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Abstract. Much literature misinterprets results of fitting multivariable models
for linear regression, logistic regression, and other generalized linear models, as
well as for survival, longitudinal, and hierarchical regressions. For the leading
case of multiple regression, regression coefficients can be accurately interpreted
via the added-variable plot. However, a common interpretation does not reflect
the way regression methods actually work. Additional support for the correct in-
terpretation comes from examining regression coefficients in multivariate normal
distributions and from the geometry of least squares. To properly implement mul-
tivariable models, one must be cautious when calculating predictions that average
over other variables, as in the Stata command margins.
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1 Introduction

Despite multiple regression’s long history and extensive literature, many articles and
books are misleading in reporting and interpreting results of fitting regression models.
The problems arise in reporting for ordinary least-squares regression, logistic regression,
and other generalized linear models, as well as for survival, longitudinal, and hierarchical
regressions. Like many other statistical techniques, regression is susceptible to garden-
variety forms of abuse, but its greater complexity leads to other less obvious misunder-
standings. In what follows, I focus on a major way in which reports and applications of
regression analyses often mislead: interpretation of regression coefficients. The correct
interpretation is evident in the added-variable plot and the geometry of least squares,
as well as from examining regression coefficients in multivariate normal distributions.
The common interpretation, regarding the other predictors as held constant, does not
accurately reflect how multiple regression works. The misunderstanding in interpreting
regression coefficients suggests caution in calculating predictions that average over other
variables and in other applications of the Stata command margins.

For perspective, the purposes of regression analyses include

• to get a summary;

• to exclude the effect of a variable that might confuse the issue;

• to measure the size of an effect through a regression coefficient;
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• to try to discover an empirical law; and

• to make predictions.

Mosteller and Tukey (1977) discuss these and other purposes.

2 Equations for multiple regression

To discuss multiple regression, we need a little notation. One common way to write the
relation between the response (or dependent variable) Y and the predictors X1, . . . , Xp

in multiple regression is
Y = β1X1 + · · ·+ βpXp + ε (1)

(usually X1 ≡ 1). This equation represents the underlying or population model; the
regression coefficients β1, . . . , βp are unknown constants to be estimated from the data,
and ε is chance variation (noise, disturbance, or error).

By definition, the regression of Y on a set of variables Z1, . . . , Zm (from which
predictors may be derived) is the conditional expectation E(Y |Z1 = z1, . . . , Zm = zm).
Here we allow the possibility that some of the predictors X1, . . . , Xp are functions of the
same underlying variable (as in a polynomial or a linear spline), and we assume that
any appropriate transformations of response and predictors have already been settled.
I deliberately avoid referring to predictors as “independent variables”, because they
are generally not independent in any usual sense. It is difficult to choose an accurate
term that has broad appeal. Some people interpret “predictor” as implying causation.
Mosteller and Tukey (1977) referred to the X variables as “carriers”, a term that seems
quite neutral.

In a multiple regression, the definition of each regression coefficient includes the
set of other predictors in the equation; that is, their names are part of the definition.
G. Udny Yule (1907) introduced a notation that makes the role of the other predictors
explicit. For example, we would denote the coefficient of X2 in (1) by βy2·13...p. The
first subscript denotes the response variable, the second subscript denotes the predictor
to which the coefficient is attached, and the subscripts after the · denote the other
predictors. In less abbreviated form, (1) is

Y = βy1·2...pX1 + βy2·13...pX2 + · · ·+ βyp·1...p−1Xp + ε (2)

Each integer 1 through p is an index in the list of predictors. Sometimes, it may be
helpful to use the names of the predictors, as in βgp100m,weight·1,displacement (for example,
when comparing models that use the same number of predictors, selected from among
X1, . . . , Xp).

