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Abstract. In this article, we describe a new Stata command, bicop, for fitting
a model consisting of a pair of ordinal regressions with a flexible residual distri-
bution, with each marginal distribution specified as a two-part normal mixture,
and stochastic dependence governed by a choice of copula functions. The bicop

command generalizes the existing biprobit and bioprobit commands, which as-
sume a bivariate normal residual distribution. We present and explain the bicop

estimation command and the available postestimation commands using data on
financial well-being from the UK Understanding Society Panel Survey.
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1 Introduction

We are often interested in modeling the joint distribution of two observed measures
conditional on a set of observed covariates. For example, income and wealth are two
strongly related aspects of economic welfare that should, arguably, be studied jointly;
drinking and smoking, particularly when combined, have important health implications
and should thus be studied jointly; and joint analysis of different domains of satisfaction
has been used in “happiness” research. Methodological issues also often take this form
and ask how two alternative measures of the same theoretical concept may be related.

Frequently, the indicators concerned are coarse binary or ordinal measures rather
than direct observations on the relevant theoretical concepts, and this naturally suggests
using a pair of correlated ordinal probit or logit regressions. Stata already provides the

c© 2016 StataCorp LP st0429

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X1601600114&domain=pdf&date_stamp=2016-03-01
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command biprobit for the case of a pair of binary indicators and the user-written com-
mand bioprobit (Sajaia 2008) for the more general ordinal case. However, biprobit
and bioprobit are based on the assumption of joint normality, which may be hard to
defend. In many applications, the influence of observed covariates has a pronounced
nonnormal distributional shape, and there is no compelling reason to assume that the
factors we cannot observe conform to normality when the factors we can observe do
not. Moreover, the linear form of stochastic dependence implied by bivariate normality
may be unduly restrictive: there is no reason why the nature and degree of dependence
should not vary across different parts of the population.

Models of this type are not distribution free, and misspecification of the joint residual
distribution may cause significant bias in the estimated coefficients of the covariates
and may give a distorted picture of stochastic dependence. We developed the bicop

command as a method of estimating a more general specification of the bivariate ordinal
model, using mixtures to allow for nonnormality and copula representations to allow for
complex forms of dependence.

The article is organized as follows: in section 2, we give an overview of the generalized
bivariate ordinal regression model and the approach we use to allow for nonnormality in
the residual distribution. In section 3, we discuss two hypothesis tests that are relevant
to bicop. In section 4, we explain the predictors that are provided postestimation. In
section 5, we describe the bicop syntax and options, including the syntax for predict.
In section 6, we conclude with an empirical example using the bicop command.

2 The generalized bivariate ordinal regression model

The generalized bivariate ordinal regression model is

Y ∗
i1 = Xi1β1 + Ui (1)

Y ∗
i2 = Xi2β2 + Vi (2)

where Y ∗
i1 and Y ∗

i2 are latent variables, Xi1 and Xi2 are row vectors of covariates, and
β1 and β2 are conformable column vectors of coefficients. Ui and Vi are unobserved
residuals that may be stochastically dependent and nonnormal. The covariate vectors
Xi1 and Xi2 may contain the same or different variables.

The observable counterparts of Y ∗
i1 and Y ∗

i2 are generated by the threshold-crossing
conditions

Yij = r iff Γrj ≤ Y ∗
ij < Γr+1j r = 1, . . . , Rj and j = 1, 2

where Rj is the number of categories of Yij and Γrj are threshold parameters, with
Γ1j = −∞ and ΓRjj = +∞. (Note that in practice, the Yij do not have to be scored as
1, 2, 3, . . . ; bicop will work, whatever numerical values are used to index outcomes—
only their ordering matters.)
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The likelihood function requires evaluation of the probability that (Y ∗
i1, Y

∗
i2) falls in a

rectangle corresponding to the observed values of (Yi1, Yi2). For given parameter values,
that probability can be computed using the joint distribution function F (Ui, Vi), which
allows the likelihood to be maximized numerically. However, if the assumed form for
F (Ui, Vi) is incorrect, the probabilities in the likelihood function will be misspecified,
and the (pseudo) maximum likelihood estimator will be inconsistent. This means that
the standard approach using a bivariate normal form for F (., .) is potentially vulnerable
to bias. On the other hand, a full nonparametric specification for F (., .) would be
complicated and unlikely to provide reliable estimates except in large samples, so an
intermediate degree of flexibility is desirable.

The model specification is based on a copula representation of the joint distribution
of the residuals U and V . A bivariate copula is any function c(u, v) : [0, 1]2 → [0, 1] that
is (weakly) increasing and satisfies c(u, 0) = c(0, v) = 0, c(u, 1) = u, and c(1, v) = v for
all u, v ∈ [0, 1]. By adding a parameter θ governing the stochastic dependence of U and
V , we can write the joint residual distribution function as

F (U, V ) = c{Fu(U), Fv(V ); θ}

where Fu(U) ≡ F (U,+∞) and Fv(V ) ≡ F (+∞, V ) are the marginal distribution func-
tions of U and V . The bicop command generalizes the standard bivariate normal model
in the following ways:

• Marginals: bicop allows the marginal distributions Fu(.) and Fv(.) to be specified
as mixtures of two normal components. For Fu(.),

Fu(u) = πuΦ

(
u− μu1

σu1

)
+ (1− πu)Φ

(
u− μu2

σu2

)
(3)

where πu is the mixing probability, and (μu1, μu2) and (σu1, σu2) are location and
dispersion parameters constrained to satisfy the mean and variance normalizations
πuμu1 + (1− πu)μu2 ≡ 0 and πu

(
σ2
u1 + μ2

u1

)
+ (1− πu)

(
σ2
u2 + μ2

u2

)
= 1. A similar

specification can be used for Fv(.). These normal mixtures can capture various
distributional shapes, especially those involving skewness or bimodality.

