvar and depZ2var. For data right-censored at an upper DL, the interval
for the censored observation is [DL,00), and the dependent variables should be given the
values deplvar = DL and dep2var = . as described in [R] intreg. For data left-censored
at a lower DL, the interval for the censored observation is (-0o0,DL], and the dependent
variables should be given the values deplvar = . and dep2var = DL. For an uncensored
observation with point value a, the dependent variables should be set to deplvar = a and
dep2var = a. Because intreg is used with mi impute chained, the censoring variables
must be specified as options: intreg, 11(deplvar), and ul(dep2var). The optional
right-hand side [= indepvars] specifies complete, uncensored variables (that is, Z1 and
Z2) that may be included in the prediction equation for the censored variables. Overall,
the syntax is mi impute chained (intreg, 11(depivarl) ul(dep2varl)) newivarl
(intreg, 11(deplvar2) ul(dep2var2)) newivar2= Z1 Z2.
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3.3 Options

The options add (), burnin(), and chainonly() for mi impute chained are used to
control the number of imputations to be drawn and the number of burn-in runs between
each imputation.

4 Example: Immunological study of MV

In Jensen et al. (2014), we conducted an immunological substudy within a randomized
trial of early MV at 4.5 and 9 months of age compared with the existing schedule giving
MV at 9 months of age. We obtained blood samples before randomization (pretest)
and six weeks after randomization (posttest) and measured concentrations of cytokines
and soluble receptors. In the present example, we consider the concentration of IL-10 in
response to in vitro challenge with purified protein derivative. The manufacturer of the
cytokine assay defined a lower DL of 5pg/ml for 1L-10. In the control and randomization
groups, 23% and 19%, respectively, of the pretest IL-10 concentrations were ND below
the DL, while 25% and 26%, respectively, of the posttest concentrations were below
the DL. Distributions of immunological markers often resemble lognormal distributions.
Figure 1 shows histograms and normal densities of the log concentrations of IL-10 in the
pretest and posttest samples and in the two randomization groups. In the histogram,
ND concentrations are placed in the DL. The mean and variance parameters of the
normal density functions are estimated by tobit regression. Arguably, the lognormal
distribution provides a reasonable fit to the observed distributions.

log-IL10-PPD
Pretest: No MV Posttest: No MV

Pretest: MV Posttest: MV

2 3 4 5 6 7 2 3 4

~4

I- Observed —— Normal density

Figure 1. Histograms of pretest and posttest IL-10 concentrations
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In the following, we show how we estimated the intervention effect of early MV in a
pretest—posttest ANCOVA analysis using multiple imputation to account for the censor-
ing below the DL. Because there can be substantial variation in cytokine concentrations
across assay plates, we adjusted the analyses for assay plates in the variable called sele.
In Jensen et al. (2014), we presented geometric mean ratios antilogging the regression
coefficients. For convenience, we here present the direct log-scale coefficients.

Before we get to the ANCOVA analysis, we first conduct the POST analysis by tobit
regression using intreg. The posttest variable is called 1110_ppd2. We first gener-
ate the dependent variables to be used for intreg. The left-censored observations
(1110_ppd2 < 5) are specified by a missing value of the first dependent variable dp1v2.
The POST analysis gives an MV effect of 0.16 (95% confidence interval (CI): [—0.29;0.60]).

. use mv_il10ppd

. generate dplv2=log(ilil0_ppd2) if il10_ppd2>5
(63 missing values generated)

. generate dp2v2=log(il10_ppd2)
. quietly intreg dplv2 dp2v2 i.mv i.sele
. intreg, cformat(%5.2f)

Interval regression Number of obs = 249
LR chi2(2) = 3.78
Log likelihood = -426.64584 Prob > chi2 = 0.1514
Coef. Std. Err. z P>zl [95% Conf. Intervall
mv

early mv 0.16 0.23 0.70 0.485 -0.29 0.60
2.sele 0.43 0.23 1.87 0.061 -0.02 0.88
_cons 2.60 0.20 12.95 0.000 2.21 3.00
/1lnsigma 0.55 0.06 9.90 0.000 0.44 0.65
sigma 1.73 0.10 1.55 1.92

63 left-censored observations

186 uncensored observations

0 right-censored observations

0 interval observations

However, the pretest measurements (in the variable i110_ppd1) are not balanced
between the two randomization groups. In fact, the mean difference of 0.20 (95% cCI:
[—0.18;0.58]) is larger in the pretest samples than in the posttest samples.
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. generate dplvi=log(illO_ppdl) if il10_ppd1>5
(51 missing values generated)

. generate dp2vl=log(ilil0_ppdl)
. quietly intreg dplvl dp2vl i.mv i.sele
. intreg, cformat(}5.2f)

655

Interval regression Number of obs 249
LR chi2(2) = 1.65
Log likelihood = -412.32184 Prob > chi2 = 0.4384
Coef . Std. Err. z P>zl [95% Conf. Intervall
mv

early mv 0.20 0.20 1.02 0.308 -0.18 0.58
2.sele 0.17 0.20 0.88 0.381 -0.21 0.56
_cons 2.65 0.17 15.34 0.000 2.31 2.98
/1nsigma 0.40 0.05 7.66 0.000 0.30 0.51
sigma 1.50 0.08 1.35 1.66

51 1left-censored observations

198 uncensored observations

0 right-censored observations

0 interval observations

Thus we observe a (nonsignificant) difference in posttest concentrations between
the two groups, but this could be caused by the baseline imbalance in the pretest
concentrations before randomization. ANCOVA (1) adjusts for the pretest imbalance by
subtracting from the posttest difference the pretest difference scaled by the pretest—

posttest correlation.

