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Abstract. In this article, I describe a new command, igmobil, that computes up
to 20 intergenerational mobility (IGM) indices for continuous (that is, income or
years of education) or discrete (that is, educational or occupational level) variables.
I consider three classes of IGM indices: 1) single-stage indices, 2) indices derived
from a transition matrix between parents’ and children’s socioeconomic status, and
3) indices based on inequality measures. Users may add a fourth class to specify
any possible IGM index not included in igmobil. Standard errors and confidence
intervals are calculated using a bootstrap procedure. Users can customize many
aspects of the program output, including the type and dimension of the transition
matrix, the parameters for some IGM indices (like the ones involving generalized
entropy measures and the Atkinson index), and how standard errors and confidence
intervals are calculated.
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1 Introduction

Intergenerational mobility (IGM) refers to the extent to which the advantages and disad-
vantages of individuals (according to dimensions such as income, wealth, or education)
are transmitted across generations (Black and Devereux 2011). A key aspect is that
IGM is a complex concept and may mean different things to different people. Fields
(2008) identifies six different concepts of income mobility—namely, time independence,
positional movement, share movement, nondirectional income movement, directional
income movement, and equalizer of long-term incomes—and each concept can be quan-
tified by a specific set of indices. For example, share movement mobility occurs when an
individual’s income increases with respect to the population mean.1 A possible index
for this example would be M(Xi, Yi) = N−1

∑n
i=1 |Yi/μY −Xi/μX |, where Yi and Xi

denote, respectively, a child’s and his or her parent’s income for family i (see section 2).
A natural consequence in this case is that there is no consensus on how IGM should be
measured, so many indices are available to an applied researcher.2 Therefore, because
the complexity of IGM cannot be captured by a unique index, Fields and Ok (1999a)
suggest using different measures.

1. Fields (2008) notes that a child can experience share movement even if he or she has the same
income as his or her parent.

2. See Fields and Ok (1999a), Checchi and Dardanoni (2002), Black and Devereux (2011), and Jäntti
and Jenkins (2013).
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igmobil computes point estimates and inferential measures for 19 IGM indices com-
monly used in the applied research. These 19 indices are appropriate for measuring
income mobility, although only some of them are suitable for analyzing mobility ac-
cording to other dimensions, such as years of education or occupational level. Users can
add a 20th index to this list by specifying their own user-written program, an example
of which is provided in section 4.6.

igmobil also computes standard errors and confidence intervals using an embedded
bootstrap procedure.

2 Intergenerational mobility indices

Let the vector (Yi, Xi) describe the socioeconomic status (SES) of a child and his or
her parent for family i. We are interested in the extent to which the child’s SES, Yi,
depends on the parent’s SES, Xi.

3 From a practical point of view, the abstract and
multifaceted notion of SES must be proxied by an observable variable, which is typically
chosen among income, wealth, health, education, occupational prestige, and the like.
For simplicity, I will assume that the vectors (Y,X) contain information on permanent
income. In the final paragraph of this section, I will briefly discuss how analysis can be
carried out on other dimensions of SES other than income.

An intergenerational mobility index, M(Y,X), is any function M : R2n → R, which
maps the vectors of incomes (Y,X) into a scalar. Following the distinctions made in
Cowell and Schluter (1998) and Checchi and Dardanoni (2002), I divide the IGM indices
computed by igmobil into the following three broad classes: 1) single-stage indices,
which are computed directly on microdata; 2) indices based on a transition matrix,
which require discrete or discretized data; and 3) inequality reduction indices, which
are based on inequality measures (such as the Gini coefficient) computed on the cross-
sectional distribution of income for both generations. Users may add a fourth class to
specify any possible IGM index not included in igmobil.

Table 1 describes the IGM indices estimated by the program. For each index, I report
the bibliographic reference where that index was either first proposed or described in
an applied work.