Fitting the multiple regression model in (1) to a set of data yields estimates b1, . . . , bp
of the regression coefficients β1, . . . , βp. Under the usual assumptions, each b is an
unbiased estimate of the corresponding β. We denote an observed value of Y by y, the
corresponding given values of X1, . . . , Xp by x1, . . . , xp, and the corresponding residual
by e. Thus the fitted equation corresponding to (1) is
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y = b1x1 + · · ·+ bpxp + e

and the less abbreviated form corresponding to (2) is

y = by1·2...px1 + by2·13...px2 + · · ·+ byp·12...p−1xp + y·1...p

(now the notation for the residual, y·1...p, shows explicitly the predictors whose contri-
butions have been removed).

Many presentations tend to use the same letters in models that involve different sets
of other predictors, which makes it easy to overlook the role of the other predictors in
the definition of the coefficient of each predictor. For example, if 2x + 5t is a good fit
to the data on y, then −3x + 5(t + x) is also a good fit to those data (it gives exactly
the same predicted values). In the first fit, 2 is the coefficient of x when t is the other
predictor, whereas in the second fit, −3 is the coefficient of x when t + x is the other
predictor. By manipulating the choice of the other predictor, I can make the coefficient
of x have any value. Mosteller and Tukey (1977, chap. 13) provide instructive examples.

3 Interpretation of regression coefficients

As the notation suggests, βy2·13...p (for example) summarizes the relation between Y
and X2 when X1, X3, . . . , Xp are the other predictors. More specifically, the interpre-
tation of βy2·13...p (or β2 for short) is that it “tells us how Y responds to change in
X2 after adjusting for simultaneous linear change in the other predictors in the data at
hand” (Tukey 1970, chap. 23). This way of stating the effect of X2 on Y is a direct
consequence of the presence of the other predictors. Because the model describes the
regression of Y on X1, X2, X3, . . . , Xp jointly, the coefficient of each predictor accounts
for the contributions of the other predictors; that is, it reflects the adjustment for those
predictors. The interpretation includes “in the data at hand” because the nature of the
adjustment depends on the relations among the predictors in the particular dataset.

The interpretation of a regression coefficient has a straightforward mathematical
derivation. Yule (1907) gives an elegant short proof. For the estimated coefficient
βy2·13...p, the main idea is illustrated by the partial regression plot (also called the
“added-variable plot”—for example, in the Stata postestimation command avplot after
regress), in which the vertical coordinate is the residual from the regression of Y on
X1, X3, . . . , Xp,

y·13...p = y − (by1·3...px1 + by3·14...px3 + · · ·+ byp·13...p−1xp)

and the horizontal coordinate is the residual from the regression ofX2 onX1, X3, . . . , Xp,

x2·13...p = x2 − (b21·3...px1 + b23·14...px3 + · · ·+ b2p·13...p−1xp)

In the regression line (through the origin) for y·13...p on x2·13...p, the slope is by2·13...p
(see Cook and Weisberg [1982], section 2.3.2). That is, in the multiple regression of
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Y on X1, X2, X3, . . . , Xp, the coefficient of X2 summarizes the change in Y per unit
increase in X2 after adjusting for simultaneous linear change in X1, X3, . . . , Xp (in the
data at hand). Dempster (1969, 160–161) makes a similar point. The interpretation,
which applies in the same way to the βs, is also clear from the geometry of least squares,
as discussed in section 6.

I avoid the common usage “controlling for” in describing analyses of observational
data because it suggests that the variables being “controlled for” are under some sort of
“control” (for example, in the way they would be in a randomized controlled trial or in
a designed experiment). Referring to a variable as “controlled” implies that it is being
held constant. “Adjusting for” is more accurate and straightforward.

For a concrete example of interpreting regression coefficients, I use the data on the
foreign cars in the 1978 auto dataset (accessed in Stata), with gallons per 100 miles as
the response variable and weight and displacement as the predictors.

. sysuse auto, clear
(1978 Automobile Data)

. generate gp100m = 100/mpg

. label var gp100m "Gallons per 100 miles"

For the 22 foreign cars, the command graph matrix produces a scatterplot matrix
of the 3 variables (figure 1). Gallons per 100 miles has a fairly strong linear relation
with weight and displacement, and the relation between weight and displacement

is even stronger.
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. graph matrix gp100m weight displacement if foreign==1

Gallons
per 100
miles

Weight
(lbs.)

