%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

‘l) Check for updates

The Stata Journal (2016)
16, Number 2, pp. 264—-300

Assessing inequality using percentile shares

Ben Jann
University of Bern
Bern, Switzerland

ben.jann@soz.unibe.ch

Abstract. At least since Thomas Piketty’s best-selling Capital in the Twenty-
First Century (2014, Cambridge, MA: The Belknap Press), percentile shares have
become a popular approach for analyzing distributional inequalities. In their work
on the development of top incomes, Piketty and collaborators typically report
top-percentage shares, using varying percentages as thresholds (top 10%, top 1%,
top 0.1%, etc.). However, analysis of percentile shares at other positions in the
distribution may also be of interest. In this article, I present a new command,
pshare, that estimates percentile shares from individual-level data and displays
the results using histograms or stacked bar charts.
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1 Introduction

Empirical inequality literature heavily relies on the Gini coefficient for the analysis of the
development of inequality over time or the analysis of differences in inequality between
countries. However, various distributional changes can increase or decrease the Gini
coefficient, and it might be important to obtain more detailed knowledge about these
processes. Moreover, even if the Gini coefficient remains stable, significant changes
in the shape of a distribution may occur. In addition, the specific values of the Gini
coefficient, apart from the minimum and the maximum, are difficult to interpret in an
absolute sense.

For these reasons, percentile shares have become increasingly popular for analyzing
distributional inequality. Percentile shares quantify the proportions of total outcome (for
example, of total income) that go to different groups defined in terms of their relative
ranks in the distribution. They thus have an intuitive and appealing interpretation
and can be used for detailed analysis of distributional changes. The most prominent
applications of percentile shares can be found in the works of Thomas Piketty and
collaborators (for example, Atkinson, Piketty, and Saez [2011], Piketty and Saez [2014],
and Piketty [2014]) and their “World Wealth and Income Database”.! Piketty and
collaborators typically study top-income shares, such as the proportion of income that
goes to the top 1% or the top 10%, but the income shares of other percentile groups
may be interesting too.

1. See http://topincomes.parisschoolofeconomics.eu/.
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In this article, I present a new command, pshare, that estimates percentile shares
of an outcome variable from individual level data. pshare provides standard errors and
confidence intervals (CIs) for the estimated percentile shares and supports estimation
from complex samples. Furthermore, pshare provides subcommands for computing dif-
ferences in percentile shares across variables or subpopulations and for graphing results
as stacked bar charts or histograms.?

2 Methods and formulas

2.1 Lorenz ordinates

Let Y be the outcome variable of interest (for example, income). The distribution
function of Y is given as F(y) = Pr(Y < y), and the quantile function (the inverse of
the distribution function) is given as Q(p) = F~*(p) = inf{y|F(y) > p} with p € [0, 1].
Based on these definitions, the ordinates of the Lorenz curve are given as

Qp

J ydF(y)
L(p) = ——
[ ydF(y)

— 00

Intuitively, a point on the Lorenz curve quantifies the proportion of total outcome of
the poorest p x 100 percent of the population. This can easily be seen in the finite
population form of L(p), which is given as

N
Z KIYLSQP
L(p) = Z—lNi
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i=1

with T4 as an indicator function being equal to 1 if A is true and 0 otherwise.

2.2 Percentile shares

Percentile share S(p1, p2), with p; < po, is equal to the proportion of total outcome that
falls into the quantile interval (@p,, @p,] or, stated differently, the proportion of total
outcome pertaining to the population segment from relative rank p; to relative rank
po in the list of ordered outcomes. This is equal to the difference between the Lorenz
ordinates for p; and po; that is,

S(p1,p2) = L(p2) — L(p1)

2. Some of the functionality of pshare is also covered by the user-written commands sumdist (Jenkins
1999) and svylorenz (Jenkins 2006). However, pshare specifically focuses on percentile shares
and provides a more comprehensive implementation. Furthermore, sumdist and svylorenz use
somewhat different methods to compute the percentile shares (ties are not broken, and flat regions
in the distribution function are not interpolated; see below).
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or, in the finite population,
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To simplify notation, we will let Sg = S(pe-1,pe). Furthermore, we will let
s(p) = [51 Sy - Sk]

be the 1 x k vector of a disjunctive and exhaustive set of percentile shares across the
domain of p using cutoffs p = [po p1 - pk.} with pp_1 < ppforall £=0,...,k and
po =0 and px = 1.

Depending on context, it may be sensible to normalize percentile shares by the size
of the respective population segment (that is, the proportion of the population covered
by the segment, which is equal to p; — py—1), which yields percentile share density

J
w:—i—
Pe — Pe—1
Dy is a density in the sense that d(p)—a disjunctive and exhaustive set of percentile
share densities across the domain of p—integrates to 1. Note, however, that D, may
be negative if the outcome variable can take on negative values (for example, debt). A
value of Dy = 1 means that each member in the respective population segment has (on
average) an outcome value equal to the average outcome in the population. A value of
D, = 2 means that each member in the segment has (on average) twice the population
average; a value of Dy = —0.5 means that each member in the segment has (on average)
minus half the population average.

Furthermore, percentile shares can be expressed as totals or averages in absolute
terms. The finite population form of percentile share totals and averages is given as

N N N N
To=3 Vilv<a, ~ Y Vilvi<a,, , = Y. Yi(Ivza, ~ Iviza, ) = 5 Y. ¥,
=1 1=1 =1 =1

and

T
(pe — pe—1) x N

respectively. Ty is simply the sum of all outcomes in the respective population segment;
Ay is the average outcome among the members of the segment.

Finally, with reference to the generalized Lorenz curve, generalized percentile shares
can be defined as

Gy = GL(p¢) — GL(pe—1)
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where the finite-population form of the generalized Lorenz ordinate GL(p) is

N
1
GL(p) = > Yilvi<q,
1=1

so that
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Note that there is an interesting relationship between percentile share averages and
generalized percentile shares: percentile share average Ay is equal to Gy¢/(pe — pe—1);
that is, Ay is equal to the difference in the generalized Lorenz ordinates for p, and py_1
divided by the population share p, — py_1.

2.3 Point estimation

The above exposition assumes Y to be continuous. Because empirical data are always
discrete, the empirical distribution function is nonsmooth, and there may be ties or
empty sets at the quantiles of interest. For estimation of percentile shares using empir-
ical data, it makes sense to break ties proportionally and apply linear interpolation in
regions where the empirical distribution function is flat.

Let w; be sampling weights (equal to 1 in unweighted data), and let subscripts
in parentheses refer to sorted observations in ascending order of Y. S can then be
estimated from a sample of size n as

o~ ~

8 = L) - Elper)

with R _ _
Lp) = (1 =9)Yj,—1 +7Yj,
where ' .
Jp Jp
Y 2w Y 2w
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and where j, is set such that p; 1 < p < pj,. This corresponds to estimating Lorenz
ordinates by taking quantiles from the running sum of the ordered Y values (divided by
the total of Y) according to quantile definition 4 in Hyndman and Fan (1996).




268 Assessing inequality using percentile shares

Alternatively, ignoring linear interpolation in flat regions, L(p) can be estimated as

Jp

; W) V)
Z w;Y;
=1

which corresponds to quantile definition 1 in Hyndman and Fan (1996).3

An estimate for D, is given as §Z/(pz — pe—1). For an estimate of Tp, omit the
denominator, Z?zl w;Y;, in the formula for }73 An estimate for A, can be obtained
as Ty/{(pe — pe—1) > w;}. For an estimate of Gy, replace the denominator in the
formula for Y; by S w.