3. Alternatively, one can study the evolution of SES for the same individuals at different points in
time. What follows applies to both intergenerational and intragenerational mobility, even if I refer
to the former only.
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Table 1. Intergenerational mobility indices estimated by igmobil

Index Alias Formula Reference

Single-stage indices

M1 Abs. difference n−1 ∑ |Xi − Yi| Fields and Ok (1996)
M2 Sq. difference n−1 ∑ (Xi − Yi)

2 Checchi and Dardanoni (2002)
M3 Fields and Ok n−1 ∑ | lnXi − lnYi| Fields and Ok (1999b)
M4 Share n−1 ∑(Xi/μX − Yi/μY )2 Fields (2008)
M5 Hart 1−Corr(lnYi, lnXi) Hart (1981)
M6 Spearman 1− Spearman(lnYi, lnXi) Black and Devereux (2011)
M7 Abs. CDF n−1 ∑ |FY (Yi)− FX(Xi)| Checchi and Dardanoni (2002)
M8 Sq. CDF n−1 ∑{FY (Yi)− FX(Xi)}2 Checchi and Dardanoni (2002)
M9 1-OLS(levels) 1− OLS(Yi, Xi) Black and Devereux (2011)
M10 1-OLS(logs) 1− OLS(lnYi, lnXi) Black and Devereux (2011)

Indices based on PK×K transition matrix

M11 Prais (trace) (K − 1)−1{K − trace(P)} Shorrocks (1978b)
M12 Bartholomew {K(K − 1)}−1 ∑

i

∑
j pij |i− j| Bartholomew (1973)

M13 Eigenvalue2 1− |2nd largest eigenvalue| Sommers and Conlisk (1979)
M14 Determinant 1− | det(P)| Shorrocks (1978b)

Indices based on inequality reduction

M15 S or F – Gini See (1), (2) Fields (2010); Shorrocks (1978a)
M16 S or F – GE(a1) See (1), (2), and Appendix Fields (2010); Shorrocks (1978a)
M17 S or F – GE(a2) See (1), (2), and Appendix Fields (2010); Shorrocks (1978a)
M18 S or F – Atk(ε1) See (1), (2), and Appendix Fields (2010); Shorrocks (1978a)
M19 S or F – Atk(ε2) See (1), (2), and Appendix Fields (2010); Shorrocks (1978a)

Index based on user-written program

M20 user written (ex.) See sections 2 and 4.6

igmobil estimates the following classes of indices:

Class 1: Single-stage indices. The defining characteristic of indices belonging to this
class is that the final IGM index is an aggregation of mobility that occurs between the
families in the population (see Checchi and Dardanoni [2002]). Many well-known indices
belong to this class, including the Fields and Ok index (M3; Fields and Ok [1999b])
and the indices based on the Pearson correlation (M5), the Spearman correlation (M6),
and the intergenerational elasticity (M10, which is one minus the ordinary least-squares
coefficient in a regression of child log-income on parent log-income). The other indices in
this class are the average absolute difference (M1), the average squared difference (M2),
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the share index (M4, introduced in section 1), the average absolute (M7) and squared
(M8) difference of the individuals’ empirical cumulative density functions (CDFs), and
the ordinary least-squares coefficient in a regression of child income on parent income
(M9, which uses income levels instead of logs as in the intergenerational elasticity,
M10).

Class 2: Indices based on a transition matrix. These indices are functional of the
transition matrix PK×K between the parent’s income level and the child’s income level.
The generic element pjk represents the probability that the child’s income falls in the
kth class given that the parent’s income falls in the jth class. Income levels can be
either absolute (a size transition matrix) or set on the basis of quantiles of the marginal
distributions of Yi and Xi (quantile or fractile transition matrix). Indices derived from
a transition matrix combine the elements on the main diagonal (as in the Shorrocks and
Prais index, M11; see Shorrocks [1978b]); they consider the average “jump” of income
classes (as in the Bartholomew index, M12; see Bartholomew [1973]); and they account
for the second-largest eigenvalues (M13; see Sommers and Conlisk [1979]) or the deter-
minant of the matrix itself (M14; see Shorrocks [1978b]). By default, igmobil computes
5×5 quantile matrices, although one can specify the desired number of quantiles or can
switch to a size transition matrix (in this case, however, data must be discrete).