Displacement
(cu.
in.)

2

4
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2 4 6 8

2,000

3,000

4,000

2,000 3,000 4,000

50

100

150

50 100 150

Figure 1. Scatterplot matrix of gp100m, weight, and displacement for the foreign cars
in the 1978 automobile data

The command regress produces the following results:

. regress gp100m weight displacement if foreign == 1

Source SS df MS Number of obs = 22
F( 2, 19) = 23.86

Model 19.6704568 2 9.83522842 Prob > F = 0.0000
Residual 7.83165119 19 .412192168 R-squared = 0.7152

Adj R-squared = 0.6853
Total 27.502108 21 1.30962419 Root MSE = .64202

gp100m Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight .0003964 .0010435 0.38 0.708 -.0017877 .0025805
displacement .032282 .0181606 1.78 0.091 -.0057286 .0702925

_cons -.195738 .810741 -0.24 0.812 -1.892638 1.501162

The coefficients, t statistics, and p-values pertain to the contribution of their re-
spective predictors after adjusting for the contributions of the other predictors. Simple
regression with weight as the predictor yields the expected result from the pattern in
figure 1.
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. regress gp100m weight if foreign == 1

Source SS df MS Number of obs = 22
F( 1, 20) = 40.22

Model 18.3680109 1 18.3680109 Prob > F = 0.0000
Residual 9.13409716 20 .456704858 R-squared = 0.6679

Adj R-squared = 0.6513
Total 27.502108 21 1.30962419 Root MSE = .6758

gp100m Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight .0021599 .0003406 6.34 0.000 .0014494 .0028703
_cons -.6892425 .8017998 -0.86 0.400 -2.361768 .9832824

The added-variable plot in figure 2 (produced by the user-written command favplot,
which can be downloaded from Statistical Software Components using the command ssc

install favplots and, among other features, allows the user to control the number
of decimal places displayed for b and t) shows the relation of gp100m to displacement

after regression on weight has been removed from each. For the line through the origin,
the slope (0.0323) and the t statistic (1.78) are the same as those for displacement

in the multiple regression with weight and displacement as the predictors. Thus
0.0323 gallons per 100 miles per cubic inch summarizes the relation between gp100m

and displacement after adjusting for simultaneous linear change in weight. The effect
of the adjustment is noticeable. Compare the previous slope with that in the simple
regression with displacement as the predictor.

. favplot displacement, bformat(%7.4f) name(hoaglin_2, replace)
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Figure 2. Added-variable plot for displacement in the regression of gp100m on weight
and displacement
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. regress gp100m displacement if foreign == 1

Source SS df MS Number of obs = 22
F( 1, 20) = 49.70

Model 19.6109864 1 19.6109864 Prob > F = 0.0000
Residual 7.89112159 20 .39455608 R-squared = 0.7131

Adj R-squared = 0.6987
Total 27.502108 21 1.30962419 Root MSE = .62814

gp100m Coef. Std. Err. t P>|t| [95% Conf. Interval]

displacement .0388401 .0055092 7.05 0.000 .0273482 .050332
_cons -.00723 .6272315 -0.01 0.991 -1.315612 1.301152

For completeness, figure 3 shows the added-variable plot for weight. The adjustment
for simultaneous linear change in displacement leaves little relation between gp100m

and weight.

. favplot weight, bformat(%7.6f) name(hoaglin_3, replace)
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Figure 3. Added-variable plot for weight in the regression of gp100m on weight and
displacement

4 A common misinterpretation

In the equation

y = b1x1 + · · ·+ bpxp + e

an estimated regression coefficient (for example, b2) looks like an ordinary slope, but the
reality is more complicated. A common approach interprets b2 as the average change
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in Y for a 1-unit increase in X2 when the other Xs are held constant. A more careful
variation recognizes that b2 is a slope of Y against X2, so it summarizes change in Y per
unit change in X2. (Of course, when X2 is an indicator or “dummy” variable, only an
increase from 0 to 1 is possible.) Either way, the interpretation is incorrect. It does not
reflect the way multiple regression works and should be abandoned. Usually the data
were not obtained with the other Xs held constant. And even when some or all other
Xs can be held constant, the proper interpretation of b2 is the one given in section 3.

