
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their 
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/


The Stata Journal (2016)
16, Number 2, pp. 416–423

Calculate travel time and distance with
OpenStreetMap data using the Open Source

Routing Machine (OSRM)

Stephan Huber
University of Regensburg
Regensburg, Germany

stephan.huber@wiwi.uni-regensburg.de

Christoph Rust
University of Regensburg
Regensburg, Germany

christoph.rust@stud.uni-regensburg.de

Abstract. In this article, we introduce the osrmtime command, which calculates
the distance and travel time between two points using latitude and longitude in-
formation. The command uses the Open Source Routing Machine (OSRM) and
OpenStreetMap to find the optimal route by car, by bicycle, or on foot. The
procedure is specially built for large georeferenced datasets. Because it is fast,
the command uses the full computational capacity of a PC, allows the user to
make unlimited requests, and is independent of the Internet and commercial online
providers. Hence, there is no risk of the command becoming obsolete. Moreover,
the results can be replicated at any time.

Keywords: dm0088, osrmtime, osrmprepare, mqtime, traveltime3, OSRM, Open-
StreetMap, Google Maps, MapQuest, geospatial analysis, ArcGIS, travel time,
travel distance, public road network

1 Introduction

The increased availability of large georeferenced datasets for scientific purposes calls for
an efficient method to calculate the distances between subjects and the time it takes
to travel from A to B. In this article, we introduce the osrmtime command, which
uses geographic data on latitudes and longitudes to determine the travel time and
the distance between two points. In contrast to existing commands like globaldist,
vincenty, geodist, or sphdist, which compute geodetic distances, osrmtime calcu-
lates the travel time and distance to find the optimal route over public roads by car,
by bicycle, or on foot. This platform-independent method (Windows, Mac, Linux) is
innovative because it allows the user to calculate an unlimited number of requests, and
it works offline, which ensures that the results can be replicated. Moreover, osrmtime
works efficiently. It can calculate thousands of requests within seconds,1 because it is
multiprocessor capable and uses the Open Source Routing Machine (OSRM).2 The OSRM

1. In an example, we calculated the distance and the travel time between 826,256 pairwise combina-
tions of German hospitals. The calculation took about 49 minutes, which is about 280 requests per
second on a system with 16 GB RAM and an Intel i7-2600 3.40 GHz CPU.

2. For more information, see Luxen and Vetter (2011) and http://project-osrm.org/.

c© 2016 StataCorp LP dm0088

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X1601600209&domain=pdf&date_stamp=2016-06-01


S. Huber and C. Rust 417

is a high-performance open-source C++ routing engine that indicates the shortest routes
on public roads and runs with open-source maps from OpenStreetMap.3

The program’s independence from the Internet and commercial providers has some
advantages. First, georeferenced data often contain sensitive data, and their rules of use
often forbid using an Internet connection because of either legally binding constraints
or a nondisclosure agreement.

Second, and probably most important, an offline procedure that uses only open-
source software ensures that the results can be replicated at any time and carries no
risk of the command becoming obsolete—as was the case with traveltime (Ozimek
and Miles 2011), traveltime3,4 and mqtime (Voorheis 2015). These earlier programs
calculated travel time and distance using the application programming interface (API)5

from commercial providers via the Internet. Third-party providers, however, can change
their APIs or their terms of use; thus user-written commands can become obsolete.
The traveltime command, for example, was created to use the Google Maps API v.2.
Unfortunately, this API is now obsolete; therefore, so is traveltime. Although Stefan
Bernhard adjusted traveltime to work with the up-to-date Google Maps API v.3, his
program traveltime3 is no longer available because Google changed its restrictions on
using the Distance Matrix API.6 The most recent approach by Voorheis (2015) suffers a
combination of both problems. His command, mqtime, was created to use the API of the
commercial provider MapQuest to calculate travel time and distance for an unlimited
number of requests by using OpenStreetMap. Unfortunately, MapQuest restructured
its API licensing, dramatically cutting the number of requests that mqtime can process.
Hence, mqtime no longer works, and John Voorheis has ceased to maintain the command.