Class 3: Inequality reduction indices. This class captures the notion of mobility as
a long-term income equalizer. The intuition is that, in the case of upward mobility,
inequality in the average father–son income (a measure of “long-term” or “dynasty”
income) will be smaller than inequality in only the father’s income (a measure of “short-
term” income). Let Z = (Y +X)/2 be the “long-term income” and I(·) a cross-sectional
measure of inequality (such as the Gini index). Then, consider the Shorrocks (1978a)
S(I, Y,X) and the Fields (2010) F(I, Y,X) families as follows:

Shorrocks: S(I, Y,X) = 1− μZ I(Z)

μX I(X) + μY I(Y )
(1)

Fields: F(I, Y,X) = 1− I (Z)

I(X)
(2)

The families S(·) and F(·) are conceptually similar: the only difference is that
the Shorrocks family’s indices do not distinguish whether the income dynamics are
equalizing or disequalizing, while the Fields family’s indices do. Moreover, the Fields
family is very close to the Chakravarty, Dutta, and Weymark (1985) index, although
these indices differ in their normative implications (see Fields [2010] for a detailed
discussion on this point).

As cross-sectional inequality measures, I will consider the Gini index; the generalized
entropy measure, GE(a); and the Atkinson index, Atk(ε). I provide a brief description of
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these last two inequality measures in the Appendix. Users can specify that the igmobil
command uses either the S(·) or the F(·) family (the default is F(·)) and can specify
up to two parameters each for the generalized entropy (by default, a = 0 and a = 1,
for which the generalized entropy becomes the mean log deviation and the Theil index)
and for the Atkinson index (by default, ε = 0.5 and ε = 2).

Class 4: Index from a user-written program. This option is useful if one wants to
enrich the above list with another IGM index. For example, consider the following
upward-mobility index suggested by Bhattacharya and Mazumder (2011):

UPτ,s = Pr(rYi
− rXi

> τ | rXi
≤ s)

Here rYi
and rXi

are the child’s and the parent’s relative positions in their marginal
income distribution; that is, rYi

= FY (Yi) and rXi
= FX(Xi). Thus UPτ,s is the

probability that the child’s rank exceeds the parent’s rank by τ given that the parent’s
rank is below s. I provide code for estimating such an index and for passing its value
to the igmobil command.

Final remarks and inference. In the given examples, SES of each generation is proxied
by income: In this case, all IGM indices computed by igmobil make sense, although the
specific concept of mobility that one has in mind can lead to a preference for certain
indices. If we use other continuous variables (such as years of education or a continuous
measure of health status) as SES indicators, then we should probably estimate only some
of the single-stage indices [like the indices based on absolute and squared differences
(M1 and M2), the ones based on empirical CDFs (M7 and M8), and the ordinary
least-squares coefficient (on levels, as in M9)]. If we use purely categorical variables
(such as occupational status or educational attainment), we should instead estimate
only indices based on a transition matrix (M11–M14), and so on. One advantage of
igmobil is that it can accommodate all of these needs within the same framework.

An important—and probably undervalued—aspect of empirical research on IGM

regards statistical inference. igmobil computes some complex IGM indices (like those
derived from the quantile transition matrix, where we have extra variability resulting
from the estimation of quantiles) for which we might expect poor inference if based
on asymptotic arguments. For this reason, I implement a bootstrap procedure in the
igmobil command; options for this procedure can be modified by the user.

3 The igmobil command

3.1 Description

The igmobil command provides point estimates, standard errors, and confidence in-
tervals for the three classes of IGM indices discussed in section 2. By default, igmobil
assumes that data are continuous and computes 10 single-stage indices, 4 indices based
on a 5 × 5 quantile transition matrix, and 5 indices based on inequality measures (in-



M. Savegnago 391

cluding the Fields class applied to the Gini index, generalized entropy measures with
parameters −1 and 2, and the Atkinson index with parameters 0.5 and 2). Standard
errors are computed with 50 bootstrap replications, and the 95% confidence intervals
are based on normal approximation.

The user can modify the program output in the following ways:

• One can omit estimation of some (but not all) classes of IGM indices. Omission
of classes can be motivated by lack of interest in that particular class or can be
done to decrease computing time.

