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Abstract. Panel vector autoregression (VAR) models have been increasingly
used in applied research. While programs specifically designed to fit time-series
VAR models are often included as standard features in most statistical packages,
panel VAR model estimation and inference are often implemented with general-use
routines that require some programming dexterity. In this article, we briefly discuss
model selection, estimation, and inference of homogeneous panel VAR models in a
generalized method of moments framework, and we present a set of programs to
conveniently execute them. We illustrate the pvar package of programs by using
standard Stata datasets.
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1 Introduction

Time-series vector autoregression (VAR) models originated in the macroeconometrics
literature as an alternative to multivariate simultaneous equation models (Sims 1980).
All variables in a VAR system are typically treated as endogenous, although identifying
restrictions based on theoretical models or on statistical procedures may be imposed to
disentangle the impact of exogenous shocks onto the system. With the introduction of
VAR in panel-data settings (Holtz-Eakin, Newey, and Rosen 1988), panel VAR models
have been used in multiple applications across fields.

In this article, we briefly review panel VAR model selection, estimation, and infer-
ence in a generalized method of moments (GMM) framework and provide a package of
programs, which we illustrate using two standard Stata datasets. An early article that
examined panel VAR was Love and Zicchino (2006), who made the programs available in-
formally to other researchers.1 This article introduces an updated package of programs

1. As of February 2016, Love and Zicchino (2006) have been cited in 601 research articles; most use the
early version of the package of programs to fit panel VAR models. For example, these programs
have been used in studies recently published in the American Economic Review (for example,
Head, Lloyd-Ellis, and Sun [2014]), Applied Economics (for example, Mora and Logan [2012]), the
Journal of Macroeconomics (for example, Carpenter and Demiralp [2012]), and the Journal of
Economic History (for example, Neumann, Fishback, and Kantor [2010]), among others.
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with additional functionality, including estimation by Stata’s built-in gmm command,
which allows for use of all available gmm options, addition of exogenous variables to the
VAR system, and subroutines to implement Granger (1969) causality tests and optimal
moment and model selection criteria (MMSC) following Andrews and Lu (2001), among
others.

2 Panel VAR

We consider a k-variate homogeneous panel VAR of order p with panel-specific fixed
effects represented by the following system of linear equations,

Yit = Yit−1A1 +Yit−2A2 + · · · +Yit−p+1Ap−1 +Yit−pAp +XitB+ ui + eit

i ∈ {1, 2, . . . , N}, t ∈ {1, 2, . . . , Ti}
(1)

where Yit is a (1×k) vector of dependent variables, Xit is a (1× l) vector of exogenous
covariates, and ui and eit are (1× k) vectors of dependent variable-specific panel fixed-
effects and idiosyncratic errors, respectively. The (k×k) matricesA1, A2, . . . , Ap−1, Ap

and the (l×k) matrixB are parameters to be estimated. We assume that the innovations
have the following characteristics: E(eit) = 0, E(e′iteit) = Σ, and E(e′iteis) = 0 for all
t > s.

Similar to Holtz-Eakin, Newey, and Rosen (1988), we assume that the cross-sectional
units share the same underlying data generating process, with the reduced-form pa-
rameters A1,A2, . . . ,Ap−1,Ap, and B to be common among them. Systematic cross-
sectional heterogeneity is modeled as panel-specific fixed effects. This setup contrasts
with time-series VAR, where by construction, the parameters are specific to the unit be-
ing studied, or with random-coefficient panel VAR, where the parameters are estimated
as a distribution.2

The parameters above may be estimated jointly with the fixed effects or, alterna-
tively, with ordinary least squares (OLS) but with the fixed effects removed after some
transformation on the variables. However, with the presence of lagged dependent vari-
ables in the right-hand side of the system of equations, estimates would be biased even
with large N (Nickell 1981). Although the bias approaches zero as T gets larger, simu-
lations by Judson and Owen (1999) find significant bias even when T = 30.

2.1 GMM estimation

Various estimators based on GMM have been proposed to calculate consistent estimates
of the above equation, especially in fixed T and large N settings.3 With our assump-
tion that errors are serially uncorrelated, the model in first difference (FD) may be
consistently estimated equation by equation by instrumenting lagged differences with

2. See Canova and Ciccarelli (2013) for a survey of random-coefficient panel VAR models.
3. Other methods include analytical bias correction for the least-squares dummy variable model (for

example, Kiviet [1995] and Bun and Carree [2005]) and bias correction based on bootstrap methods
(for example, Everaert and Pozzi [2007]).
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differences and levels of Yit from earlier periods as proposed by Anderson and Hsiao
(1982). This estimator, however, poses some problems. The FD transformation magni-
fies the gap in unbalanced panels. For instance, if some Yit−1 are not available, then
the FDs at time t and t − 1 are likewise missing. Also, the necessary time periods
each panel is observed gets larger with the lag order of the panel VAR. As an example,
for a second-order panel VAR, instruments in levels require that Ti ≥ 5 realizations be
observed for each subject.

Arellano and Bover (1995) proposed forward orthogonal deviation (FOD) as an alter-
native transformation, which does not share the weaknesses of the FD transformation.
Instead of using deviations from past realizations, it subtracts the average of all avail-
able future observations, thereby minimizing data loss. Because past realizations are
not included in this transformation, they remain valid instruments. Potentially, only
the most recent observation is not used in estimation. In a second-order panel VAR, for
instance, only Ti ≥ 4 realizations are necessary to have instruments in levels.

We can improve efficiency by including a longer set of lags as instruments. However,
this generally has the unattractive property of reducing observations especially with
unbalanced panels or with missing observations. As a remedy, Holtz-Eakin, Newey, and
Rosen (1988) proposed creating instruments using available data and substituting miss-
ing observations with zero based on the standard assumption that the instruments are
uncorrelated with the errors. However, overfitting may be an issue, especially when the
time dimension is small, as the GMM estimates approach those from OLS. In such cases,
Roodman (2009) advocates reporting the number of instruments used and checking how
robust the results are to its reduction. In large N and large T settings, this may not
be too much of an issue because the Nickell bias from OLS tends to zero as T tends to
infinity (Alvarez and Arellano 2003).