Third, unlike approaches that use online-mapping services, our approach is not based
on real-time data. Although a real-time calculation is sometimes desired, researchers
often want to know the travel time and distance at a certain point in time. Furthermore,
they frequently want results that can be replicated at any time. Neither is really possible
when using real-time data from online services, because the results are a function of time-
specific circumstances. For example, if you use georeferenced data from 2013, you will
probably not want to calculate the travel time and the distance on a Monday morning
in late 2015 during rush hour. In turn, it would probably be misleading to use the
resulting travel-time data to explain economic behavior in 2013.

osrmtime implements two tools: the OSRM and OpenStreetMap. Both are provided
by the open-source community, which offers some advantages but also a few disadvan-
tages. One advantage is that both tools can be downloaded, used, spread, and adjusted
without restrictions, which gives the user full control over the software. One disad-
vantage is that the maps provided by OpenStreetMap are not validated by a general
authority like the maps of a commercial provider but are recorded and maintained

3. For more information, see http://www.openstreetmap.org.
4. The user-written code by Stefan Bernhard is no longer available. For further information, please

email stefanbernhard88@gmail.com.
5. An API provides source code-based facilities to develop applications for a system in a given pro-

gramming language.
6. See https://developers.google.com/maps/documentation/distancematrix/.



418 Calculate travel time and distance

by users in a decentralized fashion. However, this does not necessarily devalue Open-
StreetMap, because the quality of both ways of recording and updating geographical
data is subject to criticism. Commercial providers record and maintain geographical
information more intensively for regions that are most profitable in sales, whereas the
quality of geographical information from open sources is a function of the effort of users
in a given region. Therefore, regions with a lively community probably have better maps
than regions with only a few active users. Overall, OpenStreetMap is used heavily in
scientific research, as Arsanjani et al. (2015) show in their overview.

In the following section, we describe how to install the OSRM with all its dependen-
cies. In section 3, we explain the osrmtime command. In section 4, we illustrate its
use. In section 5, we conclude by comparing it with ArcGIS.

2 Prerequisites

osrmtime calculates the travel time and distance from a point of origin to a point of
destination using the high-performance routing open-source software, OSRM. osrmtime
automatically starts the OSRM from the hard disk and performs the calculation using
an extract from OpenStreetMap, which needs to be saved on the hard disk. To use
osrmtime, your system must support a 64-bit architecture (for example, Windows 7 or
later). Some files from the Microsoft Visual C++ Redistributable package must also be
installed. In the next section, we describe this installation procedure.

2.1 Install the files

osrmtime uses the OSRM and some files from the Microsoft Visual C++ Redistributable
package. Both must be installed on your system to run osrmtime. The installation can
be done manually or automatically.

Automatic

. net install osrmtime, from("http://www.uni-regensburg.de/
> wirtschaftswissenschaften/vwl-moeller/medien/osrmtime")

. net get osrmtime, from("http://www.uni-regensburg.de/
> wirtschaftswissenschaften/vwl-moeller/medien/osrmtime")

. shell osrminstall.cmd

Manual

1. Copy the ado-files osrmtime.ado, osrmprepare.ado, and osrminterface.ado

into your PERSONAL ado-folder.

2. Install the recent Microsoft Visual C++ Redistributable package for Visual Studio
2015.7

7. See https://www.microsoft.com/en-us/download/details.aspx?id=48145.



S. Huber and C. Rust 419

3. Install the OSRM by downloading8 and unpacking the OSRM executables to a folder
of your choice in which Stata has write access, for example, C:/osrm/.

Note that implementing the OSRM is different on Linux and Mac OS X systems. For in-
structions on how to build the OSRM on these systems, see https://github.com/Project-
OSRM/osrm-backend/wiki/Building%20OSRM.

2.2 Prepare maps with osrmprepare

To use osrmtime, you must download at least one map covering the region of interest
and prepare it for routing. This is necessary for several reasons. Most importantly, raw
OpenStreetMap data also include information that are not relevant for routing, such as
public toilets or memorials. The preparation ensures that only relevant information is
extracted and that this information can be used efficiently by the OSRM. We offer the
osrmprepare command to execute all necessary steps automatically. The execution
speed for osrmprepare depends on the size of your map and the capacity of your
system.9 Note that you have to prepare your map only once. The prepared map
can be used as often as you like. To update your map, however, you have to download
a more recent map and prepare it again.

The following steps explain how to proceed:

1. Download an OpenStreetMap data file in the osm.pbf format to a folder of your
choice, for example, C:/mymaps/mymap.osm.pbf.10

2. Prepare a map for routing. To make this step easier for the user, we wrote the
osrmprepare command. Install the command and use it as explained below.

Syntax of osrmprepare

osrmprepare, mapfile(pbf path)
[
osrmdir(path) diskspace(# MB)

profile(speed profile)
]

Options of osrmprepare

mapfile(pbf path) specifies the location of the downloaded map file from OpenStreet-
Map in *.osm.pbf format, for example,
mapfile("C:/mymap/examplemap.osm.pbf"). mapfile() is required.