• One can change the dimension of the quantile transition matrix or switch the
program to use a size transition matrix. In the latter, data must be discrete;
consequently, single-stage and inequality-based indices will not be computed.

• For inequality-based indices, one can specify that the program use either the
Fields or the Shorrocks class and modify the parameters of the generalized entropy
measures and the Atkinson index (no more than two scalars for each index).

• Through a proper user-written program, one can include an extra IGM index (see
the example in section 4.6).

• One can modify the number of bootstrap replications, the type of confidence
intervals (the normal approximation, the percentile method, or the bias-corrected
method), and the confidence level.

When accessing results, recall that each index has a progressive number from 1 to
20. The list of indices is reported in table 1 and in the help file. Therefore, to display
the standard error of the trace index (M11), we type display se[i11].

3.2 Syntax

The syntax of igmobil is as follows:

igmobil varname1 varname2
[
if
] [

in
] [

, nosingle notrans noinequal

userwritten(userwrittenstr) classes(#) discrete matrix(matname)

family(familystr) ge(#
[
#
]
) atk(#

[
#
]
) bootstrap(bootstrapstr)

citype(citypestr) format(formatstr)
]

varname1 and varname2 denote, respectively, the most and the least recent observation
(that is, the child and the parent in the intergenerational setting, or Yt and Yt−1 in the
intragenerational setting).
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3.3 Options

Main

nosingle specifies to not calculate single-stage indices. nosingle is appropriate when
varname1 and varname2 are discrete variables (such as occupational status or in-
come class). This is the default option when the option discrete is specified.

notrans specifies to not calculate transition-matrix indices. notrans is appropriate
when the variables are continuous and there is no interest in calculating the transition
matrices. notrans must not be used with the option classes() or discrete.

noinequal specifies to not calculate indices based on inequality measures. noinequal

must not be used with the option family(), ge(), or atk().

userwritten(userwrittenstr) specifies that the output include any IGM index defined
in userwrittenstr. The program must be r-class and return the IGM index in a scalar
named r(UW). An example is provided in section 4.6.

Indices based on a transition matrix

classes(#) specifies the size of the quantile transition matrix on which transition-
matrix indices are to be calculated. The default is classes(5). Quantiles are
computed using the xtile command (see [D] pctile). classes(#) can be used when
varname1 and varname2 are continuous and the user wants to specify a quantile
transition matrix with a size different from 5. classes(#) must not be used when
variables are discrete or when the option discrete or notrans is used.

discrete specifies that varname1 and varname2 are discrete (or already discretized)
variables (such as types of jobs, levels of education, or income categories). When
discrete is used, single-stage and inequality-based indices will not be computed
because we are dealing with discrete random variables. discrete must not be used
with classes().

matrix(matname) saves the resulting transition matrix in matname. If the option
notrans is used, matrix() is ignored.

Indices based on inequality measures

family(familystr) specifies what indices will be used to compare inequality measures
across generations. familystr can be fields or shorrocks (see Fields [2010] and
Shorrocks [1978a]). The default is family(fields).

ge(#
[
#
]
) specifies the values of the generalized entropy measure parameter. The

maximum two values of ge() can be listed; if only one value is chosen, it is repeated
twice. The default is ge(0 1).
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atk(#
[
#
]
) specifies the values of the Atkinson index parameter. The maximum two

values of atk() can be listed; if only one value is chosen, it is repeated twice. The
default is atk(0.5 2).

Inference and reporting

bootstrap(bootstrapstr) allows the user to customize almost every aspect of the boot-
strap procedure. bootstrapstr can be any valid option of the bootstrap command
(see [R] bootstrap), including reps(), strata(), size(), saving(), level(), or
seed(). The options notable, nolegend, and nowarn are already “built-in”. The
computation of the bootstrapped standard error can be avoided using the option
bootstrap(off).

citype(citypestr) specifies how confidence intervals are to be computed and displayed.
citypestr can be normal, percentile, or bc, which stand, respectively, for normal
approximation, percentile method, and bias-corrected confidence intervals.

format(formatstr) displays results accordingly; see [D] format.