The bicop command performs the optimization with respect to ln {πu/(1− πu)}
rather than πu, but both values are reported in the output. In the Stata output
log, the mixing parameters πu, (1−πu), μu1, μu2, σ

2
u1, and σ2

u2 are labeled pi u 1,
pi u 2, mean u 1, mean u 2, var u 1, and var u 2 for (1) and, analogously, pi v 1,
pi v 2, mean v 1, mean v 2, var v 1, and var v 2 for (2).1

• Dependence: The bicop command offers the following six forms as options:

– Independent: c(u, v) = uv.

1. The auxiliary parameters that are optimized during estimation are also written to the output log,
with labels /pu1, /mu2, /su2, /pv1, /mv2, and /sv2. These parameters are transformations of the
mixing parameters and can be ignored when interpreting the output of the model.
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– Gaussian: c(u, v) = Φ
{
Φ−1(u),Φ−1(v); θ

}
, where Φ(., .; θ) is the distribution

function of the bivariate normal with correlation coefficient −1 ≤ θ ≤ 1, and
Φ−1(.) is the inverse of the univariate N(0, 1) distribution function.

– Clayton: c(u, v) =
{
max

(
u−θ + v−θ − 1, 0

)}−1/θ
for 0 < θ ≤ ∞ and

c(u, v) = uv for θ = 0.

– Frank: −(1/θ) ln

{
1 +

(e−θu−1)(e−θv−1)
e−θ−1

}
for θ �= 0 and c(u, v) = uv for

θ = 0.

– Gumbel: exp
[
−{(− lnu)θ + (− ln v)θ

}1/θ]
for θ ≥ 1.

– Joe: 1− {(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ
}1/θ

for θ ≥ 1.

These copulas can represent various dependence structures. The Gaussian and the
Frank copulas are similar in that both allow for positive and negative dependence, and
dependence is symmetric in both tails. However, compared with the Gaussian copula,
the Frank copula exhibits weaker dependence in the tails, and dependence is strongest in
the middle of the distribution. In contrast, the Clayton, Gumbel, and Joe copulas do not
allow for negative dependence, and dependence in the tails is asymmetric. The Clayton
copula exhibits strong left-tail dependence and relatively weak right-tail dependence.
Thus, if two variables are strongly correlated at low values but not so correlated at high
values, then the Clayton copula is a good choice. The Gumbel and Joe copulas display
the opposite pattern with weak left-tail dependence and strong right-tail dependence.
The right-tail dependence is stronger in the Joe copula than in the Gumbel, and thus
the Joe copula is closer to the opposite of the Clayton copula.

bicop maximizes the likelihood with respect to an unrestricted constant
δ ∈ [−∞,+∞], with θ related to δ in the following ways:

θ =

⎧⎪⎪⎨⎪⎪⎩
tanh(δ) Gaussian
eδ Clayton
δ Frank
eδ + 1 Gumbel, Joe

The output from bicop reports both δ (labeled as /depend) and θ.

Both mixture and copula models can be difficult to fit in some circumstances (see
McLachlan and Peel [2000] on the former and Trivedi and Zimmer [2005] on the latter).
Two distinct problems await the unwary. Nonconvergence of the likelihood optimizer of-
ten occurs in copula models, typically for some choices of copula function but not others.
The problem occurs when the chosen copula function does a poor job of representing
the pattern of dependence between the two residuals, and it can often be resolved by
switching to a different copula function; we see an example of this in section 6, where
convergence cannot be achieved for the Gumbel and Joe copulas. Poor starting values
can also cause nonconvergence; restarting the optimizer from a different point in the
parameter space will work in some cases.
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Another possible reason for nonconvergence is local nonidentification of the mixture
parameters. For the normal mixture (3), the parameter πu is not identified at interior
points in the parameter space where μu1 = μu2 and σu1 = σu2. Boundary problems also
arise because μu1, σu1 are not identified when πu = 0, nor are μu2, σu2 identified when
πu = 1. All three regions correspond to a pure N(0, 1) distribution.2 Consequently,
if either of the marginal distributions is approximately normal, identification will be
weak and nonconvergence a likely result. These cases usually become evident if the log
and trace options are used to display current parameter values during optimization.
When this occurs, the relevant marginal can be respecified as an unmixed normal in a
subsequent run.

Related to this last type of nonconvergence problem is the problem of testing for the
appropriate number of mixture components. Standard likelihood-ratio tests of H0 : U ∼
N(0, 1) or V ∼ N(0, 1) against a two-component normal mixture do not work correctly
in this nonregular context (Titterington, Smith, and Makov 1985, 154), and we are not
aware of any alternative formal procedure that is entirely satisfactory.

The problem of multiple optima is less obvious than nonconvergence—and, there-
fore, more dangerous. The existence of multiple optima poses problems for likelihood
maximization in many mixture models and should be assumed to be a potential pit-
fall. The bicop command offers the standard Stata optimization options for starting
values (see [R] maximize), and the application in section 6 provides an example of a
recommended starting-values strategy.