The estimators by Anderson and Hsiao (1982) and by Arellano and Bover (1995),
as well as other dynamic panel GMM estimators using similar moment restrictions, like
those by Arellano and Bond (1991) and by Blundell and Bond (1998), are designed for
“small T , large N” panels, that is, many cross-sectional units observed for few time peri-
ods.4 However, simulations by Judson and Owen (1999) show that the Anderson-Hsiao
and the Arellano–Bond estimators perform well even as the time dimension is increased.
Alvarez and Arellano (2003) establish for the univariate first-order autoregressive model
that the GMM estimators based on orthogonal deviations are N consistent when both
N and T tend to infinity but T/N tends to a positive constant that is less than or equal
to 2.

In the time-series VAR, it is common to test each variable for stationarity using unit-
root tests. This is also relevant in GMM estimation of linear dynamic panel models. As
noted by Blundell and Bond (1998) in the univariate case, the GMM estimators suffer
from the weak instruments problem when the variable being modeled is near unit root.5

4. Roodman (2009) provides an excellent discussion of GMM estimation in a dynamic panel setting
and its applications using Stata.

5. When the series has unit root, both FD and FOD transformations leave only the idiosyncratic noise
in the data; thus the instruments in levels will be uninformative. See Bond (2002) for a discussion.
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The moment conditions become completely irrelevant when unit root is present. As with
time-series VAR, pretransforming the variables using growth rates or by differencing may
mitigate this problem.

While equation-by-equation GMM estimation yields consistent estimates of panel
VAR, fitting the model as a system of equations may result in efficiency gains (Holtz-
Eakin, Newey, and Rosen 1988). Suppose the common set of L ≥ kp+ l instruments is
given by the row vector Zit, where Xit ∈ Zit, and equations are indexed by a number
in superscript. Consider the following transformed panel VAR model based on (1) but
represented in a more compact form,

Y∗
it = Ỹ∗

itA+ e∗it

Y∗
it =

[
y1∗
it y2∗

it . . . yk−1∗
it yk∗

it

]
Ỹ∗

it =
[
Y∗

it−1 Y∗
it−2 . . . Y∗

it−p+1 Y∗
it−p X∗

it

]
e∗it =

[
e1∗it e2∗it . . . ek−1∗

it ek∗it
]

A′ =
[
A′

1 A′
2 . . . A′

p−1 A′
p B′]

where the asterisk denotes some transformation of the original variable. If we denote
the original variable as mit, then the FD transformation implies that m∗

it = mit−mit−1,
while for the forward orthogonal deviation, m∗

it = (mit −mit)
√
Tit/(Tit + 1), where Tit

is the number of available future observations for panel i at time t and mit is the average
of all available future observations.

Suppose we stack observations over panels then over time. The GMM estimator is
given by

A = (Ỹ∗′ZŴZ′Ỹ∗)−1(Ỹ∗′ZŴZ′Y∗) (2)

where Ŵ is an (L × L) weighting matrix assumed to be nonsingular, symmetric, and

positive semidefinite. Assuming that E(Z′e) = 0 and rank E(Ỹ∗
it

′
Z) = kp+ l, the GMM

estimator is consistent. The weighting matrix Ŵ may be selected to maximize efficiency
(Hansen 1982).

Joint estimation of the system of equations makes cross-equation hypothesis testing
straightforward. Wald tests about the parameters may be implemented based on the
GMM estimate of A and its covariance matrix. Granger causality tests, with the hy-
pothesis that all coefficients on the lag of variable m are jointly zero in the equation for
variable n, may likewise be carried out using this test.

2.2 Model selection

Panel VAR analysis is predicated upon choosing the optimal lag order in both panel
VAR specification and moment condition. Andrews and Lu (2001) proposed MMSC for
GMM models based on Hansen’s (1982) J statistic of overidentifying restrictions. Their
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proposed MMSC are analogous to various commonly used maximum likelihood-based
model-selection criteria, namely, the Akaike information criteria (AIC) (Akaike 1969),
the Bayesian information criteria (BIC) (Schwarz 1978; Rissanen 1978; Akaike 1977),
and the Hannan–Quinn information criteria (HQIC) (Hannan and Quinn 1979).

If we apply Andrews and Lu’s (2001) MMSC to the GMM estimator in (2), their
proposed criteria select the pair of vectors (p, q) that minimizes

MMSCBIC,n(k, p, q) = Jn(k
2p, k2q)− (|q| − |p|)k2 lnn

MMSCAIC,n(k, p, q) = Jn(k
2p, k2q)− 2k2(|q| − |p|)

MMSCHQIC,n(p, q) = Jn(k
2p, k2q)−Rk2(|q| − |p|) ln lnn R > 2

where Jn(k, p, q) is the J statistic of overidentifying restriction for a k-variate panel
VAR of order p and moment conditions based on q lags of the dependent variables with
sample size n.

By construction, the above MMSC are available only when q > p. As an alternative
criterion, the overall coefficient of determination (CD) may be calculated even with just-
identified GMM models. Suppose we denote the (k×k) unconstrained covariance matrix
of the dependent variables by Ψ. CD captures the proportion of variation explained by
the panel VAR model and may be calculated as

CD = 1− det(Σ)

det(Ψ)

2.3 Impulse–response

Without loss of generality, we drop the exogenous variables in our notation and focus
on the autoregressive structure of the panel VAR in (1). Lütkepohl (2005) and Hamilton
(1994) both show that a VAR model is stable if all moduli of the companion matrix A
are strictly less than one, where the companion matrix is formed by

A =

⎡⎢⎢⎢⎢⎢⎣
A1 A2 · · · Ap Ap−1

Ik Ok · · · 0k 0k

0k Ik · · · 0k 0k

...
...