2.4 Variance estimation

An approximate variance matrix for S(p) can be obtained by using an estimating equa-
tions approach as outlined by Binder and Kovacevic (1995) (also see Kovaevi¢ and
Binder [1997]). Let 6 be the parameter of interest (a percentile share in our case), and
let A be a vector of nuisance parameters on which 6 depends (the two quantiles deter-
mining the Lorenz ordinates in our case). According to Kovacevi¢ and Binder (1997),
the sampling variance of 9 can be approximated by the sampling variance of the total

estimator
n

g wiu;

i=1

where w; are sampling weights and ;] is the solution of
,  OU? (oUMN\ ' || fouf\ !
T = R
0N oA ‘ ol
with all unknowns in the final solution replaced by their sample counterparts. u¢ and u

are estimating functions such that in the (finite) population, # and A are the solutions
to

N N
UQZZuf:O and UA:Zui)‘:O
i=1 i=1

3. The first approach is the default method in the pshare command presented below. The second
approach ignoring linear interpolation can be requested by specifying the step option. Note that
results from the second approach depend on the sort order within ties of Y if there are sampling
weights. To enforce stable results in this case, the pshare command sorts observations in ascending
order of the sampling weights among ties of Y, but this is an arbitrary decision.
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In our case, 6 = Sg and A = [ %e Q%hl] , where j refers to the analyzed subpopulation.
Let J; = 1 if observation ¢ belongs to subpopulation j and J; = 0 otherwise (with J; =1

for all observations if the entire sample is analyzed). Because

N
. i i = j f N
o Zz:l Y (IyiSQm IyiSQw,l) J and Z (I o ) J =0
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the estimating functions are
uf = }/Z (IYzSQ;[ - IY’iSQg%_l) Jl - KJZS; and u,L)\ =

Furthermore, given these definitions,
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The sampling variance of the total of w;, which serves as an approximation of the
sampling variance of §z , can then be estimated using standard techniques as imple-
mented in total (see [R] total), possibly accounting for complex survey design. The
joint variance matrix for all elements of S(p) can be obtained by applying total to a
series of appropriate u* variables. Likewise, for joint estimation across several outcome
variables or multiple subpopulations, include multiple series of u* variables, one series
for each outcome variable or subpopulation.*

Variance estimators for percentile densities, totals, averages, or generalized shares
can be derived analogously. The appropriate u* variables are obtained by replacing a;
and b in

A @) gy, - (- @) Iycay, | 2eQ, Qi i a
u, =
! b

according to the overview in table 1, where n. is the number of clusters and wy; is the
sum of weights in the cluster to which observation i belongs.”

4. When computing the u* variables, the pshare command presented below uses definition 4 in
Hyndman and Fan (1996) to determine @g, (or definition 1, depending on the method used for
estimating the Lorenz ordinates). Furthermore, in analogy to the approach used for point estima-
tion, ties in Y are broken when determining I(Y; < @\g,) (based on observations sorted by w; within
ties, which is an arbitrary decision to enforce stable results).

5. Depending on sample design, the denominator in a; for 7' may require modification, for example,
to take account of stratification. A workaround, followed by the pshare command presented below,
is to simply set a; to zero for 7. This is a slight deviation from the approach outlined above
(because u* will sum to T instead of zero), but the resulting variance estimates are the same in
this case. On a related matter, note that total with clusters or weights yields different results
than svy: total because the former assumes the number of observations or the sum of weights
(and not the number of clusters) to be fixed. Likewise, total with the over() option produces
different results than svy: total, even in the absence of clusters or weights, because the subgroup
sizes are assumed fixed. Despite this disagreement, the pshare command presented below, which
relies on the total command for variance estimation, always yields results that are consistent with
svy: total, irrespective of whether weights and clusters are specified directly or via the svy option.
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Table 1. Definitions of a; and b for different types of percentile shares

a; b
s YiJ;5] > wii,
D Yidi(pe — per) D i wiYJi(pe — pe1)
T ! T/ 1
NeWpi]
A Ji(pe — pe—1) A} ;nl w;iJi(pe — P1—e)
Q 7,6 S wi;

=1

An alternative to the approach outlined above is to estimate the variances using the
bootstrap or jackknife method (see [R] bootstrap and [R] jackknife).

2.5 Extensions
Contrasts

To analyze distributional differences among subpopulations or across time, one can
compute contrasts between percentile shares. The most intuitive approach is to compute
contrasts as arithmetic differences. For example, given percentile share estimates from
two subpopulations (or two variables), A and B, the vector of arithmetic contrasts is

§%(p) —38”(p)
with variance matrix
L L) V{E'P M)} L L]

where Ij, is the identity matrix of size k and \Af{ .. } is the joint variance matrix of the
percentile shares across both subpopulations (or variables).

Alternatively, contrasts could be computed as ratios or logarithms of ratios. Gener-
ally, let
c(30,57) (38.58) -~ «(5857),

be the vector of percentile share contrasts between subpopulations (or variables) A and
B, with ¢(a,b) as a function of a and b, such as ¢(a,b) = a/b (ratio) or c(a,b) = In(a/b)
(logarithm of ratio). The variance matrix of the vector can then be approximated by
the delta method as

AV{[s*(p) §P(p)]} A’
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where A is a k x 2k matrix

'ac(§f‘,§13) ac(§{‘,§{3) ]
T ( 0 | ... 0 i ( 0 | . 0
dc §2A,§QB dc §§4,§2B
0 o5 0 0 %55 0
oe(5¢.37) oc(5¢,57)
0 0 S 0 0 e

In Stata, the nlcom command can be used to perform the necessary computations. The
derivatives in A are determined numerically by nlcom (see [R] nlcom).

Renormalization

Percentile shares expressed as proportions or densities are normalized with respect to
the total of the analyzed outcome variable in the given (sub)population. Depending
on context, it may be sensible to use a different total for normalization. For example,
when analyzing different subpopulations, we may want to express results in terms of
proportions of the grand total across all subpopulations. Likewise, if analyzing, say,
labor income, we may want to express results in terms of total income (labor income
plus capital income).

To normalize results to a different total, simply replace denominator Z?:l w;Y; in the
above percentile share estimators with the appropriate total. For example, to normalize
to the total of variable Z instead of the total of variable Y (where Z may be the sum of
several variables, possibly including Y'), use 2?21 w; Z; as the denominator. Similarly,
if normalizing percentile shares to the total of a reference (sub)population r instead
of subpopulation j, replace the standard denominator >, w;Y;.J; with > 1 w;Y;R;,
where J; and R; are indicators for whether observation ¢ belongs to subpopulation j
or r, respectively. When normalizing percentile densities to the total of a reference
(sub)population, you need to consider the relative group sizes so that the densities
reflect multiples of the average outcome in the reference (sub)population. That is, use

n
N gir - Z: w;J;
D;T:% with PJT:’L;li
_ pir
(Pe = pe-1) S wiR;
i=1

to compute the percentile density in subpopulation j with respect to the total of sub-
population 7.