“Held constant” suggests that one can hold all other Xs fixed for any desired value
of X2. What one can actually do depends on the data. When the other Xs are held
constant, even at their means, some changes in X2 could stray into a region of “predictor
space” that is not represented in the data. And when one of the predictors is dichoto-
mous, its mean does not occur in the data. Technically, a point involving such a mean
is not in “predictor space” (though it may be surrounded by points that are) because
no data can be collected there. On the other hand, various designed experiments collect
data to study the effect of some variables when other variables are held constant. Box
(1966) discusses examples of passive observation and active (designed) intervention and
concludes with the often-quoted remark, “To find out what happens to a system when
you interfere with it you have to interfere with it (not just passively observe it)”.

The “held constant” interpretation is often justified with a mathematical derivation
that uses partial derivatives. If the model is

Y = β1X1 + · · ·+ βpXp + ε

then taking the partial derivative of Y with respect to X2 yields ∂Y/∂X2 = β2.

This “proof”, however, has two transparent flaws. First, the actual data are nowhere
in sight. The partial derivative of Y with respect to X2 is purely formal. Second, the
“proof” is faux mathematics: its assumptions include a key part of the conclusion
(holding the other Xs constant). In calculus, the partial derivative is defined by a
limiting process that explicitly holds all the other Xs constant and specifies the constant
values of those Xs. In general, however, if the data were consulted, they would often
say that the other Xs cannot be held constant. For these reasons, taking the partial
derivative of the regression function

Y = β1X1 + · · ·+ βpXp (+ε)

with respect to X2 cannot yield an interpretation of β2 (or b2, both of which already
reflect the presence of the other predictors). It indicates how the predicted value of
Y would change if one could increase X2 without changing the values of the other
predictors. Some such changes in X2 should generally be possible, because I have
assumed that the regression equation is a good fit to the given data, but the justifiable
changes are constrained by what the data can support.

We can better understand the situation by recognizing that two distinct purposes
of regression are involved. Taking the partial derivative is one aspect of examining the
model’s use for prediction. Interpreting a coefficient is an aspect of summarizing the
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effect of that predictor. The partial derivative operates on the model as given, without
information on the extent to which the coefficients reflect the contributions of the other
predictors.

Prediction that extrapolates substantially beyond the region of predictor space cov-
ered by the data is seldom appropriate. And, though less noticeable, interpolation at
points that do not occur in the population may not be meaningful. In a particular ap-
plication, the analyst must check that the data underlying the model support situations
in which the variable changes and other variables do not (at least approximately) and
check that the variables can be handled in the same way as in applying the results of the
analysis. In the example, it is clear from figure 1 that if displacement is held constant,
the data support changes in weight only over a narrow interval, and conversely.

As a simple example in which “held constant” makes no sense, suppose the data
come from the model

Y = β0 + β1x+ β2x
2 + ε

Here the predictors are 1, x, and x2, and the subscripts on the βs correspond to the
powers of x. It is not possible to change x while holding x2 constant (except for the
trivial change from x to −x). This example may seem artificial, but analysts often
mechanically add one or more squared terms to models to summarize nonlinearity in
the relation between Y and the predictors. I generally advise against this approach
because one should not assume that the nonlinearity can be well approximated with a
quadratic or higher-order polynomial. It is better to examine the nonlinearity with the
aim of uncovering an appropriate functional form. It may be tempting to consider x2

and x3 as terms in a Taylor series for a functional relation between Y and x, but the
appropriate function may not satisfy the conditions for such an approximation.