. . .
...

...
0k 0k · · · Ik 0k

⎤⎥⎥⎥⎥⎥⎦
Stability implies that the panel VAR is invertible and has an infinite-order vec-

tor moving-average (VMA) representation, providing known interpretation to estimated
impulse–response functions (IRFs) and forecast-error variance decompositions (FEVDs).
The simple IRF Φi may be computed by rewriting the model as an infinite VMA, where
Φi are the VMA parameters.
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Φi =

⎧⎪⎨⎪⎩
Ik i = 0
i∑

j=1

Φt−jAj i = 1, 2, . . .

However, the simple IRFs have no causal interpretation. Because the innovations eit
are correlated contemporaneously, a shock on one variable is likely to be accompanied
by shocks in other variables. Suppose we have a matrix P, such that P′P = Σ. Then
P may be used to orthogonalize the innovations as eitP

−1 and to transform the VMA

parameters into the orthogonalized impulse–responses PΦi. The matrix P effectively
imposes identification restrictions on the system of dynamic equations. Sims (1980)
proposed the Cholesky decomposition of Σ to impose a recursive structure on a VAR.
The decomposition, however, is not unique but depends on the ordering of variables in
Σ.

IRF confidence intervals may be derived analytically based on the asymptotic distri-
bution of the panel VAR parameters and the cross-equation error variance–covariance
matrix. Alternatively, the confidence interval may likewise be estimated using Monte
Carlo simulation and bootstrap resampling methods.6

2.4 FEVD

The h-step ahead forecast error can be expressed as

Yit+h −E(Yit+h) =

h−1∑
i=0

ei(t+h−i)Φi

where Yit+h is the observed vector at time t + h and E(Yith) is the h-step ahead
predicted vector made at time t. As with IRFs, we orthogonalize the shocks using
the matrix P to isolate each variable’s contribution to the forecast-error variance. The
orthogonalized shocks eitP

−1 have a covariance matrix Ik, which allows straightforward
decomposition of the forecast-error variance. More specifically, the contribution of a
variable m to the h-step ahead forecast-error variance of variable n may be calculated
as

h−1∑
i=0

θ2
mn =

h−1∑
i=1

(i′nPΦ′
iim)2

6. See, for instance, Lütkepohl (2005) for details applied in time-series VAR.
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where is is the sth column of Ik. In application, the contributions are often normalized
relative to the h-step ahead forecast-error variance of variable n,

h−1∑
i=0

θ2
n =

h−1∑
i=1

i′nΦ
′
iΣΦiin

Similar to those of IRFs, confidence intervals may be derived analytically or estimated
using various resampling techniques.

3 The commands

Model selection, estimation, and inference about the homogeneous panel VAR model
above can be implemented with the new commands pvar, pvarsoc, pvargranger,
pvarstable, pvarirf, and pvarfevd. The syntax and outputs are closely patterned
after Stata’s built-in var commands to easily switch between panel and time-series VAR.
We describe the commands’s syntax in this section and provide examples in section 4.

3.1 pvar

pvar7 fits homogeneous panel VAR models by fitting a multivariate panel regression of
each dependent variable on lags of itself, lags of all other dependent variables, and lags
of exogenous variables, if any. The estimation is by GMM. The command is implemented
using the interactive version of Stata’s gmm command with analytic derivatives.

Syntax

pvar depvarlist
[
if
] [

in
] [

, options
]

Options

lags(#) specifies the maximum lag order # to be included in the model. The default
is to use the first lag of each variable in depvarlist.

exog(varlist) specifies a list of exogenous variables to be included in the panel VAR.

fod and fd specify how the panel-specific fixed effects will be removed. fod specifies
that the panel-specific fixed effects be removed using forward orthogonal deviation
or Helmert transformation. By default, the first # lags of transformed depvarlist in
the model are instrumented by the same lags in levels (that is, untransformed). fod
is the default option. fd specifies that the panel-specific fixed effects be removed
using first difference instead of forward orthogonal deviations. By default, the first

7. This version of the software corrects the implementation of forward orthogonal deviation used in
the earlier version of the program. See, for instance, Head, Lloyd-Ellis, and Sun (2016).
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# lags of transformed (that is, differenced) depvarlist in the model are instrumented
by the (#+1)th to (2#)th lags of depvarlist in levels (that is, untransformed).

td subtracts from each variable in the model its cross-sectional mean before estimation.
This could be used to remove common time fixed effects from all the variables prior
to any other transformation.

instlags(numlist) overrides the default lag orders of depvarlist used as instruments in
the model (see the fod and fd options above that describe which lags are used as
default). Instead, numlistth lags are used as instruments.

gmmstyle specifies that “GMM-style” instruments as proposed by Holtz-Eakin, Newey,
and Rosen (1988) be used. Lag length to be used as instruments must be specified
with instlags(). For each instrument based on lags of depvarlist, missing values
are substituted with zero. Observations with no valid instruments are excluded.
This option is available only with instlags().

gmmopts(options) overrides the default gmm options run by pvar. Each equation in
the model may be accessed individually using the variable names in depvarlist as
equation names. See [R] gmm for the available options.

vce(vcetype
[
, independent

]
) specifies the type of standard error reported, which in-

cludes types that are robust to some types of misspecification, that allow for intra-
group correlation, and that use bootstrap or jackknife methods.

vcetype may be robust, cluster clustervar, bootstrap, jackknife, hac kernel lags,
or unadjusted; the default is vce(unadjusted).

overid specifies that Hansen’s J statistic of overidentifying restriction be reported.
This option is available only for overidentified systems.

level(#) specifies the confidence level, as a percentage, to be used for reporting con-
fidence intervals. The default is level(95) or as set by set level.

noprint suppresses printing of the coefficient table.
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Stored results

pvar stores the following in e():

