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Abstract. In this article, I suggest the utility of fitting multivariate probit models
using a chain of bivariate probit estimators. This approach is based on Stata’s
biprobit and suest commands and is driven by a Mata function, bvpmvp(). I
discuss two potential advantages of the approach over the mvprobit command
(Cappellari and Jenkins, 2003, Stata Journal 3: 278-294): significant reductions
in computation time and essentially unlimited dimensionality of the outcome set.
Computation time is reduced because the approach does not rely on simulation
methods; unlimited dimensionality arises because only pairs of outcomes are con-
sidered at each estimation stage. This approach provides a consistent estimator
of all the multivariate probit model’s parameters under the same assumptions re-
quired for consistent estimation via mvprobit, and simulation exercises I provide
suggest no loss of estimator precision relative to mvprobit.

Keywords: st0423, bvpmvp(), bvopmvop(), multivariate probit models, bivariate
probit

1 Introduction

In this article, I suggest the utility of fitting multivariate probit (MVP) models using a
chain of bivariate probit estimators. I demonstrate how this approach, based on Stata’s
biprobit and suest commands and driven by the Mata function bvpmvp (), affords two
potential advantages over the mvprobit command, that is, significant reductions in com-
putation time and essentially unlimited dimensionality of the outcome set (mvprobit’s
limit is M = 20 outcomes).! Computation time is reduced because, unlike mvprobit,
bvpmvp() does not rely on simulation methods; unlimited dimensionality arises be-
cause only pairs of outcomes are considered at each estimation stage. Importantly, this
bvpmvp () approach provides a consistent estimator of all the MVP model’s parameters
under the same assumptions required for consistent estimation via mvprobit, and the
simulation exercises herein suggest no loss of estimator precision relative to mvprobit.

1. Stata/SE’s restriction that matsize cannot exceed 11,000 ultimately places a limit on the size of
the parameter vector that can be estimated. All references to Stata herein are to Stata/SE 13.1.

© 2016 StataCorp LP st0423
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This approach was inspired by the goal of embedding MVP estimation in a large-
replication bootstrap exercise. The simulation results that I present in section 5 suggest
that the computation time saved by the bvpmvp() method relative to mvprobit can
be significant, while numerical differences in the respective point estimates and esti-
mated standard errors are trivial. Because the potential applicability of MVP models is
broad, it is important in practice that such potential not be thwarted by computational
challenges.

The remainder of the article is organized as follows. In section 2, I describe the MVP
model and, in section 3, the bvpmvp() method. In section 4, I present the comparison
empirical exercises and, in section 5, the comparative results. In section 6, I consider
parallel issues involved in the estimation of multivariate ordered probit (MVOP) models,
and in section 7, I finish with a summary.

2 The MVP model

The MVP model is typically specified as

Yi; = X3, + uij (1)
vij = 1(y;; > 0) (2)
u; = (Uﬂ, . ,u“u) ~ N[VN(O7 R) or y;k = (yn, . ,va) ~ MVN(XiB, R) (3)

where ¢ = 1,..., N indexes observations, j = 1,..., M indexes outcomes, x; is a K-
vector of exogenous covariates, the u; are assumed to be independent identically dis-
tributed across i but correlated across j for any i, and MVN denotes the multivariate
normal distribution. (Henceforth, the ¢ subscripts will be suppressed.) The standard
normalization sets the diagonal elements of R equal to 1 so that R is a correlation ma-
trix with off-diagonal elements ppq, {p,q} € {1,..., M},p # ¢.* With standard full-rank
conditions on the x’s and each |ppe| < 1, B = (84,...,8),) and R will be identified
and estimable with sufficient sample variation in the x’s.

3 Estimation and inference

Estimation of the M-outcome MVP model using mvprobit requires simulation of the
MVN probabilities (Cappellari and Jenkins 2003), with mvprobit computation time in-
creasing in M, K, N, and D (simulation draws).® However, all the parameters (B, R)
can be estimated consistently using bivariate probit—implemented as Stata’s biprobit

2. This normalization rules out cases like heteroskedastic errors (Wooldridge 2010, sec. 15.7.4). While
this normalization is common—for instance, normalizing each univariate marginal to be a standard
probit—it is not the only possible normalization of the covariance matrix.