75 = (V1= Yo) = Bs (X1 — Xo)

We have seen that there are ND concentrations among both the pretest and the
posttest samples. The ANCOVA model can be fit by the sequential multiple imputation
of the ND pretest and posttest concentrations using mi impute chained with intreg
as the univariate imputation method. The ANCOVA analysis gives an MV effect of 0.10

(95% c1: [—0.33;0.54]).
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. preserve
set seed 1000

. mi set mlong

ANCOVA

mi impute chained (intreg, 11(dplvi) ul(dp2v1)) xlimp (intreg, 11(dplv2)
> ul(dp2v2)) x2imp=i.mv i.sele, add(20) burnin(5)

Conditional models:

xlimp: intreg xlimp x2imp i.mv i.sele , 11(dplvl) ul(dp2v1l)
x2imp: intreg x2imp xlimp i.mv i.sele , 11(dplv2) ul(dp2v2)

Performing chained iterations

Multivariate imputation Imputations = 20
Chained equations added = 20
Imputed: m=1 through m=20 updated = 0
Initialization: monotone Iterations = 100
burn-in = 5

x1limp: interval regression

x2imp: interval regression

Observations per m

Variable Complete Incomplete Imputed Total
x1limp 198 51 51 249
x2imp 186 63 63 249

(complete + incomplete = total; imputed is the minimum

of the number of filled-in observations.)

. mi estimate, nimputations(20) cformat(%5.2f) noheader:

> c.xlimp i.sele

across m

regress x2imp i.mv

x2imp Coef.  Std. Err. t P>|t] [95% Conf. Intervall

mv
early mv 0.10 0.22 0.47 0.640 -0.33 0.54
x1imp 0.25 0.08 3.31 0.001 0.10 0.40
2.sele 0.39 0.23 1.71 0.089 -0.06 0.84
_cons 1.94 0.29 6.76  0.000 1.37 2.51

In figure 2, we show Q—Q plots of the completed pretest and posttest distributions
after the first iteration of the imputation algorithm. The plots illustrate a good fit
to the normal distribution, except for a few very low imputed values of the posttest

measurements.
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Figure 2. Q—Q plots of the completed values of the pretest and posttest measurements

from one iteration

To assess convergence of the algorithm, we use chainonly and savetrace() to
perform chained iterations without generating imputations and save the means of the
imputed values in impstats.dta. The means are plotted along the iterations in figure 3.

The two chains reach a steady level basically from the first iteration.

. restore
set seed 1000
. mi set mlong
mi impute chained (intreg, 11(dpivl) ul(dp2v1l)) xlimp (intreg, 11(dplv2)

> ul(dp2v2)) x2imp=i.mv i.sele, burnin(50) chainonly chaindots
> savetrace(impstats, replace)

Conditional models:
xlimp: intreg xlimp x2imp i.mv i.sele , 11(dplvl) ul(dp2vl)
x2imp: intreg x2imp xlimp i.mv i.sele , 11(dplv2) ul(dp2v2)

Performing chained iterations:
burn-in 50 ......... 10......... 20, ... 30,0 40......... 50 done

Note: No imputation performed.

. use impstats, clear
(Summaries of imputed values from -mi impute chained-)

scatter xlimp_mean x2imp_mean iter, c(l 1) msymbol(i i) lcolor(black gs7)
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0 10 20 30 40 50
Iteration numbers

Mean of x1imp Mean of x2imp ‘

Figure 3. The means of the imputed pretest concentrations (x1imp) and the imputed
posttest concentrations (x2imp) are presented to evaluate the convergence of the chained
iterations

5 Simulation study of bias and power

We conducted a simulation study of the methods to fit POST, CHANGE, and ANCOVA.
We compare the methods on bias (relative to the true effect) and power. Observations
X,Y are drawn from a bivariate normal distribution with mean (2.5,3) in the control
group and mean (2.5,3.15) in the treatment group. Hence, we simulate a pretest dif-
ference of 0 and a posttest difference of 0.15. The variances are o, = o, = 1 for both
groups. We generated 5,000 datasets with N = 400 observations drawn from distribu-
tions with pretest—posttest correlations p = 0.25, 0.50, 0.75. The pretest and posttest
measurements are artificially censored at 20%, 40%, and 60%.

Figure 4 shows that all three methods estimate the true effect of 0.15 unbiased for all
pretest and posttest censoring schemes. Figure 5 shows power to detect the treatment
effect of the three methods. As expected, in general, ANCOVA has the highest power.
With low pretest—posttest correlation (p = 0.25), POST has similar power to ANCOVA,
while CHANGE has lower power. With high pretest—posttest correlation (p = 0.75),
POST has considerably lower power than ANCOVA, while CHANGE is closer to ANCOVA.
Increasing censoring of the posttest outcome does not seem to decrease power. In
contrast, power decreases with increasing pretest censoring. However, it is still more
powerful to conduct ANCOVA with a censored pretest than to disregard the pretest in
the POST analysis.
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Figure 4. The average treatment-effect estimate in the simulation studies with various

pretest—posttest correlations and various censoring schemes. The true underlying effect
is 0.15
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Figure 5. The average power to detect a significant treatment effect in the simulation
studies with various pretest—posttest correlations and various censoring schemes
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6 Conclusion

The command mi impute chained can be used to fit ANCOVA analyses of censored
normally distributed data from randomized pretest—posttest trials and performs with
higher power than POST and CHANGE analyses.
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