Scalars
e(N) number of observations
e(n) number of panels
e(tmin) first time period in sample
e(tmax) last time period in sample
e(tbar) average time periods among panels
e(mlag) maximum lag order in panel VAR
e(N clust) number of clusters
e(Q) criterion function
e(J) Hansen’s J chi-squared statistic
e(J df) J-statistic degrees of freedom
e(rank) rank of e(V)
e(ic) number of iterations used by iterative GMM estimator
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) pvar
e(cmdline) command as typed
e(depvar) names of dependent variables
e(exog) names of exogenous variables, if specified
e(clustvar) name of cluster variable
e(instr) instruments
e(eqnames) equation names
e(timevar) name of time variable
e(panelvar) name of panel variable
e(properties) b V

Matrices
e(b) coefficient vector
e(V) variance–covariance matrix of the estimator
e(Sigma) variance–covariance matrix of the model residuals
e(W) weight matrix used for final round of estimation
e(init) initial values of the estimators

Functions
e(sample) mark estimation sample

3.2 pvarsoc

pvarsoc provides various summary measures to aid the process of panel VAR model se-
lection. It reports the model overall CD, Hansen’s (1982) J statistic and corresponding
p-value, and MMSC developed by Andrews and Lu (2001) based on the J statistic. An-
drew and Lu’s criteria are all based on Hansen’s J statistic, which requires the number
of moment conditions to be greater than the number of endogenous variables in the
model. pvarsoc uses the estimation sample of the least restrictive panel VAR model,
that is, with the highest lag order used, for all models that would be fit by the program.

Syntax

pvarsoc depvarlist
[
if
] [

in
] [

, options
]
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Options

maxlag(#) specifies the maximum lag order for which the statistics are obtained.

pinstlag(numlist) specifies that numlistth lag from the highest lag order of depvarlist
specified in the panel VAR model implemented using pvar be used. This option
cannot be specified with the pvaropts(instlag(numlist)) option.

pvaropts(options) passes arguments to pvar. All arguments specified in options are
passed to and used by pvar in estimation.

Stored results

pvarsoc stores the following in r():

Scalars
r(N) number of observations
r(n) number of panels
r(tmin) first time period in sample
r(tmax) last time period in sample
r(tbar) average time periods among panels
r(maxlag) maximum lag order in panel VAR

Macros
r(endog) names of endogenous variables
r(exog) names of exogenous variables, if specified

Matrices
r(stats) CD, J , and p-value, MBIC, MAIC, and MQIC

3.3 pvargranger

The postestimation command pvargranger performs Granger causality Wald tests for
each equation of the underlying panel VAR model. It provides a convenient alternative
to Stata’s built-in test command.

Syntax

pvargranger
[
, estimates(estname)

]
Option

estimates(estname) requests that pvargranger use the previously obtained set of
panel VAR estimates saved as estname. By default, pvargranger uses the active
(that is, the latest) results.
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Stored results

pvargranger stores the following in r():

Matrix
r(pgstats) chi-squared, degrees of freedom, and p-values

3.4 pvarstable

The postestimation command pvarstable checks the stability condition of panel VAR

estimates by calculating the modulus of each eigenvalue of the fitted model. Lütkepohl
(2005) and Hamilton (1994) both show that a VAR model is stable if all moduli of the
companion matrix are strictly less than one. Stability implies that the panel VAR is
invertible and has an infinite-order VMA representation, providing known interpretation
to estimated IRFs and FEVDs.

Syntax

pvarstable
[
, options

]
Options

estimates(estname) requests that pvarstable use the previously obtained set of pvar
estimates saved in estname. By default, pvarstable uses the active estimation
results.

graph requests pvarstable to draw a graph of the eigenvalue of the companion matrix.

nogrid suppresses the polar grid circles on the plotted eigenvalues. This option may be
specified only with graph.

Stored results

pvarstable stores the following in r():

Matrices
r(Re) real part of the eigenvalues of the companion matrix
r(Im) imaginary part of the eigenvalues of the companion matrix
r(Modulus) modulus of the eigenvalues of the companion matrix

3.5 pvarirf

The postestimation command pvarirf calculates and plots IRFs. Three types of IRF

can be estimated: simple IRF (default), orthogonalized IRF based on Cholesky decompo-
sition, and cumulative IRF. pvarirf also calculates dynamic multipliers and cumulative
dynamic multipliers for exogenous variables. Confidence bands are estimated using
Gaussian approximation based on Monte Carlo draws from the fitted panel VAR model.
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Syntax

pvarirf
[
, options

]
Options

step(#) specifies the step (forecast) horizon; the default is 10 periods.

impulse(impulsevars) and response(responsevars) specify the impulse and response
variables. Usually, one of each is specified, and one graph is drawn. If multi-
ple variables are specified, a separate subgraph is drawn for each impulse–response
combination. If impulse() and response() are not specified, subgraphs are drawn
for all combinations of impulse and response variables.

porder(varlist) specifies the Cholesky ordering of the endogenous variables to be used
when estimating orthogonalized IRFs as well as the order of the IRF plots. By default,
the order in which the variables were originally specified on the pvar command is
used. This allows a new set of IRFs with a different order to be produced without
reestimating the system.

oirf requests that orthogonalized IRFs be estimated. The default is simple IRFs.

dm estimates dynamic multipliers for exogenous variables instead of IRFs.

cumulative computes cumulative IRFs. This option may be combined with oirf.

mc(#) requests that # Monte Carlo draws be used to estimate the confidence intervals
of the IRFs using Gaussian approximation. The default is not to estimate or plot
confidence intervals; that is, # = 0.

table displays the calculated IRFs as a table. The default is not to tabulate IRFs.

level(#) specifies the confidence level, as a percentage, to be used for computing
confidence bands. The default is level(95) or as set by set level. level() is
available only when mc(#) > 1 is specified.

dots requests the display of iteration dots. By default, one dot character is displayed
for each iteration. A red “x” is displayed if the iteration returns an error.

save(filename) specifies that the calculated IRFs be saved under the name filename.

byoption(by option) affects how the subgraphs are combined, labeled, etc. This option
is documented in [G-3] by option.

nodraw suppresses the display of the estimated IRFs.
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Stored results

pvarirf stores the following in r():

Scalars
r(iter) Monte Carlo iterations
r(step) forecast horizon

Macros
r(porder) Cholesky order of orthogonalized IRF

3.6 pvarfevd

The postestimation command pvarfevd computes FEVD based on a Cholesky decom-
position of the residual covariance matrix of the underlying panel VAR model. Standard
errors and confidence intervals based on Monte Carlo simulation may be optionally
computed.

