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Abstract. In medicine and chemistry, immunoassays are often used to measure
substance concentration. These tests use an S-shaped standard curve to map the
observed optical responses to the underlying concentration. The enzyme-linked
immunosorbent assay is one such test that is commonly used to measure antibody
concentration in vaccine and infectious disease research. The enzyme-linked im-
munosorbent assay and other immunoassays usually involve a series of doubling
or tripling dilutions of the test samples so that some of the diluted samples fall
within the near-linear range in the center of the standard curve. The dilution
that falls within or is nearest to the center of the near-linear range may then be
selected for statistical analysis. This common practice of using one dilution does
not fully use the information from multiple dilutions and reduces accuracy. We
describe a recently proposed weighted-average estimation approach for analyzing
multiple-dilution data (Cheung et al. 2015, Journal of Immunological Methods
417: 115-123), and we present the new wavemid command, which carries out the
approach. We also present the new command midreshape, which processes raw
data in text format exported from some microplate readers into analyzable data
format. We use data from an experimental study of malaria vaccine candidates to
demonstrate use of the two commands.
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1 Introduction

In medicine and chemistry, immunoassays are important tools for detecting and quanti-
fying substance concentration. For example, in vaccine and infectious disease research,
the concentration of an antibody or antigen is often measured using the enzyme-linked
immunosorbent assay (ELISA). This assay measures the concentration in each sample
indirectly with an optical signal generated by an enzyme. For each test sample, the
concentration is determined by comparing the observed optical density (OD) with an
S-shaped standard curve (see figure 1 for an example). For example, if the observed
OD is 2, then the estimated log(concentration) would be 2.56. Typically, the standard
curve is a sigmoid curve described by a four-parameter logistic model on the logarithm
scale (Ratkowsky and Reedy 1986; O’Connell, Belanger, and Haaland 1993) that char-
acterizes the relationship between the OD and the concentration of the target substance
in a set of standard solutions with known concentrations.

A common limitation of immunoassays is that they can obtain an accurate estimate
of concentration only if the sample concentration falls within the “optimal” range (that
is, the near-linear part in the center of the standard sigmoid curve). When the sample
concentration falls outside this range, the assay lacks accuracy. To solve this, one can
conduct a series of dilutions of each original test sample, as illustrated in figure 1. For
each test sample, the observed response from one dilution that is within or nearest
to the center of the optimal range is chosen for subsequent statistical analysis, while
data from the other dilutions are ignored. The concentration of the substance in the
original sample is then estimated using the inversion of a standard curve to obtain the
concentration level of the chosen diluted sample and then multiplying the estimate by
the corresponding dilution factor.

One problem with this approach is that selecting one diluted sample may involve
some arbitrariness, thus limiting reproducibility. More importantly, using only one
data point per original sample for statistical analysis does not fully use the available
information, thus reducing accuracy. Remarque (2007) proposed calculating a weighted
average of all data points by assigning the weights in a 100:1 ratio for data points in the
optimal range versus those outside. This approach uses all the data. However, there is
no formal justification to the weights and the ranges to which the weights are applicable,
other than knowledge on the technical limits of the laboratory apparatus.
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Figure 1. Illustration of a standard curve relating OD to sample concentration with four
dilution levels of a set of original samples

To circumvent these problems, Cheung et al. (2015) proposed a weighted-average
estimator for using data from multiple dilutions, where the weights are proportional
to the inverse of the variance of the individual estimates. They showed by simulation
that the proposed estimator yields more-accurate estimates. Using data from a vaccine
study, they demonstrated that this method could lead to different practical conclusions.
They also proposed a simplified version of the estimator, which is useful if the analyst
cannot implement the inverse-variance method. This method is applicable to similar
types of assays, not just ELISA.