3 Hypothesis tests

Two hypothesis tests may be of special interest in particular applications of bicop. One
is the hypothesis test of conditional independence: Y1 � Y2|X1, X2, which holds if and
only if c(u, v) = uv for all u, v ∈ [0, 1]. This independence condition is equivalent to
θ = 0 for the Gaussian, Clayton, and Frank copulas and θ = 1 for the Gumbel and Joe
copulas. For the Gaussian and Frank copulas, this involves a regular likelihood-ratio
or Wald test, which can be done in the usual way. For these copula functions, bicop
produces a Wald test automatically. For the Clayton, Gumbel, and Joe functions, the
null hypothesis is on the boundary of the parameter space, and the likelihood-ratio
and Wald tests are not valid (see Chernoff [1954] and Andrews [2001]). Because these
copulas are a natural choice in applications only where we are confident of positive
dependence, bicop does not produce an automatic test in these cases. Instead, if the
test is required, the user could fit the model unrestrictedly using the Clayton, Gumbel,
or Joe copula, repeat estimation while imposing independence by specifying the copula
c = uv, and then construct the usual statistic of minus twice the log-likelihood ratio. The
complication here is that the test statistic has a nonstandard limiting distribution, that
is, χ2 [a 50:50 mixture of a degenerate probability mass at zero and a χ2(1) distribution].
This amounts to performing a standard χ2(1) likelihood-ratio test and then halving the
p-value (see Chernoff [1954]).

2. The variance of the distribution is normalized to 1 for identification purposes in an ordered probit
model.



164 Generalized bivariate ordinal regression

The second special hypothesis test of interest in some applications of bicop is the
hypothesis of equal coefficients, H0 : β1 = β2, which will normally arise when X1 and
X2 contain the same variables. This null hypothesis arises naturally when Y1 and Y2 are
interpreted as alternative measures of the same concept—for example, they might be
responses to the same survey questions, repeated with different response scales. A test
can be performed easily using the standard Stata command test, which implements
the Wald test, but for convenience, bicop does the test automatically. If X1 and X2

are different, the test is made on the coefficients of any variables that are common to
both.

4 Prediction

The bicop command allows the usual Stata prediction options postestimation, through
the evaluation of the linear indices Xi1β1 and Xi2β2, the associated prediction standard
errors, and the probabilities of specific outcomes for (Yi1, Yi2) conditional on the co-
variates (Xi1, Xi2). However, bicop additionally has options for conditional prediction.
These can be used, for instance, to convert (or “map” or “cross-walk”) a measurement
scale represented by the dependent variable Yi1 into another scale represented by Yi2.
Following the use of bicop, the predict command can convert a measurement scale by
constructing estimates of the distribution of one dependent variable conditional on the
observed outcome for the other. For example,

Pr(Yi2 = s|Yi1 = r,Xi1, Xi2) =
Pr(Yi1 = r, Yi2 = s|Xi1, Xi2)∑R2

s=1 Pr(Yi1 = r, Yi2 = s|Xi1, Xi2)

where r ∈ [1, R1] and s ∈ [1, R2] are specified levels for the two outcomes.

5 Command syntax

5.1 bicop

Syntax

There are two forms of the syntax:

X1 and X2 contain the same covariates

bicop depvar1 depvar2
[
indepvars

] [
if
] [

in
] [

weight
] [

, syntax1 options
]

X1 and X2 contain different covariates

bicop (equation1) (equation2)
[
if
] [

in
] [

weight
] [

, syntax2 options
]
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syntax1 options and syntax2 options are as listed in the Options section below.

equation1 and equation2 are specified as

(
[
eqname:

]
depvar

[
=
] [

indepvars
] [

, offset(varname)
]
)

pweights, fweights, and iweights are allowed; see [U] 11.1.6 weight.

Description

bicop is a user-written command that fits a generalized bivariate ordinal regression
model using maximum likelihood estimation. It is implemented as an lf1 ml evaluator.
The model involves a pair of latent regression equations, each with a standard threshold-
crossing condition to generate ordinal observed dependent variables. The bivariate
residual distribution is specified to have marginals, each with the form of a two-part
normal mixture, and a choice of copula functions to represent the pattern of dependence
between the two residuals.

Options

Options common to both syntax 1 and syntax 2 are the following:

mixture(mixturetype) specifies the marginal distribution of each residual. There are five
choices for mixturetype: none specifies that each marginal distribution be N(0, 1);
mix1 specifies that the residual from equation 1 has a two-part normal mixture
distribution but that the residual from equation 2 be N(0, 1); mix2 specifies N(0, 1)
for equation 1 and a normal mixture for equation 2; both allows each residual to
have a different normal mixture distribution; and equal specifies that both residuals
have the same normal mixture distribution. The default is mixture(none).

copula(copulatype) specifies the copula function to be used to control the pattern of
stochastic dependence of the two residuals. There are six choices for copulatype:
indep, which specifies the special form c(u, v) = uv, gaussian, clayton, frank,
gumbel, and joe. The default is copula(gaussian). Note that if both mixture()

and copula() are omitted, the bicop command produces the same results as the ex-
isting bioprobit and (if both dependent variables are binary) biprobit commands.