In another simple and fairly common example, one predictor uses the product of two
other predictors to express their interaction:

Y = β0 + β1x1 + β2x2 + β3x1x2 + ε

It may be possible to hold x1x2 constant while changing x1, but then x2 must also
change. And changing either x1 or x2 while holding the other constant will change
x1x2.

Both of these examples involve functional dependence of a predictor on one or more
other predictors. In the generic regression model, if each of X3, . . . , Xp were a function
of X2, then ∂Y/∂X2 would have the following form:

∂Y

∂X2
= β2 + β3

∂X3

∂X2
+ · · ·+ βp

∂Xp

∂X2
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(as before, X1 ≡ 1, so ∂X1/∂X2 ≡ 0). Within the limitations of a formal derivative,
this gives the correct result for the two examples:

∂Y

∂x
= β1 + 2β2x

∂Y

∂x1
= β1 + β3x2

Usually, however, predictors are associated in the data, rather than functionally related.
The data supply the information on these associations, and they are accounted for by
the interpretation discussed in section 3.

The preceding development applies also when the outcome and the linear predictors
are on different scales. In a generalized linear model, for example, the link function, g,
relates μi = E(Yi) to the value of the linear predictor, η : ηi = g(μi). If h is the inverse
of g, so that μi = h(ηi), instead of ∂Y/∂X2 we have

∂μ

∂X2
=

dh

dη
× ∂η

∂X2

Thus, for logistic regression, g(μ) = loge{μ/(1− μ)}, h(η) = 1/(1 + e−η), and dh/dη =
e−η/(1 + e−η)2 = μ(1− μ). The coefficients and their interpretation are in the scale of
the linear predictor.

5 Regression coefficients in multivariate normal distribu-
tions

The interpretation discussed in section 3 also applies to regressions in multivariate
normal distributions. This interpretation emphasizes that the coefficients in the model

Y = β1X1 + β2X2 + · · ·+ βpXp + ε

reflect adjustment for simultaneous linear change in the other predictors. A multivariate
normal distribution differs from the usual multiple regression, where the predictors are
assumed to be known constants, but the result is the same.

The usual parameters of a multivariate normal distribution are its vector of means
(μ) and its covariance matrix (Σ). Here it suffices to take each mean equal to 0 and
each variance equal to 1 and to focus on the standardized trivariate normal distribution.
Thus the three remaining parameters are the off-diagonal elements of Σ, which are the
pairwise correlations, ρ12, ρ13, and ρ23. We denote the coordinate random variables by
X1, X2, and X3.

We regard X3 as the response variable and X1 and X2 as the predictor variables.
The regression of X3 on X1 and X2 is linear in X1 and X2 and can be written as

E (X3|X1, X2) = β31·2X1 + β32·1X2
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where βij·k is the partial regression coefficient for Xi on Xj when Xk is the other
predictor. From the joint density of X1, X2, and X3 and the joint density of X1 and
X2, it is straightforward to derive the conditional density of X3 given X1 and X2 and
to verify that

β31·2 =
ρ13 − ρ12ρ23

1− ρ212
and β32·1 =

ρ23 − ρ12ρ13
1− ρ212

We arrive at the same expressions if we first adjust for the other predictor. The con-
ditional distribution of X1 given X2 has mean ρ12X2 and variance 1 − ρ212, and the
conditional distribution of X3 given X2 has mean ρ23X2 and variance 1 − ρ223. Then
the regression of X3 − ρ23X2 on X1 − ρ12X2 has slope

cov(X1 − ρ12X2, X3 − ρ23X2)

var(X1 − ρ12X2)
=

ρ13 − ρ12ρ23
1− ρ212

= β31·2

Similarly, the regression of X3 − ρ13X1 on X2 − ρ12X1 has slope β32·1. Thus the inter-
pretation is that in the regression of X3 on X1 and X2, the coefficient β31·2 summarizes
the change in X3 per unit change in X1 after adjusting for simultaneous linear change
in X2 (that is, after adjusting for the regressions of X3 and X1 on X2).

6 Geometry of least squares

We can also verify the interpretation in section 3 by examining the geometry of least-
squares fitting.

