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Abstract. We present a new command, bivcnto, for fitting regression models
suitable for analyzing correlated count outcomes. bivcnto allows specification of
two correlated count outcomes with either two outcome-specific covariate lists or
one common covariate list and fits models using a copula function approach in
the general case or using specific parameterizations by Marshall and Olkin (1985,
Journal of the American Statistical Association 80: 332–338) or Famoye (2010a,
Journal of Applied Statistics 37: 969–981; 2010b, Statistica Neerlandica 64: 112–
124). bivcnto also calculates a likelihood-ratio test comparing the joint model
with estimation of two independent outcome-specific models.

Keywords: st0433, bivcnto, copula function, correlated count data, Poisson, nega-
tive binomial, Famoye bivariate Poisson regression, Marshall–Olkin bivariate neg-
ative binomial regression, Famoye bivariate negative binomial regression, Famoye
bivariate generalized Poisson regression, general bivariate count regression

1 Introduction

While there are several official commands for analyzing a single-count outcome (nbreg,
poisson, etc.) as well as user-written additions (for example, nbregf and nbregw from
Harris, Hilbe, and Hardin [2014] and nbregp from Hardin and Hilbe [2014]), regression
modeling of correlated count outcomes is not currently supported in Stata.

We present a new estimation command, bivcnto, to evaluate the Famoye bivari-
ate Poisson regression model, the Marshall–Olkin bivariate negative binomial regression
model, the Famoye bivariate negative binomial regression model, the Famoye bivariate
generalized Poisson regression model, and a general bivariate count regression model
(computed from copula functions) that allows the user to specify the marginal distribu-
tion of each outcome.

This article is organized as follows. In section 2, we introduce the general concepts of
the copula approach and the various supported regression models. In section 3, syntax
is presented for bivcnto, followed by examples in section 4.

c© 2016 StataCorp LP st0433
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2 Bivariate count-data models

2.1 Copula approach for bivariate data

While the distribution of univariate discrete data has been well developed, it is some-
times necessary to introduce a bivariate distribution for correlated discrete data. In
many cases, when the marginal distributions are not independent, there is no explicit
form for the bivariate distribution. Copula functions were originally introduced in Sklar
(1959) and then revisited in Sklar (1973).

In general, if we define q random uniform variables, U1, . . . , Uq on the [0, 1] interval,
we may define a function

C(u1, . . . , uq) = P (U1 ≤ u1, . . . , Uq ≤ uq)

where the function C(·, · · · , ·) is a copula and uj is a particular realization of Uj for
j = 1, 2, . . . , q for q ≥ 2. To be considered a copula, the function C must have a domain
on the q-dimensional unit hypercube, must be grounded, and must be increasing over
its domain. If so, then we may write

C{F1(x1), . . . , Fq(xq)} = P
{
F−1
1 (U1) ≤ x1, . . . , F

−1
q (Uq) ≤ xq)

}
= F (x1, . . . , xq)

That is, the copula as a function of the marginal distributions can be used to calculate
the joint distribution; see Frees and Valdez (1998) for a complete review.

Using this approach, we can define

C(u, v; θ) = F (y1, y2)

where u = F1(y1), v = F2(y2) are the cumulative distribution functions of the two
marginal distributions, respectively, and the θ parameter measures the dependence be-
tween the two outcomes y1 and y2. In the related software, we have built-in support for
calculations based on the following copula functions, where η = 1− exp(−θ). Φ−1(·) is
the quantile function of the standard normal distribution, and Φ2(·, ·, ·) is the cumulative
distribution function of the bivariate normal distribution:

C1(u, v; θ) = −1

θ
log
[{
η − (1− e−θu)(1− e−θv)

}
/η
]

C2(u, v; θ) = Φ2

{
Φ−1(u),Φ−1(v), θ

}
C3(u, v; θ) =

(
u−θ + v−θ − 1

)−1/θ

We note that in each copula function, the dependence parameter θ has a different
range and so is parameterized in the software in a function-specific manner:

C1(u, v, θ) : −∞ < θ < ∞
C2(u, v, θ) : −1 ≤ θ ≤ 1

C3(u, v, θ) : −1 < θ < ∞, θ �= 0
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In each case, an unrestricted parameter θu is used in the software, where θ is then
calculated. The copula function C1, known as Frank’s copula and specified in the
software as copula(frank), is parameterized as θ = θu ∈ � (without restrictions).
The copula function C2, known as the normal copula and specified in the software as
copula(normal), is parameterized using the inverse hyperbolic tangent function θ =
{exp(2θu)− 1}/{exp(2θu)+1} ∈ (−1, 1). The copula function C3, known as the Kimel-
dorf and Sampson (KS) copula and specified in the software as copula(kimeldorf), is
parameterized as θ = exp(θu) − 1 ≥ −1; the software ensures the value of θu is never
equal to 0. See Joe (1997) for additional properties of these copula functions.

In general, the normal copula function is popular in financial modeling. However,
because it imposes a linear correlation structure on the two variables, it may not be
suitable for every situation. As such, two well-known copula functions are introduced
as alternatives.

Both Frank’s copula and the KS copula belong to the family of Archimedean copulas.
Frank’s copula is a symmetric copula function, while the KS copula is asymmetric. One
advantage of Archimedean copulas is they have an explicit form and are easily generated.
Depending on whether the correlation is believed to be more positive or negative, the
user can select an asymmetric copula.

Using the copula approach to calculating the joint distribution of the count out-
comes, we can specify each marginal distribution, and the two distributions are not re-
quired to be the same. The bivcnto command will allow specification of each marginal
distribution as Poisson, negative binomial, or generalized Poisson distribution; see
Harris, Yang, and Hardin (2012), and download associated software for individual re-
gression models based on this last distribution.

The Fréchet–Hoeffding theorem states that the following bounds hold for any copula:

max{F1(y1) + F2(y2)− 1, 0} ≤ F (y1, y2) ≤ min{F1(y1), F2(y2)}

The software imposes these bounds on the marginal probabilities to ensure that bivariate
probabilities stay within the range.

There are many articles about the applications of copula functions for bivariate
count data. Lee (1999) studied the application of the Frank copula in the Australian
Rugby League dataset. The two marginals followed the negative binomial distributions.
Even though the term “copula” was not explicitly mentioned, van Ophem (1999) used
the normal copula with specified Poisson marginal distributions. McHale and Scarf
(2007) described how to apply Archimedian copulas for Poisson–Poisson and negative-
binomial–negative-binomial scenarios and presented detailed examples using the Frank
copula and KS copula. The command we develop and describe, bivcnto, can be used
for carrying out all the analyses described in these articles. The main inspiration for the
work described here is Cameron et al. (2004). However, they were actually more focused
on the induced distribution of the difference of two correlated count distributions.
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2.2 The Famoye bivariate Poisson regression model

The Famoye bivariate Poisson regression model allows negative, zero, or positive corre-
lation.

Famoye (2010a) presents a bivariate Poisson distribution given by

P (y1, y2) = μy1

1 μy2

2 e−μ1−μ2
{
1 + λ(e−y1 − e−dμ1)(e−y2 − e−dμ2)

}
/y1!y2!

where μ1 and μ2 are the mean parameters for the two marginal Poisson distributions,
respectively, and d = 1− exp(−1). In this presentation, the two outcomes are indepen-
dent when λ = 0. Also, note that the sign of λ indicates the sign of the correlation
between the outcomes. The correlations can be calculated per observation as

ρi = λd2
√
μ1iμ2i exp{−d(μ1i + μ2i)}

Subsequently, the average of the ρi can be used to summarize the correlation of the
outcome variables.

2.3 Two parameterizations of the bivariate negative binomial regres-
sion model

Many approaches to bivariate count-data modeling have been suggested and researched.
The new bivcnto command includes support for two parameterizations of bivariate
negative binomial regression.

The Marshall–Olkin model

The Marshall–Olkin model is a “shared frailty” model for which the dispersion pa-
rameters of the marginal distributions are set to be equal, and there is no additional
parameter directly measuring correlation between the two outcomes; see Marshall and
Olkin (1985). The probability mass function if given by

f(y1, y2|λ1, λ2, α) =

Γ(y1 + y2 + α)

y1!y2!Γ(α)

(
λ1

λ1 + λ2 + 1

)y1
(

λ2

λ1 + λ2 + 1

)y2
(

1

λ1 + λ2 + 1

)α

where λ1 and λ2 are the two marginal means and α is the (common) overdispersion
parameter.