constraints(numlist) applies specified linear constraints; see [R] constraint.

collinear retains collinear variables. Usually, there is no reason to leave collinear
variables in place, and doing so would cause the estimation to fail because of matrix
singularity. However, in some constrained cases, the model may be fully identified
despite the collinearity. The collinear option then allows estimation to occur,
leaving the equations with collinear variables intact. This option is seldom used.
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vce(vcetype) specifies how to estimate the variance–covariance matrix corresponding to
the parameter estimates. The supported options are oim, opg, robust, and cluster.
The current version of the command does not allow bootstrap or jackknife esti-
mators. See [R] vce option.

level(#) sets the significance level to be used for confidence intervals; see [R] level.

from(init specs), where init specs is either matname, the name of a matrix containing
the starting values, or matname, copy | skip. The copy suboption specifies that the
initialization vector be copied into the initial-value vector by position rather than
by name, and the skip suboption specifies that any irrelevant parameters found in
the specified initialization vector be ignored. Poor values in from() may lead to
convergence problems.

search(spec) specifies whether ml’s ([R] ml) initial search algorithm is used. spec may
be on or off.

repeat(#) specifies the number of random attempts to be made to find a better initial-
value vector. This option should be used in conjunction with search().

maximize options specifies the maximization options; maximize options are difficult,
technique(algorithm spec), iterate(#),

[
no
]
log, trace, gradient, showstep,

hessian, showtolerance, tolerance(#), ltolerance(#), gtolerance(#),
nrtolerance(#), and nonrtolerance; see [R] maximize.

Additional options for syntax 1 only are as follows:

offset1(varname) specifies an offset variable for the first equation.

offset2(varname) specifies an offset variable for the second equation.

5.2 predict

Syntax

predict varname
[
if
] [

in
] [

, predicttype outcome(r,s)
]

Description

Following bicop, the predict command can be used to construct several alternative
predictions. The predictions include the linear indices Xi1β1 and Xi2β2 and corre-
sponding standard errors; probabilities of the form Pr(Yij = r|Xij) or Pr(Yi1 = r, Yi2 =
s|Xi1, Xi2); and conditional probabilities of the form Pr(Yij = r|Yik = s,Xi1, Xi2).

Options

predicttype specifies the type of prediction required. If predicttype is xb1 or xb2, the
variable varname is constructed as Xi1β1 or Xi2β2, respectively. Set predicttype to
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std1 or std2 to construct varname as the corresponding prediction standard error.
If predicttype is pr, the prediction is calculated as a probability Pr(Yi1 = r|Xij),
Pr(Yi2 = r|Xij), or Pr(Yi1 = r, Yi2 = s|Xi1, Xi2) with r and s specified by the
outcome() option. The predicttypes pcond1 and pcond2 specify the conditional
probabilities Pr(Yi1 = r|Yi2 = s,Xi1, Xi2) or Pr(Yi2 = s|Yi1 = r,Xi1, Xi2), respec-
tively, with r and s supplied by outcome().

outcome(r,s) specifies the outcome levels to be used in predicting probabilities for Yi1

and Yi2. The possibilities for predicttype and outcome(r,s) are as follows:

Option Predicted probability

pr outcome(r, . ) Pr(Yi1 = r|Xi1)

pr outcome( . ,s) Pr(Yi2 = s|Xi2)

pr outcome(r,s) Pr(Yi1 = r, Yi2 = s|Xi1, Xi2)

pcond1 outcome(r,s) Pr(Yi1 = r|Yi2 = s,Xi1, Xi2)

pcond2 outcome(r,s) Pr(Yi2 = s|Yi1 = r,Xi1, Xi2)

6 An illustrative application: Financial well-being

We now show how to use the bicop command to model bivariate ordinal data. Our
example uses data from Understanding Society: the UK Household Longitudinal Survey
(UKHLS). See Knies (2015) for a detailed description of the survey. The main UKHLS

sample began in 2009 with approximately 30,000 households. Interviewing proceeds
continuously through the year with households interviewed annually, but each wave
takes two years to complete and thus overlaps with the preceding and succeeding waves.
We use a simple dataset comprising a cross-section of 5,482 individual respondents
drawn from the calendar years 2011–2012. The dataset is supplied to users with the
bicop code.

We analyze the responses to the following two questions about financial well-being
(FWB), and we construct the variables Y1 and Y2 as the corresponding five-level and
three-level ordinal indicators, both recoded to give scales increasing in current or ex-
pected FWB (see Pudney [2011] for discussion and analysis of this FWB measure).

• “How well would you say you yourself are managing financially these days? Would
you say you are . . . ” [1. Living comfortably 2. Doing alright 3. Just about getting
by 4. Finding it quite difficult 5. or finding it very difficult?].

• “Looking ahead, how do you think you will be financially a year from now, will
you be . . . ” [1. Better off 2. Worse off than you are now 3. or about the same?].
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Three binary explanatory covariates distinguish people who are female, homeowners,
and unemployed or long-term sick and disabled.3

The following code fits all six copula models with the mixture(none) option. The
Clayton copula clearly provides the best likelihood fit. Note that the Gumbel estimate
is a boundary solution with θ ≈ 1; thus it is also identical to the Joe estimate and the
result produced by the copula(indep) option (neither of which are reproduced here).
The superior fit of the Clayton model and failure of the Gumbel and Joe models to
detect any dependence suggest a pattern of strong dependence in the left tail of the
residual distribution but not in the right tail.