In this article, we describe the inverse-variance weighted-average estimator proposed
by Cheung et al. (2015), and we present a new command, wavemid, for implementing
this procedure. We also present the new command midreshape, which processes raw
data in text format exported from some microplate readers into analyzable data format.
We use an experimental study of malaria vaccine candidates to illustrate the use of the
two commands.
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2 Weighted-average estimation approach

A typical microplate has 96 wells for an immunoassay measurement of up to 96 samples
at the same time. Some of the wells hold standard samples whose true concentration
levels are known. The remaining wells hold a set of (diluted) test samples with un-
known concentrations. The outputs of the immunoassay include up to 96 observed OD
values. To estimate unknown concentrations in the test samples, one must establish the
standard curve that maps the observed response to the known concentrations by using
the standard samples.

2.1 Estimation of the standard curve

Suppose one microplate holds ns unique standard samples with known concentrations
denoted by Zstandard,1; TStandard,2; - - - » TStandard,n.- For the ith (i = 1,...,ng) stan-
dard sample, there are m; replicate measurements. Typical laboratory practice is to
have m; = 2 or 3 for all i. The total number of replicated standard concentrations is
Ny = ZZL:I m;. Let Ystandard,i,; denote the observed response for the jth replicate of a
standard sample with concentration Zstandard,:-

A common parameterization of the standard curve is a four-parameter logistic model,

b1 — by
1+ (b—)b

where E(Y) denotes the mean of response Y (for example, OD) at concentration x
(O’Connell, Belanger, and Haaland 1993). In the parameter vector b = (b, b, b3, bs)7,
by and by are, respectively, the lower and upper asymptotes of the standard curve as the
concentration x — 0 and x — oco. The parameter b3 corresponds to the concentration
at the midpoint of the two asymptotes, and b, is related to the slope of the standard
curve. The variance of response Y is often formulated as a power-of-the-mean function,
that is,

E(Y) = Q(x[b) = by + (1)

Var(Y) = o*{Q(x[b)}*’ (2)

where o is the scale parameter and 6 represents the degree of heteroskedasticity (Carroll
and Ruppert 1988; Davidian and Haaland 1990). Expressions (1) and (2) together
define the response model.

Given data for the standard samples {(ystandard,i,j, TStandard,i) : J = 1,..., M1 =
1,...,ns}, a generalized least-squares (GLS) estimation algorithm may be used to fit
the model parameters b, o, and 6. Further details of the GLS estimation algorithm can
be found in Carroll and Ruppert (1988), Davidian and Haaland (1990), and O’Connell,
Belanger, and Haaland (1993). Briefly, steps for this method are as follows:

1. Initialize the parameter b by an ordinary least-squares regression of ystandard,i,;
ON TStandard,: i1 the dataset. Denote the resultant estimate as b and s = 0.
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2. Estimate (0, 0) using the pseudolikelihood method, that is, by minimizing the
following log-likelihood function in (6, 0):

PL(97O') N lOg + 922@ (xStandard Z|b( ))
=1 j=1
2

Ns T YStandard,i,j — Q (xstandard,i|b(s))

—~ %
=1 j=1 {Q (IStandard,i|b(s)> }

Denote the resultant estimate as (é\(s), 7). Form the estimated weights:
~ —200)
Vij = {Q <$Standard,i|b(s))}

3. Use ¥;; from step 2 to update the estimate b(®) that minimizes

ng
Z Z Vij {yStandard i, Q(xStandard,i |b)}2

i=1 j=1

Set s = s + 1 and return to step 2.

Iterate between steps 2 and 3 until the parameter estimate 9 Converges Denote
the resultant estimates for the model parameters as b= (bl, bg, bg, b4) , 0, and 9.