3. Specifically, in the empirical exercises reported below as well as in some other simulations not
reported here, mvprobit computation time increases—trivially in K, essentially proportionately
in D, slightly more than proportionately in N, and at a rate between 2 and 3M in M.
Greene and Hensher (2010) suggest that MVP computation time would increase with 2M " but
the results obtained in the simulations here suggest a somewhat greater rate of increase.
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command—while consistent inferences about all of these parameters are afforded via
Stata’s suest command. Because the proposed approach proves significantly faster
in terms of computation time with no obvious disadvantages, this strategy may merit
consideration in applied work.

The key result for the proposed estimation strategy is that the multivariate normal
distribution is fully characterized by the mean vector xB and correlation matrix R.
For present purposes, the key feature of the multivariate (conditional) normal distribu-
tion F'(yf,...,Yy[x) is that all of its bivariate marginals—F(y}, y,;, [x)—are bivariate
normal with mean vectors and correlation matrices corresponding to the respective sub-
matrices of xB and R (Rao 1973, 8a.2.10).

Under the normalization that the diagonal elements of R are all one, the B pa-
rameters are identified using all M (conditional) univariate marginals F'(y}|x); there is
no need to appeal to the multivariate features of F(y7,...,y4|x) to identify B. The
0.5M (M — 1) bivariate marginals provide the additional information about the p,, pa-
rameters. As such, identifying the parameters of all the bivariate marginals implies
identification* of the parameters of the full multivariate joint distribution so that con-
sistent estimation of all the bivariate marginal probit models Pr(y, = t,,y, = t4|x)
provides consistent estimates of all the parameters (B,R) of the full MVP model for
Pr(yr =t1,...,ym = tu|x) for t; € {0,1},5 =1,..., M.

3.1 Estimation via bivariate probit

The proposed approach, which can be implemented using the Mata function bvpmvp (),
is as follows. First, corresponding to each possible outcome pair, 0.5M (M — 1) bivariate
probit models are fit using biprobit, yielding one estimate® of each p,, and M —1
estimate of 3;, where j = 1,..., M. Each M — 1 estimate of 3; is consistent because
each biprobit specification uses the same normalization on the relevant submatrices of
R. Each of these estimates (Bp, Bq, Ppq)b, where b=1,...,0.50M (M —1), is stored and
then combined using Stata’s suest command, which provides a consistent estimate of
the joint variance—covariance matrix of all M (M —1)(0.5+ K) parameters estimated with
the 0.5M (M — 1) biprobit estimates. We denote this vector of parameter estimates
and its estimated variance—covariance matrix as & and ﬁ, respectively.©

Second, we compute the simple averages ,@jA ={1/(M -1)} Z%? Bjm. This gives
m#j

a k x M matrix of estimated averaged coefficients, denoted B = (B, 4, - .-, 8y4). Be-
cause a weighted average of consistent estimators is generally a consistent estimator,
the resulting B 4 will be consistent for B. This averaging occurs because the B param-
eters in the proposed approach are overidentified; that is, there are M — 1 consistent
estimates of each 8;, j = 1,..., M. Some other rule could be used to compute one
consistent estimate of each 3; from among the M —1 candidates, but unless alternative

4. As discussed below, identification of all the bivariate marginals implies overidentification of B.
5. biprobit directly estimates the inverse hyperbolic tangent of ppq or 0.5In{(1 + ppq)/(1 — ppq)}-
6. & and Q are the suest-stored matrix results e(b) (a row vector) and e(V), respectively.
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strategies could boast significant precision gains, computational simplicity recommends
the simple average as an obvious solution. See the appendix for further discussion.

Finally, we let Q denote the 0.5M (M — 1) vector of the tanh™'(p;;) estimated
in each biprobit specification, and we define the M{0.5(M — 1) + K} x 1 vector
O = [vec(B4)T,QT]7. We define H as the M{0.5(M — 1) + K} x M(M —1)(0.5+ K)
averaging and selection matrix that maps & to @; that is, 0= HaT; the elements of
H are 1/(M — 1), 1, or 0.7 The estimated variance—covariance matrix of @, useful for
inference, is given by \ﬁa\r((:)) = HOQHT.