One should exercise caution in interpreting computed FEVD when exogenous vari-
ables are included in the underlying panel VAR model. Contributions of exogenous
variables, when included in the panel VAR model, to forecast-error variance are disre-
garded in calculating FEVD.

Syntax

pvarfevd
[
, options

]
Options

step(#) specifies the step (forecast) horizon; the default is 10 periods.

impulse(impulsevars) and response(responsevars) specify the impulse and response
variables for which FEVD are to be reported. If impulse() or response() is not
specified, each endogenous variable is used in turn.

porder(varlist) specifies the Cholesky ordering of the endogenous variables to be used
when estimating FEVDs. By default, the order in which the variables were originally
specified on the underlying pvar command is used.

mc(#) requests that # Monte Carlo draws be used to estimate the standard errors and
the percentile-based 90% confidence intervals of the FEVDs. Computed standard
errors and confidence intervals are not displayed but may be saved as a separate file.

dots requests the display of iteration dots. By default, one dot character is displayed
for each iteration. A red “x” is displayed if the iteration returns an error.
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save(filename) specifies that the FEVDs be saved under the name filename. In addition,
standard errors and percentile-based 90% confidence intervals are saved when mc(#)

> 1 is specified.

notable requests the table be constructed but not displayed.

Stored results

pvarfevd stores the following in r():

Scalars
r(iter) Monte Carlo iterations
r(step) forecast horizon

Macros
r(porder) Cholesky order

4 Examples

We illustrate the pvar suite of commands by analyzing the relationship between labor
supply and wage rate, which has been previously analyzed by Holtz-Eakin, Newey, and
Rosen (1988) in their seminal article on panel VAR. Unlike their original implementation,
however, we estimate the regression equations simultaneously.

4.1 Panel study of income dynamics

We use psidextract data accessible from Stata. We replicate the reduced-form panel
VAR presented as table 2 in Holtz-Eakin, Newey, and Rosen (1988) using observations
from 528 males over 1976–1982 from the Panel Study of Income and Dynamics (PSID)
data available in Stata. In their original analysis, Holtz-Eakin, Newey, and Rosen (1988)
used a sample of 898 males observed between 1968 and 1981 using annual hours of work
and annual average hourly earnings. Thus our sample composition and the time period
are slightly different from the original article. In this illustration, the log-transformed
wage rate (lwage) and weeks worked (lwks) are assumed to be a function of three lags
of each of the variables. We also assume that the coefficients on wage rate and weeks
worked are common across the sample and that systematic individual heterogeneity is
captured by individual fixed effects. The variable fem is a binary variable indicating
the sex of the respondent.
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. webuse psidextract

. generate lwks = ln(wks)

. pvar lwks lwage if fem == 0, lags(3)

Panel vector autoregresssion

GMM Estimation

Final GMM Criterion Q(b) = 1.11e-32
Initial weight matrix: Identity
GMM weight matrix: Robust

No. of obs = 1584
No. of panels = 528
Ave. no. of T = 3.000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

lwks
lwks
L1. .0477872 .1816701 0.26 0.793 -.3082796 .4038541
L2. -.1891446 .1002787 -1.89 0.059 -.3856872 .007398
L3. -.0694588 .0554891 -1.25 0.211 -.1782155 .0392979

lwage
L1. -.0069066 .0249964 -0.28 0.782 -.0558987 .0420855
L2. -.0206062 .0137029 -1.50 0.133 -.0474633 .0062509
L3. -.0224254 .0141702 -1.58 0.114 -.0501985 .0053476

lwage
lwks
L1. .3516101 .2541961 1.38 0.167 -.146605 .8498253
L2. .1322435 .123261 1.07 0.283 -.1093435 .3738306
L3. .0890408 .063914 1.39 0.164 -.0362283 .2143099

lwage
L1. .5894378 .0820801 7.18 0.000 .4285638 .7503119
L2. .1818445 .0480188 3.79 0.000 .0877293 .2759597
L3. .1337024 .0367614 3.64 0.000 .0616515 .2057533

Instruments : l(1/3).(lwks lwage)

After fitting the reduced-form panel VAR, we may want to know whether past values
of a variable, say, x, are useful in predicting the values of another variable y, conditional
on past values of y, that is, whether x “Granger-causes” y (Granger 1969). This is
implemented as separate Wald tests with the null hypothesis that the coefficients on all
the lags of an endogenous variable are jointly equal to zero; thus the coefficients may be
excluded in an equation of the panel VAR model. The pvargranger command provides a
convenient wrapper to Stata’s built-in test command to perform the Granger causality
tests. The first result below shows the test on whether the coefficients on the three lags
of lwage appearing on the lwks equation are jointly zero. The null hypothesis that
lwage does not Granger-cause lwks is rejected at the 90% confidence level; however,
the hypothesis that lwks does not Granger-cause lwage is not rejected. The second
test labeled ALL is with respect to the coefficients of all lags of all endogenous variables
other than those of the dependent variable being jointly zero. Because we have only
two endogenous variables in the panel VAR model, this test is the same as the first test.
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. pvargranger

panel VAR-Granger causality Wald test
Ho: Excluded variable does not Granger-cause Equation variable
Ha: Excluded variable Granger-causes Equation variable

Equation \ Excluded chi2 df Prob > chi2

lwks
lwage 8.924 3 0.030

ALL 8.924 3 0.030

lwage
lwks 2.452 3 0.484
ALL 2.452 3 0.484

The coefficients on the reduced-form panel VARs cannot be interpreted as causal
influences without imposing identifying restrictions on the parameters. If the fitted
VAR model is stable, it can be reformulated as an infinite-order VMA, on which assump-
tions about the error covariance matrix may be imposed. IRFs and FEVDs have known
interpretation when the panel VAR model is stable.