Upon convergence, the variance of estimate b can be readily derived as
Var (B) — (XTG1X) !

where the matrix X is an Ns x 4 gradient matrix. For this matrix, the columns are
the partial derivative of the four-parameter loglbtlc function Q(x|b) with respect to each

of the parameters in b evaluated at b = b, denoted by {5Q(x|b)/5b}T The rows
correspond to each of the N, standard concentrations. The elements of row vector

{6Q(z|b)/6b}T are
{5@ (x\B) /5b}T -

SO MO N N N

/1;4 ’ 34 ’ ’54 ’ b4
() () (7)) e+ (¢)
The first m; rows of the gradient matrix X are each {5Q(gcsmndard71|g)/6b}T. The

rows (my1 + 1) to (m1 4+ mg) are each {6Q(msmndard’2|g)/5b}T, and so on. The ma-
trix G is an Ng x N, diagonal matrix, with the first m; diagonal elements equal

to {Q(xsmnd&rd 1|b)}29 the (my + 1)th to (my + meo)th diagonal elements equal to
{Q(

)} , and so on.
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2.2 Estimating concentration in test samples

Having established the standard curve, we now estimate the concentration in the test
samples on the same microplate. Each original test sample with unknown concentration
x is to be diluted in K steps. Typically, in immunoassays, K = 4. For the kth
(k=1,..., K) diluted sample, the underlying concentration is x/dily, where dil; denotes
the dilution factor. Often, dilxy1/dily = 2 or 3, representing doubling or tripling of the
dilutions. Let yi denote the observed response, which can be the mean of r replicates.
On the log scale, the estimate for the unknown concentration x based on its kth diluted
sample (that is, the dilution-specific concentration estimate), denoted by Ty, is

7 > . 1 Dy —
log () = log (b ) +log (dily) + ~log (yl %k> 3)
4 k — 02

Cheung et al. (2015) proposed an inverse-variance weighted-average estimator of the

—

log-transformed concentration, log(x), for the original serum sample, denoted as log(x),

— 1

K
log(z) = ——— Z wilog(Zy) 4)

where wy, is the weight assigned to the log-transformed, dilution-specific concentration
estimate as follows:

1 1 \? .5 Slog(@) ) ©
o= (e L) e R}
b1—yk yk_bQ

(xR 5)

Details of the derivation and interpretation of (2) are in Cheung et al. (2015). Briefly,
(2) contains two additive terms. The first additive term involves a product of two
elements. The first element contains the lower and upper asymptotes (31 and 32) With
other factors remaining the same, the closer the OD is to the midpoint of (?)\1 and 32)
(the center of the optimal range), the heavier the weight it receives. The second element
contains é\, which reflects the degree of heteroskedasticity in the variance of the response.
With other remaining factors the same, an OD value with higher variance receives a lower
weight. The second additive term accounts for the uncertainty in estimating parameter
vector b for the standard curve. It involves a column vector, {dlog(Zy)}/db, and two
matrices, X and G. The matrices X and G are both based on the standard samples
and were previously defined in section 2.1. The column vector {§log(Zx)}/db is the
partial derivative of log(Zy) for test sample (4) with respect to the parameter vector b
evaluated at b = b.

N ~ T
dlog(T) _ 1 1 1 by —llog b1 — Yk
ob by | b1 —yr yx—bo by by Yr — bo
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The variance for the proposed inverse-variance weighted-average estimate is

_— 1
Var §log(z) ¢ =
{ ) } 1 1/Var {log (z1)}

=

k

20 1 1
* 2 ZZ Var {log (z;, )} Var {log (%,
Lﬁ;l/\/&r{log (fk)}:| ISRl oan) foetea)l

{510%5](3@1) }T (XTG1x)"! {510%“(6@2)} ©)

In (4), the term Var{log(Zy)} is the variance of the dilution-specific estimate and can
be estimated from a bivariate Taylor-series expansion of (4) with respect to y and b,
which results in

Var {log (7)) - { = (311 — )}QaZy,?/r

by — Y Yk~ b
o (3017 R loa(5
+ {5 Ogﬁxk) } Var (b) {6 Og(}k) }
b ob

3 The wavemid command

3.1 Syntax

wavemid [zf] [m] , testsample(varname) od(varname) standard(varname)
dilutionfactor (varname) id(varname) saving (ﬁlename[ , replace ])
[itiate(#) tolerance(#) plot
graphexport (graphfilename. sujﬁx[ , replace ]) ]