. use ukhlsfwb

. local maxll=minfloat()

. foreach cop in gaussian frank clayton gumbel joe indep {
2. local xvars female homeowner unempsick
3. bicop finnow finfut `xvars´, copula(`cop´)
4. estimates store `cop´
5. if e(ll)>`maxll´&e(converged) {
6. local maxll=e(ll)
7. local bestcop="`cop´"
8. matrix bestb=e(b)
9. }
10. }

3. A more substantial application with 10 explanatory variables can be found in an earlier version of
this paper (Hernández-Alava and Pudney 2015). We cannot make that dataset publicly available
because of respondent confidentiality, but the full UKHLS data files are obtainable on application
to the UK Data Archive (Study Number 6614) at
http://discover.ukdataservice.ac.uk/catalogue/?sn=6614&type=Data%20catalogue.
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LogL for independent ordered probit model -13062.773

initial: log likelihood = -16992.008
rescale: log likelihood = -15050.038
rescale eq: log likelihood = -13062.146
Iteration 0: log likelihood = -13062.146
Iteration 1: log likelihood = -13062.145
Iteration 2: log likelihood = -13062.145

Generalized bivariate ordinal regression model (copula: gaussian, mixture: none)

Number of obs = 5,482
Wald chi2(6) = 907.33

Log likelihood = -13062.145 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

finnow
female -.1549272 .0296466 -5.23 0.000 -.2130335 -.096821

homeowner .5237826 .0303863 17.24 0.000 .4642266 .5833386
unempsick -.7196592 .0399321 -18.02 0.000 -.7979247 -.6413936

finfut
female -.046568 .0313308 -1.49 0.137 -.1079753 .0148393

homeowner -.2102546 .0320044 -6.57 0.000 -.2729822 -.147527
unempsick -.1461849 .0419871 -3.48 0.000 -.2284782 -.0638916

/cuteq1_1 -1.592359 .0394148 -40.40 0.000 -1.669611 -1.515108
/cuteq1_2 -.9077473 .0343043 -26.46 0.000 -.9749824 -.8405122
/cuteq1_3 .0811928 .0326669 2.49 0.013 .0171667 .1452188
/cuteq1_4 1.056313 .0348781 30.29 0.000 .9879537 1.124673
/cuteq2_1 -1.054656 .0360324 -29.27 0.000 -1.125278 -.9840339
/cuteq2_2 .475085 .0343894 13.81 0.000 .407683 .5424871

/depend .0179149 .015992 1.12 0.263 -.0134287 .0492586

theta .017913 .0159868

Wald test of equality of coefficients chi2(df = 3)= 521.974 [p-value=0.000]
Wald test of independence chi2(df = 1)= 1.255 [p-value=0.263]
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LogL for independent ordered probit model -13062.773

initial: log likelihood = -13132.429
rescale: log likelihood = -13132.429
rescale eq: log likelihood = -13062.443
Iteration 0: log likelihood = -13062.443
Iteration 1: log likelihood = -13062.442

Generalized bivariate ordinal regression model (copula: frank, mixture: none)

Number of obs = 5,482
Wald chi2(6) = 907.06

Log likelihood = -13062.442 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

finnow
female -.1547791 .0296449 -5.22 0.000 -.2128821 -.0966761

homeowner .5239715 .0303861 17.24 0.000 .4644159 .5835271
unempsick -.7196971 .039929 -18.02 0.000 -.7979565 -.6414376

finfut
female -.0465239 .0313291 -1.49 0.138 -.1079278 .0148801

homeowner -.2104716 .0320053 -6.58 0.000 -.2732008 -.1477423
unempsick -.1466051 .0419866 -3.49 0.000 -.2288973 -.0643129

/cuteq1_1 -1.592102 .039411 -40.40 0.000 -1.669346 -1.514858
/cuteq1_2 -.9075391 .0343019 -26.46 0.000 -.9747696 -.8403086
/cuteq1_3 .0814055 .0326654 2.49 0.013 .0173825 .1454285
/cuteq1_4 1.056547 .0348752 30.30 0.000 .9881931 1.124901
/cuteq2_1 -1.05421 .0360321 -29.26 0.000 -1.124831 -.9835879
/cuteq2_2 .4754599 .0343918 13.82 0.000 .4080533 .5428665

/depend .0770508 .0947965 0.81 0.416 -.1087471 .2628486

theta .0770508 .0947965

Wald test of equality of coefficients chi2(df = 3)= 519.878 [p-value=0.000]
Wald test of independence chi2(df = 1)= 0.661 [p-value=0.416]
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LogL for independent ordered probit model -13062.773

initial: log likelihood = -17203.534
rescale: log likelihood = -15145.713
rescale eq: log likelihood = -13101.382
Iteration 0: log likelihood = -13101.382
Iteration 1: log likelihood = -13051.968
Iteration 2: log likelihood = -13051.923
Iteration 3: log likelihood = -13051.923

Generalized bivariate ordinal regression model (copula: clayton, mixture: none)