3.4 Stored results

igmobil stores results in e(). The results stored are the same as in any bootstrap

command.

4 Examples

4.1 Preliminary: Artificial dataset

Let’s generate Yi and Xi from a bivariate lognormal distribution with parameters μY =
μX = 0, σ2

Y = σ2
X = 0.25, and ρ = 0.5. Then, let’s generate Y disc

i and Xdisc
i to simulate

the case where we have discrete random variables.

. clear

. matrix C = (.25, .5*.25 \ .5*.25, .25)

. set seed 12345

. drawnorm u0 u1, n(2000) cov(C) /* normal r.v. */
(obs 2,000)

. generate son = exp(u1) /* lognormal r.v.*/

. generate dad = exp(u0)

. generate son_disc = irecode(u1, -1, -0.5, 0, 0.5, 1) /*discrete r.v.*/

. generate dad_disc = irecode(u0, -1, -0.5, 0, 0.5, 1)

. drop u*
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4.2 Basic use of igmobil

In its simplest form, igmobil requires two inputs: the child variable and the parent
variable, both expressed in levels (that is, no logs).

. igmobil son dad
(running igmobil_1 on estimation sample)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Bootstrap results Number of obs = 2,000
Replications = 50

Child generation: son = Y Type of variables: continuous
Parent generation: dad = X

Type of indices IGM Bootstrap [95% Conf. Interv.]
estimate Std. Err. normal approx.

Single-stage Indices
(1) 1/N * sum |X - Y| 0.446 0.010 0.427 0.465
(2) 1/N * sum (X - Y)^2 0.385 0.022 0.341 0.428
(3) 1/N * sum |ln X - ln Y| 0.395 0.007 0.382 0.408
(4) 1/N * sum |X/mu(X) - Y/mu(Y)| 0.389 0.006 0.377 0.402
(5) 1 - Pearson coef. (on logs) 0.487 0.015 0.457 0.517
(6) 1 - Spearman coef. (on logs) 0.511 0.016 0.479 0.543
(7) 1/N * sum |CDF X - CDF Y| 0.229 0.004 0.221 0.237
(8) 1/N * sum (CDF X - CDF Y)^2 0.085 0.003 0.080 0.090
(9) 1 - OLS(Y,X) 0.540 0.026 0.489 0.591
(10) 1 - OLS(ln Y,ln X) 0.499 0.018 0.464 0.534

Transition matrix Indices (based on 5 quantiles)
(11) Shorrock/Prais 0.849 0.013 0.823 0.875
(12) Bartholomew 0.269 0.005 0.259 0.279
(13) 1-Second largest eigenvalue 0.522 0.017 0.489 0.556
(14) Determinant index 1.000 0.000 1.000 1.000

Inequality related Indices
(15) Fields - Gini 0.134 0.010 0.115 0.152
(16) Fields - GE(0) 0.254 0.016 0.223 0.286
(17) Fields - GE(1) 0.255 0.018 0.219 0.291
(18) Fields - Atkinson(.5) 0.249 0.017 0.216 0.281
(19) Fields - Atkinson(2) 0.229 0.014 0.202 0.257

The output indicates that the Bartholomew index (M12, the average “jump” of in-
come classes) from our sample is 0.269 with a bootstrapped standard error of 0.005
and a symmetric 95% confidence interval of [0.259; 0.279] obtained with the normal
approximation.
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In the next example, we want our transition matrix to be based on 10 quantiles.
Also, we omit the computation of single-stage and inequality-based indices.

. igmobil son dad, nosingle noinequal classes(10)
(running igmobil_1 on estimation sample)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Bootstrap results Number of obs = 2,000
Replications = 50

Child generation: son = Y Type of variables: continuous
Parent generation: dad = X

Type of indices IGM Bootstrap [95% Conf. Interv.]
estimate Std. Err. normal approx.