8. See http://www.uni-regensburg.de/wirtschaftswissenschaften/vwl-moeller/medien/osrmtime/
osrm.zip.

9. For instance, it takes about 27 minutes to extract a map for Germany (about 2.6 GB) on a system
with 16 GB RAM with an Intel i7-2600 3.40 GHz CPU.

10. Maps can be downloaded, for example, from http://download.geofabrik.de.



420 Calculate travel time and distance

osrmdir(path) specifies the path in which the OSRM executables are saved. The de-
fault is osrmdir("C:/osrm/") for Windows and osrmdir("/usr/local/osrm/")

for Linux.

diskspace(# MB) specifies the allocation of disk space for preparation. The default
is diskspace(5000 MB). If your system cannot allocate 5,000 MB, you must adjust
this number here; otherwise, the command will not work.

profile(speed profile) specifies to prepare a map that contains the routes for traveling
by car, by bicycle, or on foot. speed profile can be car, bicycle, or foot.

3 The osrmtime command

3.1 Syntax

osrmtime latitude1 longitude1 latitude2 longitude2
[
, mapfile(osrm path)

osrmdir(path) nocleanup threads(#) servers(#) ports(numlist)
]

latitude1, longitude1, latitude2, and longitude2 are numeric variables, denoted in
decimal degrees.11 They contain the starting point (latitude1 longitude1 ) and the des-
tination (latitude2 longitude2 ) in a system of coordinates.

3.2 Options

mapfile(osrm path) specifies the location of the *.osrm file format map, for example,
mapfile("C:/mymap/examplemap.osrm"). This file can be extracted by using the
osrmprepare command as explained above.

osrmdir(path) specifies the path in which the OSRM binary (see step 1 of preparation)
is saved. The default is osrmdir("C:/osrm/") for Windows and
osrmdir("/usr/local/osrm/") for Linux.

nocleanup indicates to keep temporary files that are generated during the process and
prevents the OSRM from being shut down. This can speed up the calculation if
osrmtime is used consecutively with the same map, because osrmtime does not
need to shut down and start the OSRM over and over again.

Advanced users with large datasets can optimize the parallel computing to speed up
calculation on their system by using the following options: threads(#) specifies the
number of parallel Stata threads per running OSRM instance, the default value being 4;
servers(#) starts several instances of the OSRM—at least if your system permits, the
default being 1; ports(numlist) resolves problems with used TCP ports by manually
specifying the port to use, the default being 5000.

11. We use the standard coordinate system in its latest revision, World Geodetic System (WGS 84).
It also works as the reference coordinate system of the Global Positioning System (GPS).



S. Huber and C. Rust 421

3.3 Description

osrmtime provides an interface to the free high-performance OSRM. This enables the
calculation of travel time and distance from a point of origin to a point of destination in
Stata. Provided that the OSRM is already installed on your system and you already have
prepared your map of interest, osrmtime automatically starts the OSRM and performs
the calculation. osrmtime already implements parallel computation, so the time for
calculating shortest distances can be reduced significantly depending on your system.

osrmtime generates the following five variables:

• distance: the distance of the shortest route in meters

• duration: the travel time of the shortest route in seconds

• jumpdist1: the (spheric) distance between the specified input location (origin)
and a matched location to the road network in meters

• jumpdist2: the (spheric) distance between the specified input location (destina-
tion) and a matched location to the road network in meters

• return code: 0 ⇒ everything is fine; 1 ⇒ no route was found by the OSRM with
points specified; 2 ⇒ the OSRM did not respond; and 3 ⇒ something else went
wrong.

Note that large values for jumpdist1 or jumpdist2 can be a signal that the map
is incomplete, meaning that an existing street is not listed in the map. Hence, we
recommend to check the length of both jump distances, especially because the jump
distance is not considered in the travel-time calculation, which means that large jump
distances can yield an underestimated travel time. One way to solve this problem, for
example, is to assign a certain number of seconds per meter that it takes to travel the
jump distances and add this time to the travel time.

Advanced users can manipulate the routing using the OSRM in various ways. It is
possible, for instance, to exclude certain kinds of roads or to adjust the speed profile
(for example, change the maximum speed allowed on highways). Moreover, the map file
from OpenStreetMap itself can be manipulated.

4 Example

The following results exemplify how osrmtime and osrmprepare can be used. In the
example, we calculate the travel time and distance from Alexanderplatz in Berlin to
3,374 restaurants also located in Berlin.