For variance estimation, several cases have to be distinguished: 1) normalizing to
the total of Z, 2) normalizing to a fixed total 7, 3) normalizing to the total of ¥ in
reference population r, 4) normalizing to the total of Z in reference population r, and 5)
normalizing to a fixed total 7 in reference population r. In general, when one normalizes
densities with respect to a reference population (cases 3 to 5), the relative group size is
a further nuisance parameter that has to be considered. Solving the equations for the
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different cases leads to the expressions for a; and b as shown in table 2 (see the section
on variance estimation above for background).®

Table 2. Definitions of a; and b for renormalized percentile shares

a; b
(1 s Z:Ji5) Y wiZiJ;
D ZiJi(pe — pzfl)ﬁg ZwiZiJi(pl —pe-1)
o~
2) S SJ
@) _ .
D —pe_1)Di — pe—
newr (pe — pe—1)Dy 7(pe = pe-1)
3) S YiRiggT YwiYiR;
ZkakRk ZkakRk
D YiRi — - R+ - Ji iYiRi(pe — pe—1) P7"
> wi Ry * > wrdk zi:w (Pe = pe-1)
k &
X (pe *pz—1)ﬁjTﬁir
4 s : . .
Like (3), but with all instances of Y replaced by Z
o
5 f
(5) Tewp ‘ T
D a . a T(pe — per) P7"

— R; + Ji
NeWlg) Zk: wi Ry Xk: wiJg

X (pe — Pz—l)ﬁjrﬁf

(All sums are across the entire sample.)

Concentration shares

A further interesting possibility is to determine the relative ranks of the population
members using an alternative outcome variable. By default, observations will be ordered
by their Y values. However, we may also order observations by some alternative variable
Z. The (finite-population) Lorenz ordinates are then defined as

N

> Yilz,<qz
z i=1

L) = —Fx——

N
¢
=1

6. Depending on sample design, expression 7/(ncwy;) in a; for cases (2) and (5) may require modifi-
cation. An alternative, however, is to simply set T/(?’LCUJM) to zero. See footnote 5 above.
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and the percentile shares reflect the proportion of total Y that is received by different
percentile groups of Z (in this case, the Lorenz curve is called a concentration curve;
see Kakwani [1977] and Lambert [2001]). For example, this could be used to analyze
how taxes (Y) are distributed across income groups (Z).

For the purpose of estimation, it appears sensible to average Y within ties of Z when
computing the concentration curve ordinates so that results are independent of the sort
order of the observations. Furthermore, for variance estimation, we need to replace @,
in the formulas for the u* variables with E(Y|Z = QZ), the expected value of Y at the
p quantile of Z.7

3 The pshare command

Four subcommands are provided. pshare estimate computes the percentile shares and
their variance matrix; pshare contrast computes differences in percentile shares be-
tween outcome variables or subpopulations based on the results from pshare estimate;
pshare stack draws a stacked bar chart of the results from pshare estimate, and
pshare histogram draws a histogram of the results from pshare estimate or pshare
contrast.

3.1 Syntax of pshare estimate

The syntax of pshare estimate is

pshare [gstimate] varlist [zf] [m] [wez’ght] [ ,
{proportion |percent |density |sum|average|generalized} normalize(spec)
gini {nquantiles(#) |percentiles(numlist)} pvar(pvar) step
over (varname) total gontrast[ (spec) } §tack[ (options) ]
Qistogram[ (optz'ons)] vce (vcetype) cluster (clustvar) svy[ (subpop)] nose

level(#) noheader notable nogtable display,options}

pweights, iweights, and fweights are allowed; see [U] 11.1.6 weight. For each spec-
ified variable, percentile shares (quintile shares by default) are tabulated along with
their standard errors and CIs.® If the over () option is specified (see below), only one
variable is allowed in wvarlist. pshare assumes subcommand estimate as the default;
typing the word “estimate” is required only in the case of a name conflict between the
first element of varlist and the other subcommands of pshare (see below). Options are
as follows.

7. In the pshare command presented below, E(Y|Z = Q%) is estimated by local linear regression
using the Epanechnikov kernel and the default rule-of-thumb bandwidth as described in [R] lpoly.

8. Variance estimation is not supported for iweights and fweights. To compute standard errors and
CIs in the case of fweights, apply pshare to the expanded data (see [D] expand).
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proportion, percent, density, sum, average, or generalized selects the type of re-
sults to be computed. The default is proportion, that is, to report percentile shares
as proportions. Use the percent option to report percentile shares as percentages.
Furthermore, use the density option to report densities, defined as outcome shares
divided by population shares (so that in a bar chart, the areas of the bars are pro-
portional to the outcome shares). Outcome sums (totals) and average outcomes
can be requested by the sum and average options, respectively. Finally, use the
generalized option to report generalized percentile shares, defined as differences
between generalized Lorenz ordinates. Only one of proportion, percent, density,
sum, average, or generalized is allowed.

normalize (spec) normalizes results with respect to the specified total (not allowed in
combination with sum, average, or generalized). spec is

[over: ] [total]
where over may be

the subpopulation at hand (the default)
# the subpopulation identified by value #
## the #th subpopulation
total the total across all subpopulations

and total may be

the total of the variable at hand (the default)

* the total of the sum across all analyzed outcome variables
varlist  the total of the sum across the variables in varlist
# a total equal to #

total specifies the variables from which the total is to be computed or sets the total
to a fixed value. If multiple variables are specified, the total across all specified
variables is used (varlist may contain external variables that are not among the list
of analyzed outcome variables). over selects the reference population from which
the total is to be computed; over is allowed only if the over() option has been
specified (see below). Subpopulation sizes (sum of weights) are considered for the
computation of densities (the density option) if overis provided so that the densities
reflect multiples of the average outcome in the reference population.

gini reports the Gini coefficients of the distributions (also known as concentration
indices if pvar () is specified; see below) to be computed and reported in a separate
table. Variance estimation for Gini coefficients is not supported.’

9. Following Lerman and Yitzhaki (I%QLthe concentration index of Y with respect to Z is computed
as C =237 wi(Ys — Y)(F; — F)/Y, where w; = w;/ > - ; w; are normalized weights, ¥ =
>, w;Y; is the mean of Y, F = S L Wi F; is the mean of F, and F; = Z?zl @jlzjgzi -
Z?:I @iIZ]:Zi /2 is the midinterval relative rank of Z; in the empirical distribution of Z. For the
Gini coefficient of Y, set Z =Y.
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Percentiles

nquantiles(#) specifies the number of (equally sized) percentile groups to be used
or percentiles(numlist) to specify a list of percentile cutoffs. The default is
nquantiles(5), which corresponds to percentiles(20 40 60 80) or, with short-
hand as described in [U] 11.1.8 numlist, percentiles(20(20)80).

pvar (pvar) causes the percentile groups to be based on variable puvar instead of the
outcome variable. That is, observations will be sorted in increasing order of puvar,
and percentiles will be determined from the running sum of the outcome variable
across this sort order (using averaged values within ties of pvar). Use this option to
analyze relations between different variables (for example, how wealth is distributed
across different income groups). If pvar() is specified, the computed percentile
shares correspond to differences between ordinates of the “concentration curve” of
the outcome variable with respect to pvar.

step determines the Lorenz ordinates from the step function of cumulative outcomes.
The default is to use linear interpolation in regions where the step function is flat.

Over

over (varname) repeats results for each subpopulation defined by the values of varname.
Only one outcome variable is allowed if over () is specified.

total reports additional overall results across all subpopulations. total is allowed only
if over () is specified.