Number of obs = 5,482
Wald chi2(6) = 906.32

Log likelihood = -13051.923 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

finnow
female -.1589312 .0296393 -5.36 0.000 -.2170231 -.1008392

homeowner .5218558 .0303621 17.19 0.000 .4623471 .5813644
unempsick -.7157391 .0399348 -17.92 0.000 -.7940098 -.6374684

finfut
female -.0499395 .0313101 -1.59 0.111 -.1113061 .0114272

homeowner -.2087876 .0319862 -6.53 0.000 -.2714794 -.1460957
unempsick -.1427097 .0419863 -3.40 0.001 -.2250013 -.0604181

/cuteq1_1 -1.595204 .0393811 -40.51 0.000 -1.672389 -1.518018
/cuteq1_2 -.9106284 .0342863 -26.56 0.000 -.9778283 -.8434286
/cuteq1_3 .0782122 .0326526 2.40 0.017 .0142143 .1422101
/cuteq1_4 1.053243 .0348613 30.21 0.000 .9849157 1.12157
/cuteq2_1 -1.054752 .0360137 -29.29 0.000 -1.125338 -.9841665
/cuteq2_2 .4757612 .0343553 13.85 0.000 .408426 .5430964

/depend -2.53765 .228445 -11.11 0.000 -2.985394 -2.089906

theta .0790519 .018059

Wald test of equality of coefficients chi2(df = 3)= 537.459 [p-value=0.000]
Wald test of independence chi2(df = 1)= 19.162 [p-value=0.000]
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LogL for independent ordered probit model -13062.773

initial: log likelihood = -19774.602
rescale: log likelihood = -15862.755
rescale eq: log likelihood = -13330.654
Iteration 0: log likelihood = -13330.654
Iteration 1: log likelihood = -13067.223
Iteration 2: log likelihood = -13062.777
Iteration 3: log likelihood = -13062.773
Iteration 4: log likelihood = -13062.773

Generalized bivariate ordinal regression model (copula: gumbel, mixture: none)

Number of obs = 5,482
Wald chi2(6) = 905.06

Log likelihood = -13062.773 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

finnow
female -.1548403 .0296463 -5.22 0.000 -.2129459 -.0967347

homeowner .5238116 .0303864 17.24 0.000 .4642554 .5833677
unempsick -.7195785 .0399312 -18.02 0.000 -.7978422 -.6413147

finfut
female -.0465534 .0313303 -1.49 0.137 -.1079598 .0148529

homeowner -.2102062 .0320046 -6.57 0.000 -.272934 -.1474784
unempsick -.1461061 .0419857 -3.48 0.001 -.2283965 -.0638157

/cuteq1_1 -1.592221 .0394137 -40.40 0.000 -1.669471 -1.514972
/cuteq1_2 -.9077398 .034304 -26.46 0.000 -.9749744 -.8405052
/cuteq1_3 .0812235 .0326666 2.49 0.013 .0171981 .1452488
/cuteq1_4 1.056424 .0348779 30.29 0.000 .9880641 1.124783
/cuteq2_1 -1.054634 .0360286 -29.27 0.000 -1.125249 -.9840194
/cuteq2_2 .4750151 .03439 13.81 0.000 .4076119 .5424184

/depend -38.4 . . . . .

theta 1 .

Wald test of equality of coefficients chi2(df = 3)= 514.359 [p-value=0.000]
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LogL for independent ordered probit model -13062.773

initial: log likelihood = -16915.294
rescale: log likelihood = -15450.545
rescale eq: log likelihood = -13207.919
Iteration 0: log likelihood = -13207.919
Iteration 1: log likelihood = -13066.981
Iteration 2: log likelihood = -13062.777
Iteration 3: log likelihood = -13062.773
Iteration 4: log likelihood = -13062.773

Generalized bivariate ordinal regression model (copula: joe, mixture: none)

Number of obs = 5,482
Wald chi2(6) = 905.06

Log likelihood = -13062.773 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

finnow
female -.1548403 .0296463 -5.22 0.000 -.2129459 -.0967347

homeowner .5238116 .0303864 17.24 0.000 .4642554 .5833677
unempsick -.7195785 .0399312 -18.02 0.000 -.7978422 -.6413147

finfut
female -.0465534 .0313303 -1.49 0.137 -.1079598 .0148529

homeowner -.2102062 .0320046 -6.57 0.000 -.272934 -.1474784
unempsick -.1461061 .0419857 -3.48 0.001 -.2283965 -.0638157

/cuteq1_1 -1.592221 .0394137 -40.40 0.000 -1.669471 -1.514972
/cuteq1_2 -.9077398 .034304 -26.46 0.000 -.9749744 -.8405052
/cuteq1_3 .0812235 .0326666 2.49 0.013 .0171981 .1452488
/cuteq1_4 1.056424 .0348779 30.29 0.000 .9880641 1.124783
/cuteq2_1 -1.054634 .0360286 -29.27 0.000 -1.125249 -.9840194
/cuteq2_2 .4750151 .03439 13.81 0.000 .4076119 .5424184

/depend -38.4 . . . . .

theta 1 .