3.2 Options

testsample (varname) specifies a binary variable in the dataset that takes the value 1
for test samples and 0 for standard samples. testsample() is required.

od (varname) specifies a variable corresponding to the OD in the dataset. od() is re-
quired.

standard (varname) specifies a variable in the dataset that contains the concentration
of the standard sample and the missing value for the test sample. standard() is
required.

dilutionfactor (varname) specifies a variable in the dataset that contains the di-
lution factor of the test sample and the missing value for the standard sample.
dilutionfactor() is required.
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id(varname) specifies a variable in the dataset that identifies the samples. id() is
required.

saving (ﬁlename[ , replace ] ) creates an output data file (filename.dta) that contains
the sample identifier, the concentration estimate, the variance of the log-transformed
concentration estimate, the dilution-specific mean ODs among the replicates, and
the dilution-specific weight. Use replace to overwrite the existing filename.dta.
saving() is required.

iterate (#) specifies the maximum number of iterations for GLS estimation. When the
number of iterations equals iterate(), estimation stops and presents the current
results. If convergence is declared before this threshold is reached, estimation will
stop when convergence is declared. The default is iterate(10).

tolerance (#) specifies the tolerance for the parameter theta in the power-of-the-mean
variance function. When the relative change in the parameter theta from one itera-
tion to the next is less than or equal to tolerance(), the tolerance() convergence
criterion is satisfied. The default is tolerance (10~ (-4)).

plot plots the standard curve with the observed data for the standard samples on the
logarithm scale for the concentration.

graphexport(gmphﬁlenam@.suﬂ%x[ , replace]) exports the graph that is generated
after plot to graphfilename. suffix. Use replace to overwrite the existing graphfile-
name. suffix.

4 The midreshape command

Immunoassay data can be directly entered into Stata without using midreshape. How-
ever, some microplate readers export raw data and sample labels as a text file in a
popular format. A typical layout of the text file includes the following three panels
of data: 1) sample identifiers, 2) ODs, and 3) concentrations for standard samples and
dilution factors for test samples. A name is shown in the line above each panel to de-
scribe what that panel is. Within each panel, the data values are exhibited as an 8 x 12
matrix corresponding to the 96-well microplate layout. See section 5 for an example.
The midreshape command converts the text file into Stata and reshapes the data to the
format required by wavemid. Users of midreshape should carefully examine whether
their raw data file is in the format described here.

midreshape using filename, template(string) od(string) concentration(string)

test (string) standard(string) [ separator (list_separator) ]

4.1 Options

template (string) specifies the name of the panel corresponding to the sample identifiers.
Space characters in the panel name may be safely ignored. This option is not case
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sensitive. For instance, if the panel name is Template Name, then you may specify
template(Template Name), template(TemplateName),
template(Templatename), template(templateName),

or template(templatename). template() is required.

od (string) specifies the name of the panel corresponding to the ODs. Space characters
in the panel name may be safely ignored. This option is not case sensitive. od() is
required.

concentration(string) specifies the name of the panel that corresponds to the con-
centrations (for the standard samples) and dilution factors (for the test samples).
Space characters in the panel name may be safely ignored. This option is not case
sensitive. concentration() is required.

test (string) specifies the prefix of the sample identifiers to indicate which are the test
samples. Multiple prefixes, separated by space characters, may be specified. This
option is case sensitive. test () is required.

standard(string) specifies the prefix of the sample identifiers to indicate which are
the standard samples. Multiple prefixes, separated by space characters, may be
specified. This option is case sensitive. standard() is required.

separator (list_separator) specifies the character to be used to separate the values.
separator (comma) specifies that values be comma-separated. separator(tab)
specifies that values be tab-separated. Users may also specify other separation char-
acters. For instance, if values in the file are separated by a semicolon, the user may
specify separator(";"). The default is separator(tab).