Contrast/Graph

contrast[ (spec) } computes differences in percentile shares between outcome variables
or between subpopulations. spec is

[base] [, ratio lniratio]

where base is the name of the outcome variable or the value of the subpopulation
to be used as base for the contrasts. If base is omitted, adjacent contrasts across
outcome variables or subpopulations are computed (or contrasts with respect to the
total if total results across subpopulations have been requested).

Use the suboption ratio to compute contrasts as ratios or the suboption lnratio
to compute contrasts as logarithms of ratios. The default is to compute contrasts as
differences.

stack[ Coptions) } draws a stacked bar chart of the results. options are as described for
pshare stack below.

histogra.m[ (options)} draws a histogram of the results. options are as described for
pshare histogram below.
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SE/SVY

vce (vcetype) determines how standard errors and Cls are computed. vcetype may be

analytic
cluster clustvar
bootstrap [, bootstmp,options]

jackknife [, jackkm'fe,optz'ons]

The default is vce(analytic). See [R] bootstrap and [R] jackknife for boot-
strap_options and jackknife_options, respectively.

cluster (clustvar) is a synonym for vce(cluster clustvar).

svy[ (subpop) ] causes the survey design to be taken into account for variance estima-
tion; see [SVY] svyset. Specify subpop to restrict survey estimation to a subpopula-
tion, where subpop is

[ varname } [ if ]

The subpopulation is defined by observations for which varname # 0 and for which
the if condition is met. See [SVY] subpopulation estimation for more information
on subpopulation estimation.

The svy option is allowed only if the variance estimation method set by svyset is
Taylor linearization (the default). For other variance estimation methods, the usual
svy prefix command may be used; see [SVY] svy. For example, type “svy brr:
pshare ...” to use balanced repeated-replication variance estimation. pshare does
not allow the svy prefix for Taylor linearization because of technical reasons. This
is why the svy option is provided.

nose suppresses the computation of standard errors and CIs. Use the nose option
to speed up computations when analyzing census data. The nose option may
also be useful to speed up computations when using a prefix command that uses
replication techniques for variance estimation, such as [SVY] svy jackknife. The
vce(bootstrap) and vce(jackknife) options imply nose.

Reporting

level (#) specifies the confidence level, as a percentage, for CIs. The default is
level(95) or as set by set level.

noheader suppresses the output header; only the coefficient table is displayed.
notable suppresses the coefficient table.
nogtable suppresses the table containing Gini coefficients.

display_options are standard reporting options such as cformat (), pformat (),
sformat (), or coeflegend; see [R] estimation options.
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3.2 Syntax of pshare contrast

pshare contrast computes differences in percentile shares between outcome variables
or subpopulations. It requires results from pshare estimate to be in memory, which
will be replaced by the results from pshare contrast.'’ The syntax is

pshare contrast [base] [, ratio lnratio §tack[(options)}

Qistogram[ (options) ] display,optz'ons]

where base is the name of the outcome variable or the value of the subpopulation to be
used as base for the contrasts. If base is omitted, pshare contrast computes adjacent
contrasts across outcome variables or subpopulations (or contrasts with respect to the
total if total results across subpopulations have been requested). Options are as follows:

ratio causes contrasts to be reported as ratios. The default is to report contrasts as
differences.

lnratio causes contrasts to be reported as logarithms of ratios. The default is to report
contrasts as differences.

stack[ Coptions) } draws a stacked bar chart of the results. options are as described for
pshare stack below.

histogram[ (options)} draws a histogram of the results. options are as described for
pshare histogram below.

display_-options are standard reporting options such as cformat (), pformat (),
sformat (), or coeflegend; see [R] estimation options.

10. Alternatively, to compute the contrasts directly, you may apply the contrast() option to
pshare estimate (see above).
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3.3 Syntax of pshare stack

pshare stack draws a stacked bar chart of percentile shares. It requires results from
pshare estimate to be in memory.'! The syntax is

pshare stack [, {vertical |horizontal} proportion reverse keep (list)
§ort[ (optz'ons)] gini (%hfmt) nogini labels ("labell" "label2" ...)
plabels("labell" "label2" ...) barwidth(#) barlook_options
p# (barlook_options) yalues[ (%fmt)} marker_label_options addplot (plot)

twoway,options}

Options are as follows.

Main

vertical or horizontal specifies whether a vertical or a horizontal bar plot is drawn;
the default is horizontal.

proportion scales the population axis as a proportion (0 to 1). The default is to scale
the axis as a percentage (0 to 100).

reverse orders percentile groups from top to bottom (the richest are leftmost, the
poorest are rightmost). The default is to order percentile groups from bottom to
top (the poorest are leftmost, the richest are rightmost).

keep (list) selects and orders the results to be included as separate bars. Use keep()
with multiple outcome variables or subpopulations. For multiple outcome variables,
list is a list of the names of the outcome variables to be included. When over () was
specified in pshare estimate, list is a list of the values of the subpopulations to be
included. list may also contain total for the overall results (if overall results were
requested). Furthermore, list may also contain elements such as #1, #2, #3, etc., to
refer to the 1st, 2nd, 3rd, etc., outcome variable or subpopulation.

sort[ Coptions) ] orders the bars for the different outcome variables or subpopulations
by the level of inequality, where options are gini to sort by Gini coefficients (if
Gini coefficients have been computed), descending to sort in descending order, and
tfirst or tlast to place the total across subpopulations first or last, respectively.
The default is to sort in ascending order of the shares of the top percentile group.

gini (%fmt) sets the format for the Gini coefficients included in the graph as secondary
axis labels; see [D] format. The default is gini(%9.3g). Gini coefficients will be
included only if information on Gini coefficients is available in the provided results
(that is, if the gini option has been applied to pshare estimate).

11. You may also draw a chart directly by applying the stack() option to pshare estimate or
pshare contrast (see above).
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nogini suppresses the Gini coefficients. This is relevant only if the gini option has
been specified when calling pshare estimate.

Labels/rendering

labels("labell" "label2" ...) specifies custom axis labels for the outcome variables or
subpopulations.

plabels("labell" "label2" ...) specifies custom legend labels for the bar segments (that
is, the percentile groups).

barwidth(#) sets the width of the bars as proportion of the spacing between bar
positions. The default is barwidth(0.75), leaving white space of 1/3 barwidth
between the bars.

barlook_options and p# (barlook_options) affect the rendition of the plotted bars, where
p# () applies to the #th segment (the #th percentile group) of the stacked bars;
see [G-3] barlook_options.

values[ (hfmt) ] prints the values of the percentile shares as marker labels at the center
of the bar segments. The default is values(%9.3g); see [D] format.

marker_label_options affect the rendition of the values included as marker labels using
the values() option; see [G-3] marker_label_options. Do not use mlabel() or
mlabvposition().

Add plots

addplot (plot) adds other plots to the generated graph; see [G-3] addplot_option.

Y axis, X axis, Title, Caption, Legend, Overall

twoway-options are general twoway options, other than by(), as documented in
[G-3] twoway_options.
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3.4 Syntax of pshare histogram

pshare histogram draws a histogram of percentile shares or percentile share contrasts.
It requires results from pshare estimate or pshare contrast to be in memory.'? The
syntax is

pshare histogram [, {vertical|horizontal} proportion keep (list)
max(#[, options}) min(#[, optz'ons]) prange (min maz) gini()fmt) nogini
barlook_options step ws[ (#)] labels("labell" "label2" ...)
byopts (byopts) overlay o# (options) psep[("label]" "label2" )]

p# (options) level(#) ci(citype) ciopts(options) cibelow noci

addplot (plot) twoway,options]

Options are as follows.