Wald test of equality of coefficients chi2(df = 3)= 514.359 [p-value=0.000]
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LogL for independent ordered probit model -13062.773

initial: log likelihood = -13062.773
rescale: log likelihood = -13062.773
rescale eq: log likelihood = -13062.773
Iteration 0: log likelihood = -13062.773
Iteration 1: log likelihood = -13062.773

Generalized bivariate ordinal regression model (copula: indep, mixture: none)

Number of obs = 5,482
Wald chi2(6) = 905.06

Log likelihood = -13062.773 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

finnow
female -.1548403 .0296463 -5.22 0.000 -.2129459 -.0967347

homeowner .5238116 .0303864 17.24 0.000 .4642554 .5833677
unempsick -.7195785 .0399312 -18.02 0.000 -.7978422 -.6413147

finfut
female -.0465534 .0313303 -1.49 0.137 -.1079598 .0148529

homeowner -.2102062 .0320046 -6.57 0.000 -.272934 -.1474784
unempsick -.1461061 .0419857 -3.48 0.001 -.2283965 -.0638157

/cuteq1_1 -1.592221 .0394137 -40.40 0.000 -1.669471 -1.514972
/cuteq1_2 -.9077398 .034304 -26.46 0.000 -.9749744 -.8405052
/cuteq1_3 .0812235 .0326666 2.49 0.013 .0171981 .1452488
/cuteq1_4 1.056424 .0348779 30.29 0.000 .9880641 1.124783
/cuteq2_1 -1.054634 .0360286 -29.27 0.000 -1.125249 -.9840194
/cuteq2_2 .4750151 .03439 13.81 0.000 .4076119 .5424184

Wald test of equality of coefficients chi2(df = 3)= 514.359 [p-value=0.000]

. estimates stats _all

Akaike´s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

gaussian 5,482 . -13062.15 13 26150.29 26236.21
frank 5,482 . -13062.44 13 26150.88 26236.8

clayton 5,482 . -13051.92 13 26129.85 26215.77
gumbel 5,482 . -13062.77 12 26149.55 26228.86

joe 5,482 . -13062.77 12 26149.55 26228.86
indep 5,482 . -13062.77 12 26149.55 26228.86

Note: N=Obs used in calculating BIC; see [R] BIC note.

Now using the preferred Clayton copula, we allow for the same nonnormal distribu-
tion in both residuals, using the mixture(equal) option, and we check for local optima
by running the optimizer from 10 randomly perturbed starting points. We generate
these random points over a region with ln θ ∈ [−3, 1]; ln {πu/(1− πu)} ∈ [−2, 2];μu2 ∈
[−1, 1];σ2

u2 ∈ [0, 2].
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. quietly bicop finnow finfut `xvars´, copula(`bestcop´) mixture(equal)
> iterate(25)

. local k=e(k)-3 // position of /depend in parameter vector

. local k1=`k´+1 // position of /pu1

. local k2=`k´+2 // position of /mu2

. local k3=`k´+3 // position of /su2

. local nstarts=10 // no. of random starts

. local nits=7 // no. iterations from each start

. set seed 22246

. matrix bequal=e(b)

. matrix maxpar=bequal

. local maxll=e(ll)

. matrix ttt=bequal

. forvalues r=1/`nstarts´ {
2. quietly {
3. matrix ttt[1,`k´]=4*runiform()-3 // start value for /depend
4. matrix ttt[1,`k1´]=4*(runiform()-0.5) // start value for /pu1
5. matrix ttt[1,`k2´]=2*(runiform()-0.5) // start value for /mu2
6. matrix ttt[1,`k3´]=2*runiform() // start value for /su2
7. capture bicop finnow finfut `xvars´, copula(`bestcop´) mixture(equal)

> from(ttt) log iterate(`nits´) search(off)
8. local retcode=_rc
9. if e(ll)>`maxll´&`retcode´==0 {
10. matrix maxpar=e(b)
11. local maxll=e(ll)
12. }
13. noisily display "Replication... " `r´ ": logL = " e(ll) " best so far =

> " `maxll´
14. }
15. }

Replication... 1: logL = -13047.235 best so far = -13047.235
Replication... 2: logL = -769989.06 best so far = -13047.235
Replication... 3: logL = -13047.243 best so far = -13047.235
Replication... 4: logL = -13054.104 best so far = -13047.235
Replication... 5: logL = -13047.781 best so far = -13047.235
Replication... 6: logL = -13047.235 best so far = -13047.235
Replication... 7: logL = -13048.043 best so far = -13047.235
Replication... 8: logL = -13048.43 best so far = -13047.235
Replication... 9: logL = -769989.06 best so far = -13047.235
Replication... 10: logL = -13047.484 best so far = -13047.235
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. bicop finnow finfut `xvars´, copula(`bestcop´) mixture(equal) from(maxpar)
> iterate(50)
LogL for independent ordered probit model -13062.773

initial: log likelihood = -13047.235
rescale: log likelihood = -13047.235
rescale eq: log likelihood = -13047.235
Iteration 0: log likelihood = -13047.235
Iteration 1: log likelihood = -13047.235

Generalized bivariate ordinal regression model (copula: clayton, mixture: equal)

Number of obs = 5,482
Wald chi2(6) = 881.17

Log likelihood = -13047.235 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

finnow
female -.1684891 .0294299 -5.73 0.000 -.2261707 -.1108075

homeowner .5239865 .0302579 17.32 0.000 .4646821 .5832909
unempsick -.7059392 .0403595 -17.49 0.000 -.7850423 -.6268362

finfut
female -.0594949 .0304459 -1.95 0.051 -.1191677 .0001779

homeowner -.2108235 .031232 -6.75 0.000 -.2720372 -.1496098
unempsick -.1182963 .0416947 -2.84 0.005 -.2000165 -.0365761