5 Example

5.1 Preparing an analysis dataset from a raw text file exported from
an optical reader

The example dataset we use here is part of an experimental study that immunized rab-
bits with one of four malaria vaccine candidates. Here we used the data on antibodies
to Apical Membrane Antigen 1 from one ELISA microplate. Apical Membrane Anti-
gen 1 is an antigen that plays an important role in the invasion of red blood cells and
hepatocytes by the parasites.

The 96-well microplate follows the typical 8-row by 12-column format. Each plate
includes 2 blank samples (negative controls), 14 standard samples (seven concentrations
with two replicates each), and 80 test samples. Each test sample begins with a starting
dilution of 1:24000, followed by tripling dilutions, to obtain four diluted samples per
serum sample. The data were stored in a text file, example_12_tab.txt, exported by
a microplate reader. In the text file, the sample identifiers are shown in the following
format:
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Template

BLK  STD04 SMPO5 SMP20 SMP29 SMP13 SMP22 SMPO5 SMP20 SMP29 SMP13 SMP22
BLK  STDO4 SMPO5 SMP20 SMP29 SMP13 SMP22 SMPO5 SMP20 SMP29 SMP13 SMP22
STDO7 STDO3 SMP06 SMP21 SMP30 SMP14 SMP28 SMP06 SMP21 SMP30 SMP14 SMP28
STDO7 STDO3 SMP06 SMP21 SMP30 SMP14 SMP28 SMP06 SMP21 SMP30 SMP14 SMP28
STDO6 STDO2 SMP13 SMP22 SMPO5 SMP20 SMP29 SMP13 SMP22 SMPO5 SMP20 SMP29
STDO6 STDO2 SMP13 SMP22 SMPO5 SMP20 SMP29 SMP13 SMP22 SMPO5 SMP20 SMP29
STDO5 STDO1 SMP14 SMP28 SMP06 SMP21 SMP30 SMP14 SMP28 SMP06 SMP21 SMP30
STDO5 STDO1 SMP14 SMP28 SMP06 SMP21 SMP30 SMP14 SMP28 SMP06 SMP21 SMP30

BLK indicates blank samples, and the prefixes STD and SMP differentiate the standard
samples from the test samples, respectively. The duplicated numeric suffixes indicate
two replicates per standard sample and per diluted test sample. All values are tab-
delimited. The raw ODs corresponding to these samples are displayed in the text file
following the same matrix format:

Raw Data

0.070 0.740 2.976 2.362 2.229 2.339 1.731 1.103 0.656 0.527 0.825 0.460
0.068 0.824 2.728 2.712 1.792 2.652 1.682 1.279 0.727 0.480 0.816 0.400
0.112 1.389 2.427 2.619 3.165 1.934 1.871 0.982 0.816 1.028 0.570 0.568
0.125 1.360 2.617 2.158 2.942 2.085 1.986 0.931 0.703 1.143 0.458 0.564
0.185 2.176 2.882 2.497 2.130 1.453 1.177 1.809 0.908 0.519 0.359 0.241
0.193 2.277 3.126 2.410 1.958 1.402 1.274 1.400 0.971 0.526 0.334 0.276
0.387 2.798 2.640 2.853 1.719 1.318 1.961 1.251 1.007 0.456 0.321 0.509
0.304 2.775 2.937 2.806 1.826 1.596 2.153 1.166 1.039 0.405 0.341 0.568

This is followed by a third data matrix that shows concentrations for the standard
samples and dilution factors for the test samples:

Concentrations / Dilutions

1.9235 24000 24000 24000 72000 72000 216000 216000 216000 648000 648000

1.9235 24000 24000 24000 72000 72000 216000 216000 216000 648000 648000
.0712 5.7704 24000 24000 24000 72000 72000 216000 216000 216000 648000 648000
.0712 5.7704 24000 24000 24000 72000 72000 216000 216000 216000 648000 648000
.2137 17.3111 24000 24000 72000 72000 72000 216000 216000 648000 648000 648000
.2137 17.3111 24000 24000 72000 72000 72000 216000 216000 648000 648000 648000
.6411 51.9333 24000 24000 72000 72000 72000 216000 216000 648000 648000 648000
.6411 51.9333 24000 24000 72000 72000 72000 216000 216000 648000 648000 648000

[oleNeNeNeNel

The first two elements in the first column of the above matrix were blank, corre-
sponding to the two blank samples as seen in the Template block. Each test sample (for
example, SMP05) occupied eight wells, that is, two replicates in each of the four dilution
levels.