Main

vertical or horizontal specifies whether a vertical or a horizontal plot is drawn. The
default is to draw a vertical bar plot.

proportion scales the population axis as a proportion (0 to 1). The default is to scale
the axis as a percentage (0 to 100).

keep (list) selects and orders the results to be included as separate subgraphs, where list
is a list of the names of the outcome variables or the values of the subpopulations
to be included. list may also contain total for the overall results if overall results
were requested. Furthermore, you may use elements such as #1, #2, #3, ... to refer
to the 1st, 2nd, 3rd, ... outcome variable or subpopulation.

max(#[ , options]) top-codes results at # and min(#[ , options]) bottom-codes re-
sults at #. This is useful if there are large differences in the plotted values and
you want to restrict the axis range. The truncated values will be included in the
graph as marker labels. options are format (%fmt) to set the format for the marker
labels (default is format (%9.3g); see [D] format), marker_label_options to affect the
rendition of the marker labels (see [G-3] marker_label_options), and nolabels to
omit the marker labels.

prange (min max) restricts the range of percentile groups to be included in the graph.
Only results for percentile groups whose lower and upper cumulative population
bounds (in percent) are within min and maz will be plotted. min and maz must be
within [0, 100]. For example, to include only the lower half of the distribution, type
prange (0 50).

12. You may also draw the histogram directly by applying the histogram() option to pshare estimate
or pshare contrast (see above).
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gini(%fmt) sets the format for the Gini coefficients included in the subgraph labels;
see [D] format. The default is gini(%9.3g). Gini coeflicients will be included only
if information on Gini coefficients is available in the provided results (that is, if the
gini option has been applied to pshare estimate).

nogini suppresses the Gini coefficients. This is relevant only if the gini option has
been specified when calling pshare estimate.

Labels/rendering

barlook_options affect the rendition of the plotted bars; see [G-3] barlook_options.

step uses a step function (line plot) instead of a histogram to draw the results. Use
line_options instead of barlook_options to affect the rendition of the plotted line; see
[G-3] line_options. step may be included in o#(), if overlay has been specified,
to apply step to selected outcome variables or subpopulations (see below).

spikes[ (#)} uses (equally spaced) spikes instead of histogram bars to draw the re-
sults. # specifies the number of spikes, and the default is spikes(100). Use
line_options instead of barlook_options to affect the rendition of the plotted spikes;
see [G-3] line_options. Confidence intervals will be omitted.

labels("labell" "“label2" ...) specifies custom labels for the subgraphs of the outcome
variables or subpopulations.

byopts (byopts) determines how subgraphs are combined; see [G-3] by_option.

overlay includes results from multiple outcome variables or subpopulations in the same
plot instead of creating subgraphs. overlay and psep() are not both allowed.
Specifying overlay implies noci.

o#(options) affects the rendition of the bars of the #th outcome variable or subpopu-
lation if overlay has been specified. options are step (draw step function instead
of bars) and barlook_options (affect rendition of the plotted bars).

psep[ ("label1" "label2" ...) ] causes different rendering to be used for each percentile
group and includes a corresponding legend in the graph. The default is to draw all
bars in the same style. psep() and overlay are not both allowed.

p#(options) affects the rendition of the bars of the #th percentile group if psep() has
been specified. options are barlook_options (affect rendition of the plotted bars) and
ciopts(options) (affect rendition of the confidence spikes).
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Confidence intervals

level (#) specifies the confidence level, as a percentage, for CIs. The default is the
level that has been used for computing the pshare results. level() cannot be used
together with ci(bc), ci(bca), or ci(percentile). To change the level for these
CIs, you need to specify level () when computing the results.

ci(citype) chooses the type of CIs to be plotted for results that have been computed
using the bootstrap technique. citype may be normal (normal-based Cis, the de-
fault), bc (bias-corrected [BC] CIs), bca (BC and accelerated CIs), or percentile
(percentile CTs). bca is available only if BC, CIs have been requested when running
pshare estimate (see [R] bootstrap).

ciopts(options) affects the rendition of the plotted confidence spikes. options depend
on the plot type used for the confidence spikes. The default plot type is capped
spikes; see [G-2] graph twoway rcap. To use uncapped spikes, for example, type
ciopts(recast(rspike)); see [G-2] graph twoway rspike. ciopts() may be
included in p# (), if psep has been specified, to affect the rendition of the confidence
spikes for selected percentile groups.

cibelow places CI spikes behind the plotted bars. The default is to draw the spikes in
front of the bars.

noci omits CI spikes from the plot.

Add plots

addplot (plot) provides a way to add other plots to the generated graph; see [G-3] ad-
dplot_option.

Y axis, X axis, Title, Caption, Legend, Overall

twoway-options are general twoway options, other than by(), as documented in
[G-3] twoway_options.
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4 Examples

4.1 Basic application

By default, pshare computes outcome shares of quintile groups. The following example
shows the results for wages in the 1988 extract of the U.S. National Longitudinal Study
of Young Women data shipped with Stata:

. sysuse nlsw88
(NLSW, 1988 extract)

. pshare estimate wage, percent

Percentile shares (percent) Number of obs = 2,246
wage Coef.  Std. Err. [95% Conf. Intervall

0-20 8.018458 .1403194 7.743288 8.293627

20-40 12.03655 .1723244 11.69862 12.37448

40-60 16.2757 .2068139 15.87013 16.68127

60-80 22.47824 .2485367 21.99085 22.96562

80-100 41.19106 .6246426 39.96612 42.41599

The percent option was specified to express results as percentages. We can see,
for example, that the 20% best-earning women in the data receive 41% of the total
of wages, whereas the 20% poorest-earning women receive only 8%. If wages were
distributed evenly, then all quintile groups would receive 20%.

To compute decile shares, we could type

. pshare estimate wage, percent nquantiles(10)

Percentile shares (percent) Number of obs = 2,246
wage Coef.  Std. Err. [95% Conf. Intervall
0-10 3.426509 .0702149 3.288816 3.564202

10-20 4.591949 .0813845 4.432352 4.751546
20-30 5.544608 .0842676 5.379357 5.709858
30-40 6.491941 .0934605 6.308663 6.675219
40-50 7.542334 .1023013 7.341719 7.742948
50-60 8.733366 .1131891 8.5114 8.955333
60-70 10.24571 .1284118 9.993888 10.49752
70-80 12.23253 .1367424 11.96438 12.50069
80-90 14.65518 .1493718 14.36226 14.9481
90-100 26.53588 .682887 25.19672 27.87503

The results indicate that the 10% best-earning women get 26.5% of the wages,
whereas the 10% poorest-earning women get only 3.4%.
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pshare does not require the percentile groups to be of equal size. To compute the
shares of, say, the bottom 50%, the mid 40%, and the top 10%, we could type

. pshare estimate wage, percent percentiles(50 90)

Percentile shares (percent) Number of obs = 2,246
wage Coef.  Std. Err. [95% Conf. Intervall

0-50 27.59734 .3742279 26.86347 28.33121

50-90 45.86678 .4217771 45.03967 46.6939

90-100 26.53588 .682887 25.19672 27.87503

The percentiles() option specifies the cutoffs defining the percentile groups. That
is, percentiles(50 90) indicates to use three groups, 0-50, 50-90, and 90-100. We
see that the lower-paid half of women gets about the same share of total wages as the
best-paid 10%.