While this approach defines a specific distribution for which estimates can easily be
computed, the marginals are required to be negative binomial, the correlation between
the outcomes is positive, and the heterogeneity in each marginal is assumed to be equal.
The correlation between the outcomes for this model is given by

Corr(y1, y2) =
λ1λ2√

(λ2
1 + αλ1)(λ2

2 + αλ2)
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The Famoye model

In comparison with the Marshall–Olkin bivariate negative binomial regression model,
Famoye’s presentation is more general. The Famoye model allows negative, zero, or
positive correlation, and allows separate dispersion parameters for the marginal distri-
butions.

Famoye (2010a) presents a bivariate negative binomial distribution given by

P (y1, y2) =

⎧⎨⎩
2∏

k=1

(
m−1

k + yk − 1

yk

)(
μk

m−1
k + μk

)yk
(

m−1
k

m−1
k + μk

)m−1
k

⎫⎬⎭
×
{
1 + λ

(
e−y1 − c1

) (
e−y2 − c2

)}
where μk is the mean of the marginal negative binomial distribution with k = 1, 2, and

ck = {(1− θk)/(1− θke
−1)}m−1

k with θk = μk/(m
−1
k +μk). In this presentation, the two

outcomes are independent when λ = 0. Also, note that the sign of λ indicates the sign
of the correlation between the outcomes. The parameter mk is the dispersion parameter
for the negative binomial distribution for k = 1, 2. As mk → 0, the negative binomial
marginal model reduces to that of a Poisson marginal model. The correlations can be
calculated per observation as

ρi = λd2
√

μ1iμ2i(1 +m1μ1i)(1 +m2μ2i) (1 + dm1μ1i)
−1−1/m1 (1 + dm2μ2i)

−1−1/m2

Subsequently, the average of the ρi can be used to summarize the correlation of the
outcome variables.

2.4 The Famoye bivariate generalized Poisson regression model

Famoye (2010b) presents the following bivariate generalized Poisson distribution, which
allows negative, zero, or positive correlation.

P (y1, y2) =

( 2∏
k=1

[
θyk

k (1 + αkyk)
yk−1

yk!
exp {−θk(1 + αkyk)}

]
{
1 + λ(e−y1 − c1)(e

−y2 − c2)
})

ck = exp {θ − t(sk − 1)}
0 = ln(sk)− αkθk(sk − 1) + 1

The mean parameters of the marginal generalized Poisson distributions are given by
μk = θk/(1 − αkθk). In this presentation, the two outcomes are independent when
λ = 0. Also, note that the sign of λ indicates the sign of the correlation between the
outcomes.
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3 Syntax

Software accompanying this article includes the command files as well as supporting files
for prediction and help. In the following syntax diagrams, unspecified options include
the usual collection of maximization and display options available to all estimation
commands.

Equivalent in syntax to the biprobit command, the basic syntax for bivariate count
regression models is presented as a bivariate syntax (common covariates for the two
outcomes),

bivcnto depvar1 depvar2
[
indepvars

] [
if
] [

in
] [

weight
] [

, pfamoye gfamoye

famoye molkin offset1(varname) offset2(varname) dist1(distribution)

dist2(distribution) copula(function)
]

and as an outcome-specific covariate list syntax,

bivcnto equation1 equation2
[
if
] [

in
] [

weight
] [

, pfamoye gfamoye famoye

molkin dist1(distribution) dist2(distribution) copula(function)
]

where equation1 and equation2 are specified as

(
[
eqname:

]
depvar

[
=
] [

indepvars
] [

, noconstant offset(varname)
]
)

In either case, the user specifies one of 1) pfamoye to fit Famoye’s parameterization of a
bivariate Poisson model, 2) famoye to fit Famoye’s parameterization of a bivariate neg-
ative binomial model, 3) molkin to fit Marshall–Olkin’s parameterization of a bivariate
negative binomial model, 4) gfamoye to fit Famoye’s parameterization of a bivariate
generalized Poisson model, or 5) a combination of dist1(), dist2(), and copula()

to fit a bivariate count model with given marginal distributions. distribution can be
specified as poisson, nbinomial, or gpoisson; copula() can be specified as frank,
normal, or kimeldorf.