After one fits a panel VAR model with pvar, the moduli of the companion matrix
based on the estimated parameters may be calculated using pvarstable. We conclude
that the model is stable because all the moduli are smaller than one.

. pvarstable

Eigenvalue stability condition

Eigenvalue
Real Imaginary Modulus

.9174187 0 .9174187

.1487883 -.4773783 .500028

.1487883 .4773783 .500028
-.1725133 .3267878 .3695282
-.1725133 -.3267878 .3695282
-.2327437 0 .2327437

All the eigenvalues lie inside the unit circle.
pVAR satisfies stability condition.

A graph of the stability test may be produced by adding the graph option; see
figure 1. We can see that the model is stable because the roots of the companion matrix
are all inside the unit circle.
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Figure 1. Graph of eigenvalue stability condition

Now that we have established that the panel VAR model is stable, we can calculate
IRFs and FEVDs. We can use the pvarirf command to calculate simple IRFs, orthog-
onalized IRFs, cumulative IRFs, and cumulative orthogonalized IRFs. The pvarfevd

command calculates FEVDs. Orthogonalized IRFs and FEVDs may change depending on
how the endogenous variables are ordered in the Cholesky decomposition. Specifically,
the ordering constrains the timing of the responses: shocks on variables that come ear-
lier in the ordering will affect subsequent variables contemporaneously, while shocks on
variables that come later in the ordering will affect only the previous variables with a
lag of one period. Because the ordering of the variable is likely to affect orthogonal-
ized IRFs and the interpretation of the results, one should ensure that the ordering be
based on solid theoretical ground. There is no empirical test for the ordering; however,
Granger-causality results can be used to add weight to the theoretically chosen ordering.
Currently, structural IRFs are not supported, although they may be manually calculated
using outputs from pvar.

By default, pvarirf and pvarfevd use the ordering of variables specified in pvar.
The Cholesky-ordering may be changed easily by using the porder() option, instead of
reissuing the pvar command with the new order of endogenous variables. Confidence
intervals are calculated using Monte Carlo simulation.

Following the theoretical exposition by Holtz-Eakin, Newey, and Rosen (1988), we
argue that shocks in wage levels have direct impact on contemporaneous hours worked,
while current work effort affects wages only in the future. This implies that wages
should go first in the order. Note that this ordering is also supported by Granger-
causality results reported above: we found that wage Granger-causes weeks, but not
vice versa. Using this causal ordering, we calculated the implied orthogonalized IRF

using pvarirf and the implied FEVD using pvarfevd. We used the porder() option to
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put two variables in correct order, which in our example is different from the order listed
in pvar. Note that ordering does not affect pvar estimates; it affects only orthogonalized
IRFs and FEVD estimates. The IRF confidence intervals are computed using 200 Monte
Carlo draws from the distribution of the fitted reduced-form panel VAR model. Standard
errors and confidence intervals for the FEVD estimates are likewise available but not
shown here in the interest of space.

. pvarirf, oirf mc(200) byoption(yrescale) porder(lwage lwks)
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Figure 2. Graphs of orthogonalized IRFs

The IRFs suggest that weeks do not have a significant impact on wage (because the
confidence intervals include the zero line in the top right graph of figure 2), while the
wage has a nonlinear impact on hours worked: in the first period, it is positive, while
in the third period, it turns significantly negative (bottom left graph). Note that the
response of wage to weeks is constrained to zero in the first period as a result of the
ordering.
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. pvarfevd, mc(200) porder(lwage lwks) save("fevd_ci.dta")
note: label truncated to 80 characters

Forecast-error variance decomposition

Response
variable
and
Forecast Impulse variable
horizon lwage lwks

lwage
0 0 0
1 1 0
2 .9641575 .0358426
3 .9417265 .0582735
4 .9335153 .0664847
5 .9312605 .0687395
6 .9296675 .0703325
7 .9279929 .0720071
8 .9266167 .0733833
9 .9256445 .0743555
10 .9249322 .0750679

lwks
0 0 0
1 .0070398 .9929602
2 .0070685 .9929315
3 .0096815 .9903185
4 .0138484 .9861517
5 .0151277 .9848723
6 .0158209 .9841792
7 .0166287 .9833713
8 .0174266 .9825734
9 .0180863 .9819137
10 .0186139 .9813861

FEVD standard errors and confidence intervals based
on 200 Monte Carlo simulations are saved in file
fevd_ci.dta

Instead of a priori specifying a third-order panel VAR model, we can use pvarsoc to
calculate selection-order statistics to identify an optimal moments and model lag order.
The command fits pvar using preidentified lag orders for the moment instruments and
for the panel VAR model and calculates the CD as well as various MMSC if the model
is overidentified. It may be necessary to run pvarsoc more than once to identify the
optimal moment and model lag orders.

Below the order-selection table presents results from the first-, second-, third-, and
fourth-order panel VAR models using the first four lags of the endogenous variables
as instruments.8 For the fourth-order panel VAR model, only the CD is calculated
because the model is just-identified. Based on the three model-selection criteria by

8. For illustration, we use four lags as instruments to ensure that the GMM model is overidentified for
some of the PVAR models. By default, pvar runs just-identified models; thus the different MMSC
will not be available. We illustrate instlags() more extensively in section 4.2 using the National
Longitudinal Survey data.
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Andrews and Lu (2001), the first-order panel VAR is the preferred model because this
has the smallest MBIC, MAIC, and MQIC. While we also want to minimize Hansen’s J
statistic, it does not correct for the degrees of freedom in the model like the MMSC by
Andrews and Lu (2001). Note that the second-order panel VAR models reject Hansen’s
overidentification restriction at the 5% alpha level, indicating possible misspecification
in the model; thus it should not be selected.