4.2 Stacked bar charts

pshare supports two types of graphical displays of percentile shares. The first type is
a stacked bar chart. For example, to compare wage distributions by some occupational
groups, we could type




286

Assessing inequality using percentile shares
. pshare estimate wage if occupation<=4, percent percentiles(50 90)
> over(occupation) total gini
Percentile shares (percent) Number of obs = 1,409
1: occupation = Professional/technical
2: occupation = Managers/admin
3: occupation = Sales
4: occupation = Clerical/unskilled
wage Coef. Std. Err. [95% Conf. Intervall
1
0-50 32.08652 .9560224 30.21114 33.9619
50-90 44.30132 .8461561 42.64146 45.96118
90-100 23.61216  1.468329 20.73181 26.49251
2
0-50 27.11145 1.015934 25.11854 29.10436
50-90 45.90042 .8232238 44.28555 47.5153
90-100 26.98812  1.337874 24.36368 29.61256
3
0-50 31.34111 .730376 29.90836 32.77385
50-90 44.1261 . 7914729 42.57351 45.6787
90-100 24.53279  1.378169 21.8293 27.23627
4
0-50 21.78931  1.909258 18.04401 25.53461
50-90 41.83106  2.046101 37.81733 45.84479
90-100 36.37963  2.898928 30.69295 42.06631
total
0-50 28.06045 .4731704 27.13226 28.98865
50-90 44.91512 .4944292 43.94522 45.88502
90-100 27.02443 .8354367 25.38559 28.66326
Gini
1 .273825
2 .3373482
3 .2833736
4 .4357447
total .3279324
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. pshare stack, plabels("bottom 50%" "mid 40%" "top 10%") values nogini

Professional/technical
Managers/admin
Sales
Clerical/unskilled

Total

0 20 40 60 80 100
outcome share (percent)

T 1

bottom 50%  mid 40%  top 10%

The over (occupation) option causes results to be computed by the subpopulations
defined by the values of occupation, the total option requests total results across sub-
populations to be included, and the gini option causes Gini coeflicients to be computed.
The plabels() option of pshare stack provides custom labels for the legend keys, the
values option causes the values of the shares to be included as marker labels in the
graph, and the nogini option suppresses the Gini coefficients that would be included
in the graph as secondary axis labels (see next example).
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To sort the bars by level of inequality, we could type

. pshare stack, plabels("bottom 50%" "mid 40%" "top 10%") values
> sort(gini tlast descending) mlabsize(zero) p3(mlabsize(small))

Clerical/unskilled

Managers/admin

1o

Sales

Professional/technical

Total

0 20 40 60 80 100
outcome share (percent)

I I
bottom 50%  mid 40%  top 10%

The gini argument in sort() causes bars to be sorted by Gini coefficients, tlast
specifies placing the overall results last, and descending requests sorting from highest
inequality to lowest inequality. The example also illustrates how to print marker labels
only for specific percentile groups. The global option mlabsize(zero) sets the size of
the marker labels to zero so that they are invisible, but p3(mlabsize(small)) resets
the marker label size for the third percentile group to small.

4.3 Histograms

The second type of graphical display supported by pshare is a percentile share his-
togram. The basic idea is to display a bar chart in which the area of each bar is
proportional to the outcome share of the respective percentile group. An example with
decile shares is as follows:
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. pshare estimate wage, percent nquantiles(10)

(output omitted )
. pshare histogram, yline(10

30
I

20

10

)

outcome share (percent)

289

0 20

40

60

population percentage

80 100

‘_ outcome share  ~————— 95% Cl

The yline(10) option was added to print a reference line at 10%. This would be
the share each group would receive in an equal distribution.

If percentile groups are of unequal size, then densities instead of percentages or
proportions should be used to construct the histogram (otherwise, the areas of the bars
would no longer be proportional to the shares). Here is an example in which the top

1% is a separate group:

. pshare estimate wage, density percentiles(10(10)90 99)

Percentile shares (density) Number of obs = 2,246
wage Coef.  Std. Err. [95% Conf. Intervall
0-10 .3426509 .0070215 .3288816 .3564202
10-20 .4591949 .0081384 .4432352 .4751546
20-30 .5544608 .0084268 .5379357 .5709858
30-40 .6491941 .009346 .6308663 .6675219
40-50 .7542334 .0102301 .7341719 . 7742948
50-60 .8733366 .0113189 .85114 .89556333
60-70 1.024571 .0128412 .9993888 1.049752
70-80 1.223253 .0136742 1.196438 1.250069
80-90 1.465518 .0149372 1.436226 1.49481
90-99 2.377868 .0794248 2.222114 2.533622
99-100 5.135065 .0696951 4.998392 5.271739
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. pshare histogram, yline(1)

outcome share (density)

T T
0 20 40 60 80 100
population percentage

‘_ outcome share  +—————— 95% Cl

Percentile share densities have an intuitive interpretation. They indicate how much
each member in a group gets (on average) in relation to the overall average. In the
example, we see that the average pay of the lowest 10% is only about 35% of the overall
average. On the other hand, the members in the top percentage group earn wages
that are more than five times the average wage. An alternative interpretation is as
follows: Think of 100 representative dollars to be distributed among 100 people. In an
equal distribution everyone would get one dollar. If, however, you divide the 100 dollars
according to the observed distribution, then the density of a particular group indicates
how many representative dollars a person in that group would get. In the example
above, we see that the 10 women at the bottom would only get 35 cents each, whereas
the top women would get more than 5 dollars (about 15 times as much). We also see
that about 60% of the women are below the equal distribution line (that is, they receive
below-average wages).

Note that the percentile density histogram is closely related to the so-called quantile
plot (see [R] diagnostic plots and Cox [1999]), also known as Pen’s “Parade of Dwarfs
(and a few Giants)” (Pen 1971, 48-59). The difference is that a quantile plot usually
displays individual observations using the original scale of the outcome variable. In the
percentile density histogram, the values are averaged within bins and normalized by the
population average.
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4.4 Contrasts
Differences between subpopulations

A useful feature of pshare is that contrasts between distributions can be computed. For
example, the difference in the wage distribution between unionized and nonunionized
women could be analyzed as follows:

. pshare estimate wage, density over(union) n(10)
(output omitted )
. pshare contrast O
Differences in percentile shares (density) Number of obs = 1,878

0: union = nonunion
1: union = union

wage Coef.  Std. Err. t P>|t| [95% Conf. Interval]
1

0-10 .0429197 .016305 2.63 0.009 .0109419 .0748975
10-20 .0528084 .0177041 2.98 0.003 .0180866 .0875301
20-30 .0743417 .0204516 3.64 0.000 .0342315 .1144519
30-40 .0765406 .018892 4.05 0.000 .0394891 .1135922
40-50 .0798209 .0190538 4.19 0.000 .0424521 .1171897
50-60 .0763097 .0204552 3.73 0.000 .0361924 .116427
60-70 .0475279 .0211824 2.24 0.025 .0059843 .0890715
70-80 -.0526677 .0242038 -2.18 0.030 -.1001369 -.0051984
80-90 -.1487654 .0269943 -5.51 0.000 -.2017074  -.0958234
90-100 -.2488358 .094742 -2.63 0.009 -.4346464 -.0630251

(contrasts with respect to union = 0)

. pshare histogram

-1 0 A
| |

-2

difference in outcome shares (density)
-3

-4

0 20 40 60 80 100
population percentage

I difference in outcome shares 95% Cl

From the results, we see that the bottom 70% are relatively better off if unionized;
the top 30% are relatively worse off. The differences are expressed in representative
dollars; that is, the bottom 70% gain around 5 representative cents, and the top 10%
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lose about a quarter of a representative dollar. However, note that these differences
reflect only differences in the distributional shape; they are net of a possible overall
difference in the wage levels between unionized and nonunionized workers.