Transition matrix Indices (based on 10 quantiles)
(11) Shorrock/Prais 0.919 0.010 0.900 0.939
(12) Bartholomew 0.251 0.005 0.242 0.260
(13) 1-Second largest eigenvalue 0.508 0.016 0.476 0.540
(14) Determinant index 1.000 0.000 1.000 1.000

We see that our M11–M14 indices change when we double the size of the transition
matrix (for example, M11 increases, but M12 decreases). This should warn us against
comparing transition-matrix indices derived from transition matrices that have different
numbers of classes.

Now assume that the data are already in discrete form, such as income classes
or educational achievement. Here we need to use the option discrete; otherwise,
igmobil will assume continuous variables. Note that the option discrete automatically
sets nosingle and noinequal, because single-stage and inequality indices cannot be
computed from discrete variables.

. igmobil son_disc dad_disc, discrete
(running igmobil_1 on estimation sample)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Bootstrap results Number of obs = 2,000
Replications = 50

Child generation: son_disc = Y Type of variables: discrete
Parent generation: dad_disc = X

Type of indices IGM Bootstrap [95% Conf. Interv.]
estimate Std. Err. normal approx.

Transition matrix Indices (original categories of X,Y)
(11) Shorrock/Prais 0.834 0.016 0.801 0.866
(12) Bartholomew 0.195 0.006 0.182 0.207
(13) 1-Second largest eigenvalue 0.547 0.020 0.507 0.586
(14) Determinant index 1.000 0.000 1.000 1.000
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4.3 igmobil and inequality-based indices

igmobil allows users to customize both the IGM indices family (from the default Fields
to Shorrocks) and the parameters of the generalized entropy and the Atkinson indices
(a maximum of two parameters each; if only one parameter is specified, it is repeated
twice). These options can be combined with the others previously given.

In the following example, we estimate both 4× 4 transition-matrix and inequality-
based indices. For the last class, we specify that the Shorrocks family should be used.

. igmobil son dad, nosingle classes(4) family(shorrocks)
(running igmobil_1 on estimation sample)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Bootstrap results Number of obs = 2,000
Replications = 50

Child generation: son = Y Type of variables: continuous
Parent generation: dad = X

Type of indices IGM Bootstrap [95% Conf. Interv.]
estimate Std. Err. normal approx.

Transition matrix Indices (based on 4 quantiles)
(11) Shorrock/Prais 0.807 0.016 0.776 0.837
(12) Bartholomew 0.282 0.007 0.269 0.295
(13) 1-Second largest eigenvalue 0.547 0.018 0.512 0.582
(14) Determinant index 0.999 0.001 0.997 1.001

Inequality related Indices
(15) Shorrocks - Gini 0.140 0.015 0.110 0.170
(16) Shorrocks - GE(0) 0.265 0.024 0.217 0.313
(17) Shorrocks - GE(1) 0.266 0.029 0.209 0.323
(18) Shorrocks - Atkinson(.5) 0.259 0.026 0.209 0.310
(19) Shorrocks - Atkinson(2) 0.239 0.021 0.198 0.280

In the next example, we modify the parameter of the generalized entropy (2, for
which the generalized entropy becomes the half-squared coefficient of variation) and of
the Atkinson index (2 and 5).
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. igmobil son dad, nosingle notrans family(fields) ge(2) atk(2 5)
(running igmobil_1 on estimation sample)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Bootstrap results Number of obs = 2,000
Replications = 50

Child generation: son = Y Type of variables: continuous
Parent generation: dad = X

Type of indices IGM Bootstrap [95% Conf. Interv.]
estimate Std. Err. normal approx.

Inequality related Indices
(15) Fields - Gini 0.134 0.010 0.114 0.154
(16) Fields - GE(2) 0.278 0.023 0.233 0.324
(17) Fields - GE(2) 0.278 0.023 0.233 0.324
(18) Fields - Atkinson(2) 0.229 0.016 0.198 0.261
(19) Fields - Atkinson(5) 0.194 0.022 0.150 0.237

4.4 Standard errors and confidence intervals

One important feature of igmobil is the embedded bootstrap procedure, which allows
users to make inference on the estimated indices without the need of extra programming.
By default, the number of replications is set to 50 to reduce computational burden.
In the next example, we modify the relevant bootstrap() option by increasing the
number of replications and saving each bootstrap result for later use. We also fix the
seed number so that results can be replicated, and we omit replication dots to preserve
space.