3.2 bvpmvp(): A Mata function to implement the proposed estima-
tion approach

The function bvpmvp() returns the M{k + 0.5(M — 1)} x [M{k + 0.5(M — 1)} + 1]

matrix, whose first column is @T and whose remaining elements are the elements of the
M{k + 0.5(M — 1)} dimension-symmetric square matrix var(©). bvpmvp() takes six
arguments: 1) a string containing the names of the M outcomes; 2) a string containing
the names of the K — 1 nonconstant covariates; 3) a (possibly null) string containing
any “if” conditions for estimation; 4) a scalar indicating whether to display the interim
estimation results; 5) a scalar indicating the rounding level of presented results; and
6) a scalar indicating whether to display the final results. For example,

bvil
bv2

bvpmvp("yl y2 y3 y4","x1 x2 x3 x4","if _n<=10000",0,.001,1)
bvpmvp(yn,xn,ic,0,.001,1)

bvpmvp()’s summary report displays the B 4 estimates, their estimated standard
errors, and the estimated correlation matrix f{; an example is provided in exhibit 1. Of
course, suppressing these results may be useful, for instance, in simulation or bootstrap-
ping exercises. The do-file containing the Mata code for bvpmvp () is available with this
article’s supplementary materials.

7. A general form of the H matrix is complicated to express concisely. For example, for M = 3 and
K =2, the 9 x 15 H matrix, computed internally by bvpmvp(), is

s 0 0 0O 0 05 0 0 0 0 O 0 0 0 0]

0 05 O 0O 0 0 05 O 0 0 O 0 0 0 0

0 0O 05 0 0 O 0 0 0 0 05 O 0 0 0

0 0 0 05 0 O 0 0 0 0 O 05 O 0 0
H=|0 0 0 0o 0 O 0 05 0 0 O 0O 05 0 0
0 0 0 o 0 O 0 0 05 0 O 0 0 05 O

0 0 0 o 1 0 0 0 0 0 O 0 0 0 0

0 0 0 0O 0 O 0 0 0 1 0 0 0 0 0

L O 0 0 o 0 O 0 0 0 0 O 0 0 0 1]
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Exhibit 1: Sample output from bvpmvp() (N = 10000, M =4, K =5)

. mata

mata (type end to exit)
: yn="yl1 y2 y3 y4"

¢ xn="x1 x2 x3 x4"

: ic="if _n<=10000"

: bvi=bvpmvp(yn,xn,ic,1,.001,1)

K 3k ok ok ok ok ok ok 3k ok ok ok ok ok ok 3k ok ok k ok ok ok 3k Sk ok ok ok ok ok 3k ok ok k ok ok ok 3k ok ok 3k ok ok %k ok k k

* *
* Multivariate Probit: Results *
* *

ko ko ok ook ok sk sk ok ok sk stk ok ook sk sk sk ook sk stk ok ok sk ok ok
N. of Observations (from suest): 10000

Estimation Sample: if _n<=10000

Averaged Beta-Hat Point Estimates and Estimated Standard Errors

1 2 3 4 5
1 yi y2 y3 y4
2
3 x1 .328 -.449 .315 .457
4 (.045)  (.046)  (.045)  (.046)
5
6 x2 -.331 .562 .388 -.441
7 (.045)  (.046)  (.045)  (.046)
8
9 x3 .32 -.398 -.321 -.452
10 (.045) (.046) (.045) (.046)
11
12 x4 -.392 .396 -.35 -.35
13 (.045) (.046) (.045) (.045)
14
15 _cons .391 -.508 .321 -.452
16 (.046)  (.047)  (.046)  (.047)
17
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Estimated Correlation (Rho) Matrix and Estimated Standard Errors

1 2 3 4 5
1 yi y2 y3 y4
2
3 yi 1 .331 .507 .287
4 (.016) (.013) (.016)
5
6 y2 .331 1 .342 .203
7 (.016) (.016) (.017)
8
9 y3 .507 .342 1 .309
10 (.013) (.016) (.016)
11
12 4 .287 .203 .309 1
13 (.016) (.017) (.016)
14