Some books illustrate the step from simple regression to multiple regression with the
three-predictor model,

Yi = β1 + β2X2i + β3X3i + εi

which represents the data in three dimensions, withX2, X3, and Y as the axes, and show
a plane whose slopes (β2 and β3) and intercept (β1) are estimated by minimizing the
sum of squared vertical deviations. Here holding X3 constant (for example) corresponds
to restricting the predicted values of Y to lie on the line formed by the intersection of
the fitted plane and the plane perpendicular to the X3 axis at X3 = x3. When that
line is plotted in the X2 − Y plane, its slope is b2 and its intercept is b1 + b3x3. If X2

and X3 are correlated, the slope of the simple linear regression of Y on X2 will differ
from b2. The difference between the two slopes is a consequence of their definitions: b2
reflects the adjustment for X3, and the slope in the simple regression does not. Thus it
is important to look also at the plot of X3 versus X2. If the data indicate that a change
in X2 should be accompanied by a corresponding change in X3, then the predicted value
b1 + b2x2 + b3x3 will change accordingly and will no longer lie on the line in the X2 −Y
plane corresponding to the initial value of X3.

The geometry of obtaining the estimated coefficients (b1, b2, and b3) by using least
squares involves a different representation applicable to any linear regression. Thus we
return to the multiple regression with p predictors,

Y = β1X1 + · · ·+ βpXp + ε
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in which we have n observations. In the customary matrix notation, y = (y1, . . . , yn)
T

is the vector of data on Y , and the columns of the n× p matrix X contain the data on
the predictors (considered to be known), as follows:

y = Xβ + ε

If y contains the true values of Y (that is, ε = 0), then it lies in the subspace spanned
by the columns of X (assumed to have dimension p) and is the linear combination of
those columns with coefficients β1, . . . βp. The customary way to recover one of those
coefficients (say, βp) is to change the basis for the subspace, subtracting from Xp the
component in the subspace spanned by X1, . . . , Xp−1 and thus replacing Xp as a basis
vector by its component orthogonal to that subspace (suitably scaled). Then βp is
the projection of y on that new basis vector. In the language of multiple regression,
βp is the slope from the regression (through the origin) of y on the residuals from the
regression of Xp on X1, . . . , Xp−1 (that is, after adjusting for simultaneous linear change
in those other predictors). We get the same βp by replacing y with the residuals from
the regression of y on X1, . . . , Xp−1, so it is appropriate to state the interpretation of
βp in terms of adjusting both y and Xp.

In practice, ε �= 0, and y no longer lies in the subspace spanned by the columns of
X. The least-squares estimates, b, of the regression coefficients, β, minimize

n∑
i=1

(yi − ŷi)
2

which is the Euclidean distance from y to that subspace, yielding

ŷ = Xb

To see that the interpretation of βp applies also to bp, we can obtain ŷ by applying the
“hat matrix”, H = X(XTX)−1XT , to y: ŷ = Hy. We can then obtain bp from ŷ in
the same way as we obtained βp above.

7 Implications for applications of the Stata command
margins

The workings of multiple regression have important implications for use of the Stata
command margins, which calculates statistics “from predictions of a previously fit model
at fixed values of some covariates and averaging or otherwise integrating over the re-
maining covariates” (StataCorp 2015, 1354). The analyst must demonstrate that the
resulting combinations of values of the covariates are meaningful and supported by the
data.

To illustrate, we use example 1 in the PDF documentation for margins, which in-
volves the regression of y on sex and group in an artificial 3,000-observation dataset.
The cross-classification of the two predictors shows different distributions of males and
females over the three groups.
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. webuse margex, clear
(Artificial data for margins)

. tabulate group sex, column

Key

frequency
column percentage

sex
group male female Total

1 215 984 1,199
14.35 65.51 39.97

2 666 452 1,118
44.46 30.09 37.27

3 617 66 683
41.19 4.39 22.77

Total 1,498 1,502 3,000
100.00 100.00 100.00

The regress command yields estimates of the coefficients for female, 2.group,
3.group, and the constant.