. igmobil son dad, nosingle noinequal
> bootstrap(reps(200) seed(12345) saving(myfile, replace) nodots)

Bootstrap results Number of obs = 2,000
Replications = 200

Child generation: son = Y Type of variables: continuous
Parent generation: dad = X

Type of indices IGM Bootstrap [95% Conf. Interv.]
estimate Std. Err. normal approx.

Transition matrix Indices (based on 5 quantiles)
(11) Shorrock/Prais 0.849 0.015 0.820 0.878
(12) Bartholomew 0.269 0.006 0.257 0.281
(13) 1-Second largest eigenvalue 0.522 0.019 0.485 0.560
(14) Determinant index 1.000 0.000 1.000 1.000

Comparing the output with the corresponding part of the table shown in section 4.2, we
see that the standard errors and the (normal approximated) confidence intervals hardly
changed when we went from 50 to 200 bootstrap replications. However, this might be
due to the specific data-generating process used for this example.
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In this example, we specify that the program displays the 99% percentile method con-
fidence interval. Note that the confidence level is set as a suboption of the bootstrap()
option, while the type of confidence interval is chosen with the option citype().

. igmobil son dad, nosingle noinequal
> boot(reps(200) seed(12345) saving(myfile, replace) level(99) nodots)
> citype(percentile)

Bootstrap results Number of obs = 2,000
Replications = 200

Child generation: son = Y Type of variables: continuous
Parent generation: dad = X

Type of indices IGM Bootstrap [99% Conf. Interv.]
estimate Std. Err. percentile method

Transition matrix Indices (based on 5 quantiles)
(11) Shorrock/Prais 0.849 0.015 0.817 0.903
(12) Bartholomew 0.269 0.006 0.257 0.288
(13) 1-Second largest eigenvalue 0.522 0.019 0.482 0.568
(14) Determinant index 1.000 0.000 1.000 1.000

In this case, we can no longer expect the confidence interval to be symmetric with
respect to the estimated coefficient. Here the estimated Bartholomew index (0.269) is
slightly closer to the left bound of the interval (0.257) than to the right one (0.288).

4.5 Reporting and postestimation

Because igmobil is an estimation command, we can easily recall parameter estimates
and standard errors by typing b[i#] and se[i#], where # is the IGM progressive
number. We first recall the last estimate of the Eigenvalue2 index (M13), and then we
test the hypothesis that this index equals 0.5. We find that the Wald test would not
reject the null hypothesis at the 5% level.

. display _b[i13]

.52210281

. test i13 = 0.5

( 1) i13 = .5

chi2( 1) = 1.33
Prob > chi2 = 0.2485

Another advantage of an estimation command is that it can be used with the com-
mands estimates store, estimates restore, estimates table, etc., to manipulate
estimation results. Assume that a quarter of the data belongs to country A and the re-
maining to country B and that we want to estimate the M11, M12, and M13 separately
for those countries. We can then apply the following commands:

. generate country = cond(_n<= 500, "A", "B")

. quietly igmobil son dad if country == "A", nosingle noinequal
Transition matrix Indices (based on 5 quantiles)

. estimate store igm_A
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. quietly igmobil son dad if country == "B", nosingle noinequal
Transition matrix Indices (based on 5 quantiles)

. estimate store igm_B

. estimates table igm_A igm_B, stats(N) b(%9.4f) se(%9.4f) keep(i11-i13)

Variable igm_A igm_B

i11 0.8700 0.8475
0.0286 0.0153

i12 0.2680 0.2713
0.0111 0.0070

i13 0.5106 0.5299
0.0499 0.0235

N 500 1500

legend: b/se

4.6 Advanced use: Adding a new IGM index

Assume that we want to add the Bhattacharya and Mazumder (2011) upward-mobility
(UP) index described in section 2 to our standard transition-matrix indices. In particu-
lar, we want to estimate the probability that a child’s percentile exceeds the one of his or
her parent by 10, given that the parent belonged to the lowest quartile. In other words,
we seek the sample counterpart of UPτ,s = UP0.10,0.25 = Pr(rYi

−rXi
> 0.10| rXi

≤ 0.25).