. pvarsoc lwks lwage if fem == 0, pvaropts(instlags(1/4))
Running panel VAR lag order selection on estimation sample
....

Selection order criteria
Sample: 5 - 6 No. of obs = 1056

No. of panels = 528
Ave. no. of T = 2.000

lag CD J J pvalue MBIC MAIC MQIC

1 .9722131 17.13162 .1447131 -66.41531 -6.868385 -29.44043
2 .9830283 18.72182 .0164203 -36.97613 2.721822 -12.32621
3 .9875987 8.959954 .0621083 -18.88902 .9599543 -6.56406
4 .9851995 . . . . .

We fit the first-order panel VARmodel using the first four lags of endogenous variables
as instruments because this minimizes each of the MMSC by Andrews and Lu (2001)
above. In practice, users should check different sets of lag orders to identify the optimal
moment and model lags to be used. We then test for Granger causality and find that
we can neither reject the hypothesis that lwage does not Granger-cause lwks nor reject
that lwks does not Granger-cause lwage.

. pvar lwks lwage if fem == 0, lags(1) instlags(1/4)

(output omitted )

. pvargranger

panel VAR-Granger causality Wald test
Ho: Excluded variable does not Granger-cause Equation variable
Ha: Excluded variable Granger-causes Equation variable

Equation \ Excluded chi2 df Prob > chi2

lwks
lwage 0.362 1 0.548

ALL 0.362 1 0.548

lwage
lwks 0.013 1 0.909
ALL 0.013 1 0.909

The above specifications assume that all the endogenous variables are stationary.
The GMM estimator used in pvar suffers from weak instrument problems when the
variable being modeled is near unit root. The moment conditions become completely
irrelevant when the variable has unit root. Using Stata’s built-in xtunitroot command,
we run panel unit-root tests on lwks and lwage and find that lwage has unit root.
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. xtunitroot ht lwks if fem == 0

. xtunitroot ht lwage if fem == 0

We mitigate this issue by using the growth rates of weeks worked, gwks, and of wage
rate, gwage, in the panel VAR model instead of the variables in levels. Another strategy
used in the time-series VAR literature when variables have unit roots is to specify the
reduced-form VAR model using variables in FDs. Before fitting any model, we test for
the presence of unit root in our generated growth-rate variables and find that they are
both stationary.

. generate gwage = (exp(lwage)-exp(l.lwage))/exp(l.lwage)
(595 missing values generated)

. generate gwks = (wks - l.wks)/l.wks
(595 missing values generated)

. xtunitroot ht gwks if fem == 0

(output omitted )

. xtunitroot ht gwage if fem == 0

(output omitted )

. pvarsoc gwks gwage if fem == 0, pvaropts(instlags(1/4))

(output omitted )

. pvar gwks gwage if fem == 0, lags(1) instlags(1/4)

(output omitted )

. pvargranger

panel VAR-Granger causality Wald test
Ho: Excluded variable does not Granger-cause Equation variable
Ha: Excluded variable Granger-causes Equation variable

Equation \ Excluded chi2 df Prob > chi2

gwks
gwage 0.874 1 0.350

ALL 0.874 1 0.350

gwage
gwks 0.253 1 0.615
ALL 0.253 1 0.615

Based on the lag-order selection criteria, we fit a first-order panel VAR model using
the first four lags of endogenous variables as instruments. We again test for Granger
causality and find that in this respecified panel VAR model in growth rates, we can
neither reject the hypothesis that lwage does not Granger-cause lwks nor reject that
lwks does not Granger-cause lwage.

4.2 National Longitudinal Survey

The panel VAR models in the previous section are fit using FODs to remove the individual
fixed effects. Another way to remove the fixed effects is to use FDs. Using either FOD

or FD should not matter much theoretically when there are no gaps in the data and
when there are a large number of cross-sectional units. Gaps in the data, however, are
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magnified when using FD. Furthermore, in general, FD requires a longer time dimension
than FOD, which may be an issue when fitting panel VAR models using short panels.

We illustrate this issue using the subsample of women aged 14–26 years in 1968
from the 1968–1975 National Longitudinal Survey of Youth available from Stata. Holtz-
Eakin, Newey, and Rosen (1988) analyzed the 1966–1975 National Longitudinal Survey
of Men. As with the earlier examples, we specify homogeneous panel VAR models of
log-transformed wage rate (ln wage) and weeks worked (ln wks). Note from the output
of xtdescribe that in addition to women who were not included in all rounds of the
survey, there are two periods when all women have not been observed (shown as dots
on the output), representing the years 1974 and 1976.

. webuse nlswork2, clear
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. xtdescribe

idcode: 1, 2, ..., 5159 n = 3914
year: 68, 69, ..., 78 T = 9

Delta(year) = 1 unit
Span(year) = 11 periods
(idcode*year uniquely identifies each observation)

Distribution of T_i: min 5% 25% 50% 75% 95% max
1 1 2 4 6 9 9

Freq. Percent Cum. Pattern

213 5.44 5.44 111111.1.11
191 4.88 10.32 .........11
173 4.42 14.74 .......1.11
167 4.27 19.01 1..........
134 3.42 22.43 ..........1
116 2.96 25.40 ....11.1.11
113 2.89 28.28 .....1.1.11
93 2.38 30.66 ...111.1.11
93 2.38 33.04 ..1111.1.11

2621 66.96 100.00 (other patterns)

3914 100.00 XXXXXX.X.XX

. generate ln_wks = ln(wks_work)
(844 missing values generated)