Cut & Paste Matrix, Averaged Beta-Hat Point Estimates

(.328 , -.449 , .315 , .457) \
(-.331 , .562 , .388 , -.441) \
(.32 , -.398 , -.321 , -.452) \
(-.392 , .396 , -.35 , .45) \
(.391 , -.508 , .321 , -.452)

Cut & Paste Matrix, Estimated Correlation Matrix

(1, .331, .507 , .287) \
(.331 , 1, .342 , .203) \
(.507 , .342 , 1, .309) \
(.287 , .203 , .309 , 1)

: end

4 Simulation exercises

Here I present a simulation exercise to assess the relative performance of the pro-
posed approach and the approach based on mvprobit. Three sample sizes (N = 2000,
N = 10000, N = 50000) are considered. The data structure corresponding to (1)—(2)
has either K = 5 or K = 9 covariates x (four or eight independently distributed uniform
variates plus a constant) and M = 8 binary outcomes y;; (only four of which are used in
some specifications) corresponding to latent yfj having cross-outcome correlations p;x

variously in (0.2,1/1/10,0.5) for all j # k; specifically, we have the following:
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1

10705 1

0.5 10795 1 (symm.)
10-95 0.2 10705 1

0.5 1079% 0.5 10705 1
1095 0.2 10795 0.2 10705 1

0.5 1079° 05 1079° 0.5 10705 1
10795 02 10795 02 10705 0.2 10795 1]

For mvprobit, the draws() option was set both at 10 and 20. The simulations
are performed using Stata/SE 13.1 on an iMac 3.4GHz Intel Core i7 processor and
08 X v10.8.% The do-files containing the code used to generate the data and perform
the simulations are available on request.

5 Simulation results

Key results of the simulations are summarized in tables 1-3. Table 1 displays the
absolute and relative computation times for mvprobit and bvpmvp () estimation across
the various combinations of the N, M, K, and D parameters. Enormous differences in
computation time are seen between the two estimation methods across all the different
parameter combinations (for reference, it may be useful to recall that there are 86,400
seconds in one day). Tables 2 and 3 present a side-by-side comparison of the point
estimates of B and R obtained in one select specification (N = 10000, M =4, K = 5).
For both B and R, the differences between the mvprobit and bvpmvp () point estimates
and corresponding estimated standard errors are trivial.

8. The simulations set Stata’s matsize parameter at 600 for all specifications. In some preliminary
investigation, I observed that computation time for bvpmvp () increased significantly when matsize
was set much larger than necessary; this was not the case for mvprobit.
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Table 1. Estimation time comparisons (in seconds)

Relative
Parameters Computation time difference
N M | K | D | mvprobit | bvpmvp() (ratio)
5 10 29 1 29
4 20 53 53
e
2,000
5 10 1,219 5 244
8 20 2,041 408
9 10 1,036 3 130
20 2,044 256
5 10 142 9 71
4 20 263 132
al
10,000 10 4,628 331
5 ! 14
3 20 10,469 748
9 10 4,669 19 246
20 9,833 518
5 10 986 19 82
4 20 1,937 161
i e B
20,000 10 35’833 551
5 : 65
8 20 72,406 1114
9 10 36,647 86 426
20 73,204 851
Legend

N: Number of sample observations

M: Number of outcomes

K: Number of covariates (including constant term)

D: Number of draws for mvprobit

Note: Stata’s matsize parameter is set at 600 for all specifications.




J. Mullahy

Table 2. mvprobit and bvpmvp() comparison: point estimates, one example
(N = 10000, M =4, K = 5; estimated standard errors in parentheses)

mvprobit

Outcome | Covariate | (draws = 20) | bvpmvp()
- 0.3265 0.3279
(0.0448) (0.0446)
Y1 o —0.3301 —0.3314
(0.0447) (0.0447)
0.3184 0.3198

z3
(0.0447) (0.0449)
—0.3902 —0.3916

T4
(0.0448) (0.0447)
Constant 0.3901 0.3909
(0.0466) (0.0464)
—0.4487 —0.4487

Z1
(0.0456) (0.0455)
Y2 2 0.5624 0.5620
(0.0458) (0.0456)
23 —0.3998 —0.3977
(0.0457) (0.0457)
0.4000 0.3961

T4
(0.0456) (0.0457)
Constant —0.5086 —0.5079
(0.0474) (0.0474)
0.3102 0.3151

z1
(0.0445) (0.0446)
Y3 . 0.3846 0.3875
(0.0445) (0.0449)
. —0.3188 —0.3206
(0.0446) (0.0447)
—0.3462 —0.3496