. regress y i.sex i.group

Source SS df MS Number of obs = 3000
F( 3, 2996) = 152.06

Model 183866.077 3 61288.6923 Prob > F = 0.0000
Residual 1207566.93 2996 403.059723 R-squared = 0.1321

Adj R-squared = 0.1313
Total 1391433.01 2999 463.965657 Root MSE = 20.076

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

sex
female 18.32202 .8930951 20.52 0.000 16.57088 20.07316

group
2 8.037615 .913769 8.80 0.000 6.245937 9.829293
3 18.63922 1.159503 16.08 0.000 16.36572 20.91272

_cons 53.32146 .9345465 57.06 0.000 51.48904 55.15388
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With the default response option, margins calculates average adjusted predictions
(AAPs), treating the sample as if every person were male (respectively, female) as follows:

. margins sex

Predictive margins Number of obs = 3000
Model VCE : OLS

Expression : Linear prediction, predict()

Delta-method
Margin Std. Err. t P>|t| [95% Conf. Interval]

sex
male 60.56034 .5781782 104.74 0.000 59.42668 61.69401

female 78.88236 .5772578 136.65 0.000 77.7505 80.01422

Because the default is asobserved, the averaging in this linear regression corresponds
to setting 2.group and 3.group at their means (0.3727 and 0.2277). The AAPs, 60.56
and 78.88, are meaningful only if it is reasonable to consider an artificial person who is
37.27% in group 2 and 22.77% in group 3 (and, hence, 39.97% in group 1) when data on
y are available at only six points in “predictor space”, corresponding to {male, female}×
{group 1, group 2, group 3}. Then it must be appropriate to use the same distribution
over the three groups for both males and females. Because the data are artificial, I only
observe that the combined distribution (39.97%, 37.27%, 22.77%) differs noticeably from
the distribution for males and the distribution for females shown in the cross-tabulation.
The difference between the AAPs, 78.88−60.56 = 18.32, equals the regression coefficient
for female. Because the regression is linear in group, any distribution over the three
groups will, if used for both males and females, yield this same difference.

For an example not based on linear regression, I present one from Williams (2012).
Using nhanes2f.dta (Second National Health and Nutrition Examination Survey),
available from the StataCorp website, Williams (2012) fits a logistic regression model,

. webuse nhanes2f, clear

. logit diabetes black female age

(output omitted )

and uses margins to obtain adjusted predictions at six values of age with black and
female at their means, as follows:

. margins, at(age=(20 30 40 50 60 70)) atmeans

(output omitted )

Williams (2012, 313) says, “According to these results, an average 70-year-old (who
is again 0.105 black and 0.525 female) is almost 18 times as likely to have diabetes
as an average 20-year-old (11.04% compared with 0.63%).” In practice, an analyst
should explain why it is satisfactory to compare an artificial 70-year-old and an artificial
20-year-old who are both 0.105 black and 0.525 female when data on diabetes are
available at only four points in the “factor space”: (black, female) = (0, 0), (0, 1),
(1, 0), and (1, 1). In nhanes2f.dta, the 20-year-olds (n = 244) are 0.123 black and
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0.578 female, and the 70-year-olds (n = 234) are 0.064 black and 0.500 female. The
overall fractions may be a satisfactory combination for comparisons, but an analyst
should first look at 20-year-olds’ and 70-year-olds’ predicted probabilities of diabetes at
each combination of black and female that actually appears in the data. The at()

option makes it easy to summarize the predicted probabilities of diabetes at a level of
detail that is more relevant to individuals. (As Williams [2012] indicates, “These data
were collected in the 1980s. Rates of diabetes in the United States are much higher
now.”) Thus 70-year-old nonblacks (of both sexes) were nearly 18 times as likely as 20-
year-olds to have diabetes (9.60% compared with 0.54% for males and 11.02% compared
with 0.63% for females), but the corresponding ratios for blacks were about 16. The
ratio for black versus nonblack (of both sexes) was about 2 for 20-year-olds and about
1.85 for 70-year-olds. And females (of both ages and both race categories) were roughly
15% more likely than males to have diabetes. Of course, before embracing predictions
from a model, one should check how well it fits. In these data, no 20-year-olds had
diabetes, and the highest of the four rates for 70-year-olds was 11.11%.