Help files are included for the estimation and postestimation specifications of these
models. The help files include example specifications of many possible models.

4 Example

In this example, we use data from the German health registry for the year 1984; see
Hardin and Hilbe (2012). The data include responses by persons as to the number of
doctor visits and number of hospital visits occurring in the previous year, as well as
independent variables, including marital status, sex, whether the person has children,
etc. Initially, we load the data and generate indicator variables of interest to assess the
interaction of sex and marital status.
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Because we believe that the number of doctor visits and hospital visits should be
correlated for each person, we fit bivariate count-data models. Model 1 is a bivariate
generalized Poisson model for which joint probabilities are estimated using the normal
copula function. Relative to Poisson marginal distributions, this model will accommo-
date underdispersion or overdispersion.

. use rwm1984
(German health data for 1984; Hardin & Hilbe, GLM and Extensions, 3rd ed)

. correlate docvis hospvis
(obs=3,874)

docvis hospvis

docvis 1.0000
hospvis 0.1458 1.0000

. generate byte postHS = edlevel1==0

. generate byte MarM = (married==1 & female==0) // married males

. generate byte MarF = (married==1 & female==1) // married females (reference
> group)

. generate byte SinM = (married==0 & female==0) // single males

. generate byte SinF = (married==0 & female==1) // single females
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. bivcnto docvis hospvis MarM SinM SinF kids outwork postHS, copula(normal) irr
> dist1(gp) dist2(gp) nolog

Bivariate count regression Number of obs = 3874
Distribution 1 : gpoisson LR chi2(12) = 279.76
Distribution 2 : gpoisson Prob > chi2 = 0.0000
Copula function: Normal
Log likelihood = -9528.074 Pseudo R2 = 0.0145

IRR Std. Err. z P>|z| [95% Conf. Interval]

docvis
MarM .7794394 .040415 -4.81 0.000 .7041195 .8628163
SinM .5928822 .0482416 -6.42 0.000 .5054845 .6953909
SinF 1.012853 .0635227 0.20 0.839 .8956983 1.14533
kids .7019465 .0292074 -8.51 0.000 .646973 .761591

outwork 1.364784 .063108 6.73 0.000 1.246534 1.494251
postHS .9114119 .0486906 -1.74 0.083 .8208064 1.012019
_cons 3.686083 .1952554 24.63 0.000 3.322585 4.089348

hospvis
MarM 1.332045 .1976339 1.93 0.053 .9959257 1.781601
SinM .8377243 .2073132 -0.72 0.474 .515766 1.36066
SinF 1.283144 .2433393 1.31 0.189 .8848118 1.860801
kids .820675 .0997965 -1.63 0.104 .64664 1.041549

outwork 1.32767 .1787069 2.11 0.035 1.019805 1.728477
postHS .7786416 .1272684 -1.53 0.126 .5652093 1.07267
_cons .0929525 .0143513 -15.39 0.000 .0686816 .1258003

/atanhdelta1 .8420648 .0159916 52.66 0.000 .8107218 .8734077
/atanhdelta2 .262389 .02783 9.43 0.000 .2078433 .3169348
/atanhtheta .3643823 .0280477 12.99 0.000 .3094099 .4193548

delta1 .6869011 .0084462 .6699882 .7031014
delta2 .2565287 .0259986 .2049013 .3067327
theta .3490683 .0246301 .2999001 .3963867

LR test of independence: chi2(1) = 166.729 Prob > chi2 = 0.0000

Model 2 is a bivariate negative binomial model for which joint probabilities are
estimated using the normal copula function. Because the negative binomial marginal
distributions allow for overdispersion relative to the Poisson model, the results should
be comparable to model 1.
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. bivcnto docvis hospvis MarM SinM SinF kids outwork postHS, copula(normal) irr
> dist1(nbinomial) dist2(nbinomial) nolog