T4
(0.0446) (0.0447)
Constant 0.3230 0.3210
(0.0463) (0.0463)
0.4567 0.4573

Z1
(0.0455) (0.0457)
Y4 . —0.4438 —0.4408
(0.0455) (0.0457)
—0.4489 —0.4516

x3
(0.0456) (0.0457)
0.4555 0.4499

T4
(0.0456) (0.0453)
Constant —0.4552 —0.4524
(0.0472) (0.0472)

45
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Table 3. mvprobit and bvpmvp() comparison: R point estimates, one example
(N = 10000, M =4, K = 5; estimated standard errors in parentheses)

mvprobit
R | (draws = 20) | bvpmvp()
o 0.3190 0.3308
2 0.0158) | (0.0159)
p 0.4942 0.5073
U 0.0134) | (0.0134)
0.2766 0.2872
P14
(0.0160) (0.0161)
0.3356 0.3424
P23
(0.0156) (0.0158)
0.2000 0.2034
P24
(0.0163) (0.0167)
0.3059 0.3086
P34
(0.0157) (0.0160)

We can see that using methods like bvpmvp () to fit MVP models merits consideration

when reduced computation time is important.”

6

MVOP models

Analogous conceptual considerations arise in the context of MVOP models in which the
observed ordered outcomes are yo; € {0,...,G;} for finite integers G; > 1. MVOP

9.

Note that these simulations paint a somewhat “worst-case” picture for mvprobit estimation. The
simulations use mvprobit “out of the box”, that is, without specifying any options that might en-
hance estimation speed (see the help file for mvprobit; also see Cappellari and Jenkins [2003, 2006]).
For instance, specifying a smaller number of draws (for example, draws(3) or draws(5)) would
clearly result in faster estimation times; however, any diminished performance of the mvprobit
estimator relative to the performance at a greater number of draws would be a potential considera-
tion. Alternatively, using good starting values for R via mvprobit’s atrho0O() option might also be
expected to result in faster estimation times. One such approach would involve two stages: 1) to fit
the full model using mvprobit with a small number of draws, for example, draws(1) or draws(2);
and 2) to use the estimate of R thus obtained to provide starting values for a second mvprobit
estimation with a larger number of draws (for example, draws(10) or draws(20)) being specified.
This approach—with draws(1) specified initially, followed by draws(10) —was examined in some
simulations. It was observed in this instance that the two-stage approach resulted in roughly a
10% reduction in overall estimation time, due mainly to a smaller number of iterations (three ver-
sus four) required for convergence in the second stage. This article also has not considered how
estimation using the cmp command (Roodman 2011) to fit the MVP model would compare with
the bvpmvp () approach. I would like to thank Stephen Jenkins and an anonymous referee for their
insights and suggestions on these matters.
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modeling involves estimation of and inference about the parameters B and R as well as
the vector of category cutpoints, C (for each outcome yo;, there are G; cutpoints that
delineate the G; + 1 categories). '’

An estimation strategy fully analogous to bvpmvp() is not available because the
bioprobit command (Sajaia 2008) does not permit postestimation prediction with
the score option, as required by suest. However, an alternative, fully consistent, and
computationally efficient approach is available, as follows. First, fit M univariate or-
dered probit models using Stata’s oprobit command, and store these estimates using
estimates store. This provides consistent estimates of the B and C parameters. Sec-
ond, fit a chain of bivariate binary probit models using biprobit—as with bvpmvp () —
and store these estimates using estimates store. This provides a consistent estimate
of R.'" Note that any thresholds used to map the ordered yo;; to their corresponding
coarsened binary outcomes should result in consistent estimates of R. biprobit uses
the rule that a nonbinary outcome is treated as zero for zero values and one otherwise;
this is a convenient mapping that minimizes programming burden. Third, combine all
the estimates stored in these two steps by using suest. The estimates from suest
can then be used for inference. The do-file containing the Mata code for the function
bvopmvop () that implements this approach is available with this article’s supplementary
materials.'? An example of bvopmvop() output is presented in exhibit 2.