. *download the map of Berlin

. capture mkdir mymaps

. copy "http://download.geofabrik.de/europe/germany/berlin-latest.osm.pbf"
> "mymaps/berlin.osm.pbf", replace
(note: file mymaps/berlin.osm.pbf not found)



422 Calculate travel time and distance

. *prepare the map (this takes some time ~2 minutes, depending on your system):

. osrmprepare, mapfile("mymaps/berlin.osm.pbf") osrmdir("C:\osrm\") profile(car)

. *open coordinates of restaurants in Berlin

. discard

. import delimited "http://www.uni-regensburg.de/wirtschaftswissenschaften/
> vwl-moeller/medien/osrmtime/restaurants_berlin.csv", delimiter(";") clear
(4 vars, 3,374 obs)

. *add destination Alexanderplatz

. generate lat_alex = 52.5219184

. generate lon_alex = 13.4132147

. list in 1/3

lon lat osm_id name lat_alex lon_alex

1. 13.32283 52.50691 26735749 Aida 52.52192 13.41321
2. 13.31732 52.50624 26735760 La Forneria 52.52192 13.41321
3. 13.32078 52.50734 26735763 Sakana 52.52192 13.41321

. * calculate travel time and distances:

. osrmtime lat lon lat_alex lon_alex, mapfile("mymaps/berlin.osrm")
> osrmdir("C:\osrm\")

Traveltime and Distance with OSRM

Check for running OSRM: not running!
Starting OSRM now running!
Writing do-files: done!
Partitioning datasets: done!
Calculating:
0%---10%---20%---30%--40%---50%---60%--70%---80%---90%--100%

finished calculation!

. summarize

Variable Obs Mean Std. Dev. Min Max

lon 3,374 13.37962 .0867841 13.09485 13.75691
lat 3,374 52.50509 .0399598 52.35291 52.66253

osm_id 3,374 1.54e+09 1.08e+09 2.67e+07 3.80e+09
name 0

lat_alex 3,374 52.52192 0 52.52192 52.52192

lon_alex 3,374 13.41321 0 13.41321 13.41321
distance 3,374 7797.189 5203.881 287 31190
duration 3,374 618.3402 380.2277 28 2469
jumpdist1 3,374 17.75756 16.54522 0 292
jumpdist2 3,374 103 0 103 103

return_code 3,374 0 0 0 0



S. Huber and C. Rust 423

. list name distance duration jumpdist1 jumpdist2 in 1/3

name distance duration jumpdi~1 jumpdi~2

1. Aida 7360 612 18 103
2. La Forneria 7710 634 8 103
3. Sakana 7416 618 11 103

5 Conclusion

In this article, we introduced a fast procedure to calculate travel time and distance
using public roads by car, by bicycle, and on foot. This kind of geographic information
is fundamental to regional sciences and can be applied to empirical research in various
subjects, including economics, sociology, and epidemiology. osrmtime has advantages
over other offline routing software. The high-end mapping software ArcGIS, for example,
also allows the user to calculate the travel time and distance but has some drawbacks
compared with osrmtime. First, the Network Analyst Extension required is costly.
Second, the routing algorithm works less efficiently than the OSRM. Third, ArcGIS does
not have a tool that easily allows the user to calculate hundreds of requests. Thus the
processing of many requests requires experience with Python. In a previous project,
we succeeded in calculating thousands of routing requests using ArcGIS on a cluster of
eight PCs. However, when calculating the same requests with one PC and osrmtime, we
find that ArcGIS is outperformed by a factor of at least 100.

6 References
Arsanjani, J. J., A. Zipf, P. Mooney, and M. Helbich, eds. 2015. OpenStreetMap in
GIScience: Experiences, Research, and Applications. Cham, Switzerland: Springer.

Luxen, D., and C. Vetter. 2011. Real-time routing with OpenStreetMap data. In
Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, 513–516. New York: Association for Computing
Machinery.

Ozimek, A., and D. Miles. 2011. Stata utilities for geocoding and generating travel time
and travel distance information. Stata Journal 11: 106–119.

Voorheis, J. 2015. mqtime: A Stata tool for calculating travel time and distance using
MapQuest web services. Stata Journal 15: 845–853.

About the authors

Stephan Huber and Christoph Rust are research assistants of Joachim Möller at the University
of Regensburg. Huber is also a doctoral candidate at the University of Trier. His thesis is about
disaggregated international bilateral trade flows and the impact of FDI and international trade
on economic development.