Bivariate count regression Number of obs = 3874
Distribution 1 : nbinomial LR chi2(12) = 204.00
Distribution 2 : nbinomial Prob > chi2 = 0.0000
Copula function: Normal
Log likelihood = -9563.0986 Pseudo R2 = 0.0106

IRR Std. Err. z P>|z| [95% Conf. Interval]

docvis
MarM .7553233 .0482379 -4.39 0.000 .6664565 .8560398
SinM .5428058 .0539187 -6.15 0.000 .446778 .6594733
SinF 1.094595 .0964304 1.03 0.305 .9210115 1.300893
kids .6699012 .0361331 -7.43 0.000 .6026964 .7445997

outwork 1.367538 .080724 5.30 0.000 1.218131 1.53527
postHS .7767982 .0525775 -3.73 0.000 .680291 .8869961
_cons 3.815242 .2435281 20.98 0.000 3.366585 4.32369

hospvis
MarM 1.339777 .2106125 1.86 0.063 .9845185 1.823229
SinM .8486239 .2191493 -0.64 0.525 .5115643 1.407765
SinF 1.267091 .265061 1.13 0.258 .8409039 1.90928
kids .8669514 .1132898 -1.09 0.275 .6710628 1.120022

outwork 1.318504 .1887649 1.93 0.053 .9959056 1.745599
postHS .7299941 .1267115 -1.81 0.070 .5194799 1.025817
_cons .0821457 .0128806 -15.94 0.000 .0604109 .1117003

/lnalpha1 .801881 .0312111 25.69 0.000 .7407083 .8630536
/lnalpha2 1.517031 .1581257 9.59 0.000 1.20711 1.826951

/atanhtheta .3524641 .027713 12.72 0.000 .2981476 .4067807

alpha1 2.229731 .0695924 2.097421 2.370388
alpha2 4.558669 .7208429 3.343807 6.214911
theta .3385591 .0245365 .2896165 .3857358

LR test of independence: chi2(1) = 194.597 Prob > chi2 = 0.0000

Model 3 is a simplification wherein we illustrate whether the marginal distributions
could be modeled as Poisson. This is for illustration more than anything because the
first two models already established significant overdispersion. This model is a specific
parameterization of the joint distribution that is not estimated via copula functions.
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. bivcnto docvis hospvis MarM SinM SinF kids outwork postHS, irr pfamoye nolog

Famoye bivariate Poisson regression Number of obs = 3874
Distribution 1 : poisson LR chi2(12) = 1525.70
Distribution 2 : poisson Prob > chi2 = 0.0000
Parameteriz. : Famoye
Log likelihood = -17292.442 Pseudo R2 = 0.0423

IRR Std. Err. z P>|z| [95% Conf. Interval]

docvis
MarM .8256116 .0194582 -8.13 0.000 .7883417 .8646434
SinM .7184228 .0265246 -8.96 0.000 .6682719 .7723373
SinF 1.09806 .0306338 3.35 0.001 1.039631 1.159773
kids .7111962 .0137636 -17.61 0.000 .6847252 .7386906

outwork 1.496067 .0309472 19.47 0.000 1.436625 1.557969
postHS .7867019 .0205356 -9.19 0.000 .7474652 .8279982
_cons 3.475433 .0773372 55.98 0.000 3.327113 3.630365

hospvis
MarM 1.506575 .1606378 3.84 0.000 1.222452 1.856734
SinM .8145506 .1690816 -0.99 0.323 .5422863 1.22351
SinF .9681015 .1582902 -0.20 0.843 .7026589 1.33382
kids .9758035 .0906394 -0.26 0.792 .8133863 1.170652

outwork 1.685831 .1670805 5.27 0.000 1.388201 2.047271
postHS .7455801 .0964673 -2.27 0.023 .5785769 .9607879
_cons .1135148 .013544 -18.24 0.000 .0898446 .1434211

/lambda 1.239064 .0311917 39.72 0.000 1.17793 1.300199

LR test of independence: chi2(1) = 150.989 Prob > chi2 = 0.0000

Model 4 is a specific parameterization of a bivariate generalized Poisson regression
model. It is similar to model 1, except that joint probabilities are not estimated using
a copula function approach.
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. bivcnto docvis hospvis MarM SinM SinF kids outwork postHS, irr gfamoye nolog