Exhibit 2: Sample output from bvopmvop() (N = 10000, M =4, K =5)

. mata

mata (type end to exit)
: yn="ylo y2o0 y3o y4o"

¢ xn="x1 x2 x3 x4"
ic="if _n<=10000"
: bv2=bvopmvop(yn,xn,ic,1,.001,1)

3k 5k 3k >k 3k >k 3k >k 3k 3k 5k 3k >k 3k ok 3k >k 3k >k >k 5k >k 3k >k 3k >k 5k >k >k 5k >k 3k >k 3k >k >k >k >k >k >k %k >k 3k >k >k %k > >k >k %k *k %k *k k

* *
* Multivariate Ordered Probit: Results *
* *

ko sk ok sk ks sk ok sk ok sk sk sk sk sk sk sk ok ok sk sk sk ko sk sk sk stk sk sk ok sk ok ok o
N. of Observations (from suest): 10000

Estimation Sample: if _n<=10000

10. For the MVOP model, B will not contain a parameter for the constant term because this is absorbed
into the cutpoints C.

11. Note that this also provides consistent estimates of B, but these are unnecessary given those
obtained in the first step.

12. bvopmvop() accommodates ordered outcomes having different numbers of cutpoints, including
mixed ordered and binary outcomes. The single cutpoint estimated in oprobit for binary out-
comes is —1 times the corresponding constant term that would be estimated using probit.

13. The outcomes in this example are ordered versions yo; of the y; used in the earlier simulations in
which the outcome value 2 is assigned if 1 < y;.‘ < 2 and 3 is assigned if yj’-‘ > 2. Then, y2 combines
the top two categories, and y3 combines the top three categories (that is, y3 is the original binary
measure). Thus the numbers of categories are G1 = 4, G2 = 3, Gz = 2, and G4 = 4.
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Beta-Hat and Cutpoint Point Estimates and Estimated Standard Errors
(Note: SEs are from suest ests.)

1 2 3 4 5
1 ylo y20 y3o y4o
2
3 x1 .379 -.457 .316 .464
4 (.038) (.043) (.045)  (.043)
5
6 x2 -.325 .53 .388 -.44
7 (.038) (.044) (.045) (.043)
8
9 x3 .338 -.404 -.321 -.471
10 (.038)  (.043) (.045)  (.043)
11
12 x4 -.393 .397 -.348 .45
13 (.038)  (.043) (.045)  (.043)
14
15 cutl -.354 .485 -.319 .447
16 (.04) (.045) (.046) (.045)
17
18 cut?2 .356 1.379 - 1.305
19 (.04)  (.047) (.047)
20
21 cut3 1.079 -- - 2.18
22 (.041) (.054)
23

Estimated Correlation (Rho) Matrix and Estimated Standard Errors

1 2 3 4 5
1 ylo y2o0 y3o y4o
2
3 ylo 1 .331 .507 .287
4 (.016) (.013) (.016)
5
6 y20 .331 1 .342 .203
7 (.016) (.016) (.017)
8
9 y3o .507 .342 1 .309
10 (.013) (.016) (.016)
11
12 y4o .287 .203 .309 1
13 (.o16)  (.017)  (.016)
14
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Cut & Paste Matrix, Beta-Hat and Cutpoint Point Estimates

(.379 , -.457 , .316 , .464) \
(-.325 , .53, .388 , -.44) \
(.338 , -.404 , -.321 , -.471) \
(-.393 , .397 , -.348 , .45) \
(-.354 , .485 , -.319 , .447) \
(.356 , 1.379 , . , 1.305) \
(1.079 , ., . , 2.18)

Cut & Paste Matrix, Estimated Correlation Matrix

(1, .331, .507 , .287) \
(.331 , 1, .342 , .203) \
(.507 , .342 , 1, .309) \
(.287 , .203 , .309 , 1)

: end

7 Summary

In this article, I have presented a novel estimation strategy for consistent estimation
of and inference about the parameters of MVP and MVOP models. The straightfor-
ward implementation of these approaches using available Mata programs recommends
their consideration in applied work, particularly in situations involving large numbers
of outcomes (M) and large sample sizes (N) or in situations requiring repeated MVP
estimation (like bootstrapping exercises).