To take the different wage levels of unionized and nonunionized workers into ac-
count, specify the average option so that the results are expressed as average wages.
Furthermore, note that instead of using the pshare contrast command, you can also
compute contrasts directly by applying the contrast () option to pshare estimate:

. pshare estimate wage, average over(union) n(10) contrast(0) histogram

(output omitted )

3
|

2
|

1
|

difference in outcome shares (average)
0
1

-1

0 20 40 60 80 100
population percentage

[ difference in outcome shares ~ +——— 95% Cl

From these results, we see that unionized workers are better off across the board
(by about one to two dollars per hour). Hence, from a welfare perspective, one could
argue that the wage distribution of unionized women is strictly preferable over the
wage distribution of nonunionized women (the wage distribution of unionized women
generalized Lorenz dominants the wage distribution of nonunionized women; see, for
example, Lambert [2001]). We also see that the (absolute) gains are somewhat larger
in the middle of the distribution than at the top and at the bottom.

Differences between outcome variables

Instead of comparing subpopulations, pshare can also be used to compare distributions
of different variables. For example, we could be interested in how the distribution
changes once we move from hourly wages to weekly earnings:

. generate weekly = hours * wage
(4 missing values generated)

. label variable weekly "weekly earnings"
. pshare estimate wage weekly, density n(10) contrast(wage)
(output omitted )
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. pshare histogram, yline(0)
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We see that weekly earnings are considerably more unequal than hourly wages.
Apparently, and as expected by economic theory, women with higher wages do supply

more labor, so they get a larger share of weekly earnings than of hourly wages.

4.5 Concentration shares

The relation between two continuous variables can be analyzed by the pshare command
using the pvar() option (in this case, percentile shares correspond to differences in
concentration curve ordinates). In the last example, we saw that weekly earnings are
distributed more unequally than hourly wages, which implies that women with higher
wages work longer hours. Hence, it might be interesting to see how labor supply is

distributed across wage groups:

. pshare estimate hours, pvar(wage) average n(10)

Percentile shares (average)

Number of obs

2,242

hours Coef. Std. Err. [95% Conf. Intervall

0-10 33.05259 .889763 31.30775 34.79744
10-20 33.6382 .8199639 32.03023 35.24616
20-30 34.78557 .7480189 33.31869 36.25245
30-40 37.14429 .6222536 35.92404 38.36454
40-50 37.73974 .6375459 36.4895 38.98998
50-60 38.6289 .670502 37.31403 39.94377
60-70 39.17663 .5903086 38.01902 40.33424
70-80 38.59946 .5712248 37.47928 39.71965
80-90 40.03568 .5799854 38.89832 41.17305
90-100 39.38002 .660688 38.08439 40.67564

(percentile groups with respect to wage)
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The results indicate that average labor supply by women in the bottom 30% of the
wage distribution is only about 33 to 35 hours per week, whereas in the upper half of
the wage distribution, it is about 40 hours per week. To obtain results expressed in
relation to the overall average, use the density option:

. pshare estimate hours, pvar(wage) density n(10)

Percentile shares (density) Number of obs = 2,242
hours Coef.  Std. Err. [95% Conf. Intervall
0-10 .8880782 .0222773 .8443919 .9317646
10-20 .9038126 .0205245 .8635637 .9440616
20-30 .934641 .0188478 .8976801 .971602
30-40 .9980166 .0159431 .9667519 1.029281
40-50 1.014016 .0162895 .9820715 1.04596
50-60 1.037906 .0170757 1.00442 1.071392
60-70 1.052623 .0153487 1.022524 1.082722
70-80 1.037115 .0149871 1.007725 1.066505
80-90 1.075704 .0151754 1.045945 1.105464
90-100 1.058088 .0169731 1.024803 1.091372

(percentile groups with respect to wage)

We see, for example, that the weekly labor supply of women in the top 10% of
the wage distribution is about 6% higher than average labor supply. The weekly labor
supply of women in the bottom 10% of the wage distribution is 11% below the average.

The same technique could also be used, for example, to study the relation between
income and wealth or between received bequests and existing income or wealth (for
example, how much of the sum of all bequests in a given year goes to the wealthiest
10% of the population). Furthermore, it could be used to study the composition of
income by sources or to study the effects of redistribution (for example, how much
the different income percentiles contribute to overall taxes and how the empirical tax
progression looks).

4.6 Processing results from pshare

pshare estimate and pshare contrast post their results in the e () return (see [P] ere-
turn; also see [U] 13.5 Accessing coefficients and standard errors), so they can
be processed by postestimation commands such as test (see [R] test), lincom (see
[R] lincom), and nlcom (see [R] nlcom) or tabulated and graphed by programs such as
estout (Jann 2005, 2007) and coefplot (Jann 2014).
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For example, to compute the Palma ratio of wages—top 10% share divided by
bottom 40% share (see, for example, Cobham, Schlogl, and Sumner [2015])—we could

type

. pshare estimate wage, percentiles(40 90)

Percentile shares (proportion) Number of obs = 2,246
wage Coef.  Std. Err. [95% Conf. Intervall

0-40 .2005501 .0029161 .1948315 .2062687

40-90 .5340912 .0048778 .5245258 .5436566

90-100 .2653588 .0068289 .2519672 .2787503

. nlcom (Palma: _b[90-100] / _b[0-401)
Palma: _b[90-100] / _b[0-40]

wage Coef. Std. Err. z P>|z| [95% Conf. Intervall

Palma 1.323155 .0506042 26.15 0.000 1.223972 1.422337

Furthermore, the Lorenz ordinates used to compute the percentile shares are stored
by pshare in e(L_11) (lower bounds) and e(L_ul) (upper bounds). To tabulate the
Lorenz ordinates together with the percentile shares, we could type

. pshare estimate wage
(output omitted )
. estout, cell((b(label(share)) L_11 L_ul)) mlabels(none)

share L_11 L_ul
0-20 .0801846 0 .0801846
20-40 .1203655 .0801846 .2005501
40-60 .162757 .2005501 .3633071
60-80 .2247824 .3633071 .5880894
80-100 .4119106 .5880894 1

Finally, estimates store (see [R] estimates store) can be used to make copies of
results from different calls to pshare for later usage by commands such as estout or
coefplot. In the following example, coefplot is used to plot the top decile share and
the top centile share of weekly earnings against time:

. use http://www.stata-press.com/data/r14/nlswork.dta, clear
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. gen weekly = exp(ln_wage) * hours
(67 missing values generated)

. pshare estimate weekly, percent percentile(90) over(year) vce(cluster idcode)
(output omitted )

. estimates store p90

. pshare estimate weekly, percent percentile(99) over(year) vce(cluster idcode)

(output omitted )
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. estimates store p99

coefplot (p90, keep(*:90-100) label("top 10% share"))
(p99, keep(*:99-100) label("top 1% share"))
at(_eq) recast(connected) ciopts(recast(rline) lpattern(dash))
xlabel (68(2)88) ylabel(0(5)30, angle(horizontal))
ytitle("Percent of weekly earnings")

vV VV V.