Famoye bivariate gen. Poisson regression Number of obs = 3874
Distribution 1 : gpoisson LR chi2(12) = 274.35
Distribution 2 : gpoisson Prob > chi2 = 0.0000
Parameteriz. : Famoye
Log likelihood = -9565.9571 Pseudo R2 = 0.0141

IRR Std. Err. z P>|z| [95% Conf. Interval]

docvis
MarM .7763308 .039299 -5.00 0.000 .703004 .857306
SinM .6034113 .0488873 -6.24 0.000 .5148142 .7072555
SinF 1.013709 .0634444 0.22 0.828 .8966841 1.146006
kids .711594 .0296011 -8.18 0.000 .6558789 .7720418

outwork 1.363803 .0616085 6.87 0.000 1.248244 1.490061
postHS .9097265 .0485966 -1.77 0.077 .8192956 1.010139
_cons 3.716485 .1944046 25.10 0.000 3.35434 4.117728

hospvis
MarM 1.329661 .1971473 1.92 0.055 .9943383 1.778065
SinM .8904528 .2160404 -0.48 0.632 .5534694 1.432611
SinF 1.251321 .2385659 1.18 0.240 .8611644 1.818241
kids .8117869 .0988215 -1.71 0.087 .6394734 1.030532

outwork 1.430081 .1917152 2.67 0.008 1.099637 1.859824
postHS .7621674 .1252311 -1.65 0.098 .5523192 1.051745
_cons .1052071 .016458 -14.39 0.000 .0774263 .1429559

/atanhdelta1 .850666 .0161206 52.77 0.000 .8190702 .8822619
/atanhdelta2 .3611645 .0316393 11.42 0.000 .2991526 .4231764

/theta 1.61282 .1117518 14.43 0.000 1.393791 1.83185

delta1 .6914173 .008414 .6745635 .7075506
delta2 .3462394 .0278463 .2905369 .399603

LR test of independence: chi2(1) = 90.9624 Prob > chi2 = 0.0000

Model 5 is a specific parameterization of a bivariate negative binomial regression
model. It is similar to model 2 (and model 6), except that joint probabilities are not
estimated using a copula function approach.
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. bivcnto docvis hospvis MarM SinM SinF kids outwork postHS, irr famoye nolog

Famoye bivariate neg bin regression Number of obs = 3874
Distribution 1 : nbinomial LR chi2(12) = 196.14
Distribution 2 : nbinomial Prob > chi2 = 0.0000
Parameteriz. : Famoye
Log likelihood = -9613.7926 Pseudo R2 = 0.0101

IRR Std. Err. z P>|z| [95% Conf. Interval]

docvis
MarM .7850615 .0504826 -3.76 0.000 .6920987 .890511
SinM .7066418 .0680447 -3.61 0.000 .585106 .8534226
SinF 1.114674 .0996621 1.21 0.225 .9354971 1.328168
kids .7344114 .0395042 -5.74 0.000 .6609262 .816067

outwork 1.499644 .0882375 6.89 0.000 1.336301 1.682953
postHS .7512271 .0515644 -4.17 0.000 .6566661 .859405
_cons 3.513729 .2202173 20.05 0.000 3.107567 3.972976

hospvis
MarM 1.50087 .2589676 2.35 0.019 1.070218 2.104813
SinM .8452774 .2431846 -0.58 0.559 .4809615 1.485553
SinF .9809291 .2345484 -0.08 0.936 .6139149 1.567354
kids 1.042998 .1494766 0.29 0.769 .7875786 1.381252

outwork 1.630445 .2583429 3.09 0.002 1.195181 2.224223
postHS .7499424 .138282 -1.56 0.119 .5224861 1.076418
_cons .0858934 .0148254 -14.22 0.000 .0612407 .12047

/lnalpha1 .8320476 .0308378 26.98 0.000 .7716065 .8924886
/lnalpha2 2.259601 .1077669 20.97 0.000 2.048381 2.47082

/lambda 1.690835 .1250408 13.52 0.000 1.44576 1.935911

alpha1 2.298019 .0708659 2.163239 2.441197
alpha2 9.579261 1.032327 7.755337 11.83214