Assuming that ln wage and ln wks are stationary, we run first-order panel VAR

models using either the fd or the fod option and using different numbers of lags as
instruments. The individual outputs are redacted for conciseness and are instead sum-
marized in one table. Note that in the FD specification, we use the second lags of
the untransformed variables as the earliest lag used as instrument, while in the FOD

specification, we use the first lag of the untransformed variables. These specifications
assume that the original model using untransformed variables have no serial correlation.
By construction, first differencing introduces serial correlation in the model; thus only
further lags are valid instruments. We present results with two lag options for each
model—using one lag (that is, the second in FD and the first in FOD) and using two
lags (that is, lags two and three in FD and lags one and two in FOD). The options are
specified with the instl() option as shown below. When serial correlation is present
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in the original untransformed model, only more distant lags can be used according to
the order of the serial correlation. We run the following commands:

. pvar ln_wks ln_wage, fd

. estimates store fd_2

. pvar ln_wks ln_wage, fd instlags(2/3)

. estimates store fd_2t3

. pvar ln_wks ln_wage, fod

. estimates store fod_1

. pvar ln_wks ln_wage, fod instlags(1/2)

. estimates store fod_1t2

The table below summarizes the panel VAR models specified above. For now, we
focus our attention on the number of observations used in each specification. Note
that the FOD specification uses more observations when using either one or two lags as
instruments. In both FOD and FD specifications, however, the numbers of observations
available for analysis fall when using two lags as instruments, although the drop is bigger
for the FD specification because of gaps in the data.

. estimates table fd_2 fd_2t3 fod_1 fod_1t2 , b(%3.2f) se(%3.2f)
> stats(N J J_pval) modelwidth(8)

Variable fd_2 fd_2t3 fod_1 fod_1t2

ln_wks
ln_wks

L1. -0.27 0.18 -0.08 0.29
0.07 0.15 0.05 0.09

ln_wage
L1. -0.88 -0.56 -0.32 0.08

0.16 0.31 0.08 0.12

ln_wage
ln_wks

L1. 0.14 0.08 0.15 0.02
0.03 0.06 0.03 0.04

ln_wage
L1. 0.50 0.49 0.69 0.65

0.07 0.12 0.04 0.06

Statistics
N 3241 1810 4195 2449
J 0.00 29.25 0.00 38.64

J_pval . 0.00 . 0.00

legend: b/se

The problem of missing observations when using longer lags as instruments may be
circumvented by using GMM-style instruments, where missing observations are substi-
tuted with zero, as proposed by Holtz-Eakin, Newey, and Rosen (1988). We refit the
first-order panel VAR models using either the fd or the fod option, with two lags of un-
transformed variables in levels as instruments, but this time specifying the gmmstyle to
use GMM-style instruments. As a default, observations with missing lagged observations
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for instruments are dropped. With gmmstyle specified, these moment conditions are
replaced with zeros and are therefore no longer missing. Here we see that the numbers
of observations are the same as when just one lag of the untransformed variable is used
as the instrument.

. pvar ln_wks ln_wage, fd instlags(2/3) gmmstyle

(output omitted )

. estimates store fd_2t3g

(output omitted )

. pvar ln_wks ln_wage, fod instlags(1/2) gmmstyle

(output omitted )

. estimates store fod_1t2g

(output omitted )

. estimates table fd_2t3g fod_1t2g, b(%4.2f) se(%4.2f) stats(N J J_pval)
> modelwidth(8)

Variable fd_2t3g fod_1t2g

ln_wks
ln_wks

L1. -0.17 -0.07
0.07 0.05

ln_wage
L1. -0.74 -0.31

0.16 0.08

ln_wage
ln_wks

L1. 0.12 0.13
0.03 0.02

ln_wage
L1. 0.47 0.67

0.07 0.04

Statistics
N 3241 4195
J 14.73 14.29

J_pval 0.01 0.01

legend: b/se

In the two sets of estimates above using two lags as instruments, the p-values for the
Hansen’s J statistics are alarmingly low, indicating some misspecification in the model.
One possible issue is that there might be autocorrelation in the model residuals, thereby
making the instruments invalid. This may be easily remedied by adjusting the lags used
as instruments. For example, using the first three lags of the untransformed variables
as instruments in the first- and second-order panel VAR models below gives low p-values
for the J statistics.
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. pvarsoc ln_wks ln_wage, maxl(3) pvaropts(instlags(1/3) fod gmmstyle)
Running panel VAR lag order selection on estimation sample
...

Selection order criteria
Sample: 71 - 72 No. of obs = 864

No. of panels = 518
Ave. no. of T = 1.668

lag CD J J pvalue MBIC MAIC MQIC

1 .9924534 23.51504 .0027623 -30.57755 7.515037 -7.065052
2 .9943494 7.102435 .130573 -19.94386 -.8975646 -8.187609
3 .9626358 . . . . .

Using the second to the fourth lag of the untransformed variables instead results in
more acceptable p-values for the Hansen tests.

. pvarsoc ln_wks ln_wage, maxl(3) pvaropts(instlags(2/4) fod gmmstyle)
Running panel VAR lag order selection on estimation sample
...

Selection order criteria
Sample: 71 - 72 No. of obs = 864

No. of panels = 518
Ave. no. of T = 1.668

lag CD J J pvalue MBIC MAIC MQIC

1 .9913965 11.11061 .1955104 -42.98197 -4.889392 -19.46948
2 .9932585 2.925785 .5703209 -24.12051 -5.074215 -12.36426
3 .7120468 . . . . .

5 Conclusion

In this article, we briefly reviewed panel VAR model selection, estimation, and inference
in a GMM framework and introduced a package of commands to fit panel VAR models.
We illustrated the commands using two standard Stata datasets.

We conclude with one note of caution to the users of these programs. With the large
number of possible combinations of moments and model lags, data transformations, and
instrument type that may be implemented, users might be tempted to choose model
estimates that fit their expected results. It is always good practice to be up front about
the assumptions of the models specified by discussing the set of instruments used, which
data transformation is used to remove the fixed effects, etc. And finally, estimates must
be checked for robustness to changes in these parameters.
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