To do this, we write an r-class program that returns the desired IGM estimate in a
macro named UW (which stands for user written) and save it as a do-file.

* upward-mobility index

capture program drop myindex

program myindex, rclass

syntax varlist(min=2 max=2 numeric) [if] [in] [, tau(real 0) s(real 0.25)]

marksample touse

tempvar y x ry rx diff

tempname num den

tokenize ‘varlist’

quietly {

generate ‘y’ = ‘1’ if ‘touse’

generate ‘x’ = ‘2’ if ‘touse’

cumul ‘y’, gen(‘ry’)

cumul ‘x’, gen(‘rx’)

count if (‘ry’-‘rx’) > ‘tau’ & ‘rx’ <= ‘s’ & ‘touse’

scalar ‘num’ = r(N)

count if ‘rx’ <= ‘s’ & ‘touse’

scalar ‘den’ = r(N)
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return scalar UW = ‘num’/‘den’

}

end

Finally, we incorporate the myindex command into igmobil:

. quietly do myindex.do

. igmobil son dad, nosingle noinequal
> userwritten(myindex son dad, tau(0.1) s(0.25)) classes(4)
(running igmobil_1 on estimation sample)

Bootstrap replications (50)
1 2 3 4 5

.................................................. 50

Bootstrap results Number of obs = 2,000
Replications = 50

Child generation: son = Y Type of variables: continuous
Parent generation: dad = X

Type of indices IGM Bootstrap [95% Conf. Interv.]
estimate Std. Err. normal approx.

Transition matrix Indices (based on 4 quantiles)
(11) Shorrock/Prais 0.807 0.015 0.778 0.835
(12) Bartholomew 0.282 0.006 0.269 0.294
(13) 1-Second largest eigenvalue 0.547 0.019 0.509 0.584
(14) Determinant index 0.999 0.001 0.996 1.001

(20) User written program 0.550 0.015 0.520 0.580

Among the families whose parents belonged to 25% of the poorest, 55.0% of the
children outperformed the rank of their parents by more than 0.1 (or 10%).
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Appendix: Generalized entropy and Atkinson indices

In this appendix, I provide some background on the generalized entropy measure and the
Atkinson index, relying mostly on Jenkins (2006) and Cowell (2000). The generalized
entropy family takes the following form:

GE(a) =
1

Na(a− 1)

N∑
i=1

{(
xi

μx

)a

− 1

}
a �= [0, 1]

GE(a) =
1

N

N∑
i=1

{
xi

μx
log

(
xi

μx

)}
a = 1

GE(a) =
1

N

N∑
i=1

log

(
μx

xi

)
a = 0

The parameter a captures the sensitivity of the GE(a) family to a particular part of the
distribution: a large positive a increases sensitivity to changes in the upper tail, and
a negative a increases sensitivity to changes in the lower tail. For specific values of a,
the GE(a) assumes the following known forms: GE(0) is the mean log deviation, GE(1)
is the Theil index, and GE(2) is the half-squared coefficient of variation. The default
option will have a1 = 0 and a2 = 1.

The Atkinson index is a welfare-based measure of inequality that assumes an explicit
formulation of the social welfare function (that is, the way individual utilities are aggre-
gated) and an explicit level of income inequality aversion. At the core of the Atkinson
index is the equally distributed equivalent income, ye ≤ μy, which is the income value
that—if equally distributed—would equal the same level of social welfare as the actual
income distribution. The larger the difference between μY and ye, the higher the cost
of inequality. Finally,

Atk(ε) = 1−
{

1

N

N∑
i=1

(
xi

μx

)1−ε
} 1

1−ε

ε ≥ 0, ε �= 1

Atk(ε) = 1− exp

{
1

N

N∑
i=1

(
xi

μx

)}
ε = 1

where the parameter ε captures the inequality aversion in a society. A larger ε means
that the society is more inequality averse. The default option will have ε1 = 0.5 and
ε2 = 2.
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