LR test of independence: chi2(1) = 93.209 Prob > chi2 = 0.0000

Model 6 is a specific parameterization of a bivariate negative binomial regression
model. It is similar to model 2 (and model 5), except that joint probabilities are not
estimated using a copula function approach. Also, the Marshall–Olkin model (model 6)
assumes that dependency of the two marginal distributions is captured through the
constraint that the two marginal distributions have equal dispersion parameters; this is
the reason there is only one dispersion parameter in the model output.
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. bivcnto docvis hospvis MarM SinM SinF kids outwork postHS, irr molkin nolog

Marshall-Olkin bivariate neg bin regression Number of obs = 3874
Distribution 1 : nbinomial LR chi2(12) = 231.33
Distribution 2 : nbinomial Prob > chi2 = 0.0000
Parameteriz. : Marshall-Olkin
Log likelihood = -9814.5153 Pseudo R2 = 0.0116

IRR Std. Err. z P>|z| [95% Conf. Interval]

docvis
MarM .790513 .0505189 -3.68 0.000 .6974478 .8959964
SinM .7052426 .0671038 -3.67 0.000 .5852572 .8498267
SinF 1.127196 .0998536 1.35 0.177 .9475349 1.340923
kids .7256723 .0385847 -6.03 0.000 .6538549 .8053781

outwork 1.49835 .0876521 6.91 0.000 1.336038 1.680381
postHS .7449296 .0504891 -4.34 0.000 .6522639 .8507601
_cons 3.51977 .2189786 20.23 0.000 3.115715 3.976224

hospvis
MarM 1.369553 .1743942 2.47 0.014 1.067062 1.757794
SinM .6829585 .1530451 -1.70 0.089 .4401974 1.059598
SinF .9624444 .1805015 -0.20 0.838 .6664035 1.389998
kids 1.019477 .1084942 0.18 0.856 .8275446 1.255925

outwork 1.662235 .1954399 4.32 0.000 1.320113 2.093022
postHS .7681872 .1119307 -1.81 0.070 .5773519 1.0221
_cons .0915673 .0120894 -18.11 0.000 .0706901 .1186102

/lnalpha .8042573 .0304566 26.41 0.000 .7445636 .8639511

alpha 2.235036 .0680715 2.105522 2.372516

LR test of independence: chi2(1) = 308.236 Prob > chi2 = 0.0000

In a bivariate model of doctor visits and hospital visits (across all the highlighted
examples), it can be seen that married men have a lower rate of doctor visits than
married women. Single men have an even lower rate, but single women do not differ
from married women in terms of their rates of doctor visits.

The correlation from the bivariate generalized Poisson model indicates that the out-
comes are positively correlated at about 35%. This model has a better fit than two inde-
pendent generalized Poisson regression models, with a χ2 value of 166.7 and associated
p-value less than 0.0001, thus rejecting the assumption of independence. The delta1

and delta2 from the output are the dispersion parameters for the marginal Poisson
distribution. Relative to Poisson distribution, a positive value of this dispersion param-
eter indicates overdispersion and a negative value indicates underdispersion. From the
output of the first model, we conclude that (relative to marginal Poisson distributions)
the overdispersion of the number of doctor visits is about 2.5 times the overdispersion of
the number of hospital visits (delta1/delta2 = 2.7). The Famoye bivariate generalized
poisson model result is similar, as shown in the fourth model output.

For the second model output using negative binomial distributions with the normal
copula, the alpha1 and alpha2 output lines are for the dispersion parameters of the
marginal negative binomial distributions, with larger values indicative of greater disper-
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sion (relative to a marginal Poisson distribution). When α = 0, the dispersion of the
distribution is 0, and it reduces to a Poisson distribution. In both outputs using copula
functions, the two estimated θ correlation parameters are close. The likelihood-ratio
test of independence again rejects the independence assumption.

When we compare the last two models with the copula method, assuming the
marginal distributions are negative binomial distributions, the significance of predic-
tors for doctor visits do not change. The significant dependence parameters indicate a
positive correlation between doctor visits and hospital visits.
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