. margins, at(age=(20 70) black=(0 1) female=(0 1))

Adjusted predictions Number of obs = 10335
Model VCE : OIM

Expression : Pr(diabetes), predict()

1._at : black = 0
female = 0
age = 20

2._at : black = 0
female = 0
age = 70

3._at : black = 0
female = 1
age = 20

4._at : black = 0
female = 1
age = 70

5._at : black = 1
female = 0
age = 20

6._at : black = 1
female = 0
age = 70

7._at : black = 1
female = 1
age = 20

8._at : black = 1
female = 1
age = 70
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Delta-method
Margin Std. Err. z P>|z| [95% Conf. Interval]

_at
1 .005399 .0009014 5.99 0.000 .0036324 .0071656
2 .0959674 .0071057 13.51 0.000 .0820404 .1098943
3 .0062957 .0010318 6.10 0.000 .0042735 .0083179
4 .1102392 .0073229 15.05 0.000 .0958865 .1245919
5 .0110063 .0020999 5.24 0.000 .0068904 .0151221
6 .1787334 .019682 9.08 0.000 .1401573 .2173095
7 .0128223 .0024099 5.32 0.000 .0080989 .0175456
8 .2025559 .0209683 9.66 0.000 .1614589 .243653

Setting other variables at their means or averaging over them is also part of cal-
culating marginal effects, elasticity, and semielasticities—the response options dydx(),
eyex(), dyex(), and eydx(). The logic underlying these options, however, is the same
as in the “held constant” interpretation of regression coefficients. Except for interde-
pendencies that are made explicit by using factor-variable notation in the estimation
command, the calculations for dydx() and the related options lead to interpretations
that do not reflect the way multiple regression and other multipredictor analyses actu-
ally work.

Although the Stata command margins (supported by marginsplot) offers great
power and flexibility for studying predictions from many models, analysts should not
mechanically average over other variables. It is essential to determine the region of “pre-
dictor space” covered by the data and examine the associations among the predictors.

8 Many books give the incorrect interpretation

Many books mislead readers by using the “held constant” interpretation. The lowest-
numbered page where I have seen this problem is page 2 of Vittinghoff et al. (2012), in
an introductory example: “In a sense, multipredictor regression analysis allows us to
examine the effect of treatment aggressiveness while holding the other factors constant
[italics original].”

Out of curiosity, I looked at books that I own by Stata Press that contain ma-
terial related to multiple regression; these books were by Acock (2010), Kohler and
Kreuter (2012), Long and Freese (2006), Mitchell (2012), and Rabe-Hesketh and Skro-
ndal (2012). All of them use the incorrect “held constant” interpretation.

Fortunately, some books use the correct general interpretation. These include the
books by De Veaux, Velleman, and Bock (2012), Hastie, Tibshirani, and Friedman
(2009), and Weisberg (2014).
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9 Conclusion

The interpretation of a coefficient as summarizing the relation between a change in Y and
the increase in that predictor after adjusting for simultaneous linear change in the other
predictors in the data at hand is an important component of a proper understanding of
multiple regression and other multipredictor methods. When one makes explicit the role
of the set of other predictors in the definition of each coefficient, this mathematically
accurate interpretation is a straightforward consequence of the presence of those other
predictors in the model. Applied to the usual tables of estimated coefficients, it helps to
clarify the meaning of the t statistics and p-values. It also suggests caution in making
predictions and comparisons at combinations of predictor values that do not occur
in the data. Appreciation of the proper interpretation should help to avoid common
misunderstandings in various applications. However, a challenge is to overcome the
barrier created by many publications’ use of the “held constant” interpretation, which
has no place in a proper understanding of multiple regression.
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