Note that the methods suggested here may prove useful in many but not all appli-
cations of MVP models. Ultimately, the methods proposed—as well as the mvprobit
method—permit estimation of the joint conditional probability model Pr(y = k|x) for
the M vectors of outcomes y, all possible 2" vectors k = (ky,), km € {0,1}, and
exogenous covariates x. As such, when these joint conditional probabilities are per se
the estimands of interest, when they are instrumentally of interest in the estimation of
other quantities (see Mullahy [2011] for discussion), or when reduced forms of struc-
tural models are of interest, the approach suggested here may prove useful. However,
in other MVN contexts with binary outcomes—for example, where endogenous vy, are
right-hand-side variables in the structural models for other latent yf—consistent esti-
mation of the structural parameters will typically demand attention to the full joint
probability structure, not just its bivariate marginals.'*

14. I thank an anonymous referee for emphasizing these points.
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Additional remarks on combining biprobit estimates

In general, the optimal approach to combining such multiple estimates in the overi-
dentified case is to use a minimum-distance estimator with an optimal weight matrix
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(Wooldridge 2010, sec. 14.5). In the present context, this would amount to comput-

ing a weighted average for each point estimate; that is, ,@jkw = Z%?_ WikwB ks
m#j
j=1,....,M,and k£ = 1,..., K. However, implementing the minimum-distance ap-

proach can be computationally challenging. For example, consider the simplest case,
M = 3. Even in this instance, the optimal (variance-minimizing) weights are com-
plicated functions of the estimates’ variances and covariances; suppressing the j, k
subscripts, for (p,q,r) € (1,2,3), p # g # r, these optimal weights are

wT'ﬂ
w, =
Wrd
where
_ 2
Wrn = OppOqq = Opq — OqqOpr — OppOrq — OprOpq — OpqOrq
and

_ 2 2 2
Wrd = OppOrr + OrrOqq T OppOaqq = Opr — Tpg — Org

+ 2(0prOpg + OpgOrg + OprOrq — OppOrg — TrrOpg — TgqOpr)

and where 046 are variances and covariances of the parameter estimates (the empirical
counterpart, w,, would use dee). The algebraic complexity of these weights increases
rapidly as M increases.

The additional computational complexity involved in implementing such a minimum-
distance approach is unlikely to be beneficial (in terms of precision) unless the optimal
Wjkm were to diverge dramatically from 1/(M — 1). The simulations here suggest that
this is unlikely to be the case. Generally, the optimal weights will diverge from the
equiweighted case of 1/(M — 1) to the extent that the variances and covariances of
and between the parameter point estimates differ substantively across the (M — 1)
estimates.'”

For illustration, arbitrarily selecting the (M — 1) point estimates corresponding to
the parameter 17 (outcome yi, covariate x1) for the N = 10000, M = 8, and K =5
specification, we find that the range of the 7 point estimates 6/\11 is [0.3266, 0.3288], the
range of the corresponding 7 estimated point-estimate variances is [0.001983,0.001995],
and the range of the 28 estimated point-estimate covariances is [0.001983,0.001993].
Therefore, it is unlikely that the optimal weights would diverge much from 1/(M — 1).

The ultimately important result is that at least insofar as the simulations here are
concerned, the differences between the mvprobit and bvpmvp() point estimates and
estimated standard errors are inconsequentially small (see tables 2 and 3).

15. Bill Greene suggested that a computationally straightforward middle-ground weighting strategy
would be, in essence, to ignore the cross-estimator covariances and compute the variance-matrix-
weighted quantities, as follows:

Bo= (S0 (m (@) S {w (B)) B =t

m#j mj