Percent of weekly earnings

—=o— top 10% share ~—&— top 1% share

Through the years, as the respondents grew older, the share of the top decile in-
creased from about 18% to 30%. The share of the top centile increased from 2.5% to
about 5%.%°

5 Small-sample bias

Estimates of percentile shares are affected by small-sample bias, especially at the top
of the distribution. The bias can be substantial if the distribution is highly skewed and
the number of observations is small. Thus, to obtain reliable estimates for shares of
small top groups such as, say, the top 0.1% share, one must use large samples.

The simulation below provides some results for the relative bias in the estimate of
the top 1% share for different sample sizes using a lognormal distribution. The scale
parameter of the lognormal distribution is varied between o = 0.5 (corresponding to a
Gini coefficient of 0.276) and o = 2 (corresponding to a Gini coefficient of 0.843).

13. The vce(cluster idcode) option has been added because the data are from a panel study where
idcode identifies individuals. Adding the option in the example is not strictly necessary because
the variances of the yearly estimates are not affected much by the clustering. However, it will be
relevant once differences between years are analyzed.
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. set seed 3230982

. program mysim, rclass

1. syntax [, n(integer 1000) Sigma(real 1) ]
2. drop _all
3. qui set obs "n~
4. tempvar y
5. gen "y~ = exp(rnormal(0, “sigma~))
6. pshare estimate “y~, nose percentile(99)
7. local b = 1 - normal(invnorm(0.99) - “sigma’)
8. return scalar bias = (_b[99-100] - "b") / "b~
9. end
. local i 0

. capture matrix drop R

. foreach sigma in 0.5 1 1.5 2 {
2. local ++i

3. local gini = 2%normal( sigma”/sqrt(2)) - 1
4. foreach n in 100 500 1000 5000 10000 {
5. quietly simulate r(bias), reps(10000): mysim, n("n") sigma( sigma”)
6. quietly ci means _sim_1
7. matrix tmp = r(mean), r(lb), r(ub)
8. matrix rownames tmp = s i":'n”
9. matrix R = nullmat(R) , tmp~
10. }
11. }
. local i 0

. local plots
. foreach sigma in 0.5 1 1.5 2 {

2. local ++i
3. local 1bl ~: di %9.3f 2*normal( sigma”/sqrt(2)) - 1°
4. local 1bl Gini = “1bl”~ ({&sigma} = “sigma’)
5. local plots “plots” (matrix(R), keep(s™i”:) label(" 1bl""))
6. }
. coefplot “plots~”, ci((R[2] R[3])) vertical nooffset rescale(100)
> msymbol(d) xtitle(Sample size) recast(connected) ciopts(recast(rcap))
> ytitle(Bias in %) ylabel(#10, angle(horizontal)) yline(0)
> title(Bias in top centile share) legend(cols(1l) position(0) bplace(se))

Bias in top centile share

0
-54
-10-
2
£ 15
(2}
8
1]
-20-
25 —+— Gini =0.276 (0 = 0.5)
- —— Gini=0520 (0=1)
—— Gini=0.711 (0=15)
-30- —+— Gini=0.843(0=2)
100 500 1000 5000 10000

Sample size
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For example, in a sample of 100 observations, the top centile share is underestimated
by about 30% for a lognormal distribution with a Gini coefficient of 0.843. For lower
levels of inequality, the underestimation is less severe but still substantial. This is
not much of a surprise because in a sample of 100 observations, the top centile group
contains only a single observation. However, also with a sample size of 1,000, the top
centile share is underestimated by about 5% for the distribution with a Gini coefficient
of 0.843.

The simulation results suggest that for moderately skewed distributions (such as
the income distribution with a typical Gini coefficient between about 0.3 and 0.6), there
should be a minimum of about 10 observations in the top group to keep the error within
acceptable bounds of just a few percent. Estimating the top 0.1% share, for example,
requires a sample size of at least 10,000 observations. However, for accurate estimation
of top shares in extremely skewed distributions (such as the wealth distribution with
Gini coefficients as high as 0.8 or event 0.9), minimum sample-size requirements may
be considerably higher (such as 50 or even 100 observations in the top group).

6 Discussion

In this article, I presented only a selection of the features of the pshare command. It
has been designed in such a way that it offers a wide variety of possible applications and
can be used in many different situations. For example, much effort has been put into the
support for complex survey data, a topic that has not been touched on in the examples.
Nonetheless, a number of limitations and remaining issues need to be mentioned.

First, pshare is designed to be applied to individual-level data. Often, however,
data on the distribution of income or wealth are available in the form of aggregate
tables (typically from tax statistics). In such tables, individual-level units are grouped
into outcome brackets, and for each bracket, the number of units and the outcome total
are reported. pshare can be applied to such grouped data by computing the average
outcome per bracket and weighting the data by the number of units. However, such
a procedure assumes perfect equality within brackets and thus provides only a lower
bound of the true inequality in the distribution (see, for example, Cowell [2011]). It
would be worthwhile to develop a companion command for grouped data that also offers
upper-bound estimates and intermediate estimates.

Second, analytic variance estimation implemented in pshare is only approximate
and, possibly, more accurate estimation procedures could be developed. For example,
variance estimation for percentile shares based on the concentration curve (that is, if the
pvar () option is specified) requires the estimation of the expectation of the outcome
variable at specific quantiles of the auxiliary variable. In the current implementation
of pshare, this is accomplished by local linear regression using a constant bandwidth
(see footnote 7). Some preliminary simulations indicate that this procedure generates
consistent estimates of standard errors. However, the accuracy and stability of the
standard error estimates could possibly be improved by using a variable bandwidth
depending on the local density of the data. Furthermore, pshare reports symmetric,
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normal-based CIs that may not be very accurate in small samples. A topic for future
research could thus be to develop refined estimation of CIs.

Third, as discussed above, percentile shares are affected by small-sample bias. Future
research will have to show whether a suitable correction procedure can be designed. A
main challenge is to ensure that the correction does not increase the mean squared
error (MSE) of the estimates. The problem can be illustrated by a simple bootstrap
correction procedure. Let S be the uncorrected estimate in the original sample and
S be the mean of the estimates from a number of bootstrap samples. The bias in
the bootstrap samples with respect to the original sample is then given as S — S.
The idea is to use the bootstrap bias as an approximation of the bias of the sample
with respect to the population. Hence, a corrected estimate of S can be obtained as
Seorr — G (S— 3 )= 25 —75. Alternatlvely, the correction could also be based on ratios
or on odds ratios between S and S. Findings from simulations with such procedures
are that the bootstrap correction mostly removes the bias, unless the distribution is
extremely skewed. At the same time, however, MSE increases. The reason is obvious:
the larger the top share in a given sample turns out to be, the larger will be the
bootstrap correction. This inflates sampling variance. Possibly, however, parametric
extreme-value estimation may be used to design a correction procedure that does not
increase the MSE.
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