The blank samples on microplates are usually used for quality control purposes, and
thus we do not include the two blank samples in our statistical analysis. We now use
the midreshape command to prepare the dataset for further analysis.

. midreshape using example_12_tab.txt, template(Template) od(Raw Data)
> concentration(Concentrations / Dilutions) test(SMP) standard(STD)

The command creates five variables: testSample (1 if a test sample and 0 if a stan-
dard sample), ID, 0D, standard (missing if testSample = 1), and dilution_factor
(missing if testSample = 0). Data are sorted and shown in ascending order for
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testSample, ID, and dilution_factor. The table below shows the actual data for
the first 20 rows.

. list in 1/20, abbreviate(20) separator(20)

testSample ID 0D standard dilution_factor
1. 0 STDO1  2.798 51.9333
2. 0 STDO1  2.775 51.9333
3. 0 STDO2 2.176 17.3111
4. 0 STDO2 2.277 17.3111
5. 0 STDO3  1.389 5.7704
6. 0  STDO3 1.36 5.7704
7. 0  STDO4 .824 1.9235
8. 0  STD04 .74 1.9235
9. 0  STDO5 .387 .6411
10. 0  STDO5 .304 .6411
11. 0  STDO6 .185 .2137
12. 0  STDO6 .193 .2137
13. 0  STDO7 .125 .0712
14. 0  STDO7 .112 .0712 .
15. 1 SMPO5 2.976 . 24000
16. 1 SMPO5  2.728 . 24000
17. 1 SMPO5  1.958 . 72000
18. 1 SMPO5 2.13 . 72000
19. 1 SMPO5  1.279 . 216000
20. 1 SMPO5  1.103 . 216000

5.2 Implementing the weighted-average estimation approach using
the wavemid command

Now we apply the wavemid command to the data described previously.

. wavemid, testsample(testSample) od(0D) standard(standard)

> dilutionfactor(dilution_factor) id(ID) saving(plate_estimate, replace)
> plot graphexport(standard_curve.png,replace)

file plate_estimate.dta saved

(file standard_curve.png written in PNG format)

Estimation of Standard Curve Based on Standard Samples.................

LOF: Source SS df MS
Number of obs = 14
Pure Error .012874484 7 .001839212 F( 3, 7 = 1.3955
Lack of Fit .007700135 3 .002566712 Prob > F = 0.3215
R-squared = .9984546
Error .020574615 10 .002057462 Root MSE = .0014696
Est Std Err
bl 0.0742918 0.1485931
b2 3.3345455 0.0771453
b3 8.6078653 2.3250908
b4 0.8994575 0.0428863
theta 0.4502218
sigma 0.0418301
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The regression table above gives the parameter estimates for b, o, and 6. A lack-
of-fit test is also conducted to assess how well this estimated standard curve fit to the
observations from standard samples (O’Connell, Belanger, and Haaland 1993). This is a
common practice in immunoassays. The residual sum of squares error is partitioned into
two components: the sum of squares due to pure error (SSPE) and the sum of squares
due to lack of fit (SSLOF). Further details on how to calculate the sum of squares error,
SSPE, and SSLOF can be found elsewhere (see, for example, Brook and Arnold [1985,
48-49]).

Then, a variance-ratio F test can be conducted using the test statistic SSLOF/SSPE,
which follows an F' distribution with degrees of freedom dy = ny — p and do = Ng —
ns, where ng is the number of unique concentrations in the standard samples, p is
the number of parameters in the standard curve mean response model, and N, is the
total number of standard samples on the microplate. In this example, ng =7, p = 4
(that is, a four-parameter logistic model), and Ny = 14. Thus, d; = 3 and dy = 7,
hence, SSLOF/SSPE ~ Fj3;. The lack-of-fit test shown in the above table gave an
insignificant p-value (0.3215), which suggests that the null hypothesis of lack of fit
could not be rejected at the 5% significance level. The R-squared value being close
to 1 also indicated that the estimated standard curve fit the data well on the standard
samples. This is further demonstrated graphically in figure 2, which is produced by
the plot option and depicts the estimated standard curve on the log(concentration)
scale together with the scatterplot of the observed data on the standard samples. By
specifying the graphexport () option, the generated graph is saved to an external file.

Standard Curve

oD
N

log(concentration)

Figure 2. Plot of standard curve and observed data generated by wavemid
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The results on concentration estimates for the test samples are saved in
plate_estimate.dta.

. use plate_estimate, clear
. describe

Contains data from plate_estimate.dta

obs: 10

vars: 15 16 Nov 2015 11:33

size: 610

storage display value

variable name type format label variable label
ID strb %9s Sample ID
CONC float %9.0g Weighted average estimate
VAR_1ogCONC float  %9.0g Var (1n(CONC))
dilution_fact~1 float %Q.Og Dilution factor
0D_avgl float %9.0g Mean of responses
Wt_logl float  7%9.0g Dilution-specific weight
dilution_fact~2 float %9.0g Dilution factor
0D_avg2 float %9.0g Mean of responses
Wt_log2 float  7%9.0g Dilution-specific weight
dilution_fact~3 float %9.0g Dilution factor
0D_avg3 float %9.0g Mean of responses
Wt_log3 float  7%9.0g Dilution-specific weight
dilution_fact~4 float %9.0g Dilution factor
0D_avgd float %9.0g Mean of responses
Wt_logd float %9.0g Dilution-specific weight

Sorted by: ID CONC VAR_logCONC

The variables CONC and VAR_1ogCONC are calculated based on (5) and (4), respec-
tively. The variables Wt_logl to Wt_log4 are the weights at each of the four dilution
levels, each calculated based on (2). Below is a list of these data for each of the 10 test
samples.

. list ID CONC VAR_1logCONC Wt_log*, separator(10)

ID CONC  VAR_lo-C Wt_logl Wt_log2 Wt_log3 Wt_logé

SMP28  758736.
SMP29  305864.
SMP30  861425.

.0034011 .0812947 .1216422 .7110945 .0859686
.0045231 .2056204 .6929231 .0930961 .0083604
.0037226 .0629233 .1337282 .7196823 .0836661

1. SMPO5  949363.4 .0056274 .1191221 .1641234 .6275659 .0891886
2. SMPO6  630065.2 .0033245 .0823517 .1337856 .7578192 .0260436
3. SMP13 1578578 .0030945 .0703939 .0967548 .1928905 .6399609
4. SMP14  939857. .0060724 .12568611 .1737726 .6145999 .0857664
5. SMP20  433232. .0026274 .1522356 .4140148 .411734 .0220156
6. SMP21  445023. .0024643 .1270483 .3108616 .5471681 .0149219
7. SMP22  602859. .0031466 .082595 .1418577 .7500857 .0254616
8.

9.

0.

e 2 I N N

e
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6 Conclusion

In immunoassays, accurate measurement of concentration using a standard curve re-
quires the use of a dilution that ensures the OD is in the near-linear part of the curve.
Analyzing only one dilution wastes useful information and decreases measurement accu-
racy. We have, therefore, developed an approach that allows data from several dilutions
of each sample to be used in a weighted analysis, which gives improved estimates of
the substance concentration. The superiority of this approach versus the conventional
approach was previously demonstrated by Cheung et al. (2015).

In this article, we demonstrated how to implement inverse-variance weighted-average
estimation to analyze data on multiple dilutions by using the wavemid command. We
also discussed how the midreshape command can be used to convert data from the
format commonly provided by a microplate reader. These commands are useful when
using Stata in laboratory-based biomedical research.
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