/cuteq1_1 -1.645347 .0442619 -37.17 0.000 -1.732098 -1.558595
/cuteq1_2 -.9100796 .0364174 -24.99 0.000 -.9814565 -.8387027
/cuteq1_3 .1139415 .0346303 3.29 0.001 .0460674 .1818155
/cuteq1_4 1.038169 .0373606 27.79 0.000 .964944 1.111395
/cuteq2_1 -1.056057 .0376342 -28.06 0.000 -1.129819 -.9822956
/cuteq2_2 .4788605 .036865 12.99 0.000 .4066064 .5511145

/depend -2.508975 .2246021 -11.17 0.000 -2.949187 -2.068763
/pu1 1.71723 .7078914 2.43 0.015 .3297886 3.104672
/mu2 .4726607 .1257883 3.76 0.000 .2261201 .7192013
/su2 .5318347 .1646931 3.23 0.001 .2090421 .8546273

theta .0813516 .0182717
pi_u_1 .8477717 .0913568
pi_u_2 .1522283 .0913568

mean_u_1 -.0848723 .059337
mean_u_2 .4726607 .1257883
var_u_1 1.081455 .0422284
var_u_2 .2828481 .175179

Wald test of equality of coefficients chi2(df = 3)= 559.003 [p-value=0.000]
Wald test of independence chi2(df = 1)= 19.823 [p-value=0.000]

. matrix bequal=e(b)

. estimates store clayton_equ

. estimates stats clayton clayton_equ

Akaike´s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

clayton 5,482 . -13051.92 13 26129.85 26215.77
clayton_equ 5,482 . -13047.23 16 26126.47 26232.22

Note: N=Obs used in calculating BIC; see [R] BIC note.
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The estimated residual distribution is a mixture of a dominant component
(pi u 1=0.85) centered close to zero (mean u 1=-0.08), with a secondary
(pi u 2=0.15), less dispersed (var u 2=0.28) component centered above zero
(mean u 2=0.47).

However, the evidence for nonnormality in the marginal residual distributions is
not strong. The Akaike information criterion (AIC) favors the model with equal mix-
ture marginals over the model with normal marginals, while the Bayesian information
criterion (BIC), which penalizes model complexity more heavily, gives the opposite re-
sult. The following code shows a procedure for plotting the fitted mixture density in
comparison with the standard N(0, 1) density. To do this, we recover the transformed
parameters composing θ and all the mixing parameters from the matrix returned in
e(extpar). The resulting plot is shown in figure 1, which reveals a negatively skewed
mixture distribution.

. matrix mixparams=e(extpar)

. matrix list mixparams

mixparams[1,7]
theta pi_u_1 pi_u_2 mean_u_1 mean_u_2 var_u_1

r1 .08135157 .84777173 .15222827 -.08487228 .4726607 1.0814547

var_u_2
r1 .28284813

. matrix pu1=mixparams[1,"pi_u_1"]

. scalar pu1 = pu1[1,1]

. matrix pu2=mixparams[1,"pi_u_2"]

. scalar pu2 = pu2[1,1]

. matrix mu1=mixparams[1,"mean_u_1"]

. scalar mu1 = mu1[1,1]

. matrix mu2=mixparams[1,"mean_u_2"]

. scalar mu2 = mu2[1,1]

. matrix su1=mixparams[1,"var_u_1"]

. scalar su1 = sqrt(su1[1,1])

. matrix su2=mixparams[1,"var_u_2"]

. scalar su2 = sqrt(su2[1,1])

. twoway (function pu1*normalden(x,mu1,su1)+pu2*normalden(x,mu2,su2),
> range(-3 3) lpattern(solid) lcolor(black)) (function normalden(x),
> range(-3 3) lpattern(longdash) lcolor(black)),
> graphregion(fcolor(white) ilcolor(white) icolor(white) lcolor(white)
> ifcolor(white)) legend(col(2) label(1 "Mixture") label(2 "N(0,1)"))
> xtitle(" ") xscale(titlegap(2)) xlabel(-3(1)3)
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Figure 1. Estimated normal mixture density for the Clayton model residuals

We now allow for different distributional forms in the two residuals by using the
option mixture(both) and again using multiple starting values. Here convergence is
not achieved by using the default initial values but by restarting the optimization from
random points, although the estimated mixture is poorly determined. A likelihood-ratio
test against the equal-marginals specification gives a marginal result (Pr = 0.0871), and
there is conflict between the AIC and the BIC, with the AIC favoring these estimates and
the BIC favoring the equal-mixtures model.

. local k4=`k´+4 // position of /pv1

. local k5=`k´+5 // position of /mv2

. local k6=`k´+6 // position of /sv2

. matrix a=bequal[1,`k1´..`k3´] // initial values for mixing parameters for V

. matrix colnames a= pv1:_cons mv2:_cons sv2:_cons

. matrix b0=bequal,a

. quietly bicop finnow finfut `xvars´, copula(`bestcop´) mixture(both)
> iterate(25)

. quietly matrix maxpar=e(b)

. quietly local maxll=e(ll)

. set seed 22246

. matrix ttt=b0

. forvalues r=1/`nstarts´ {
2. quietly {
3. matrix ttt[1,`k´]=4*runiform()-3 // start value for /depend
4. matrix ttt[1,`k1´]=4*(runiform()-0.5) // start value for /pu1
5. matrix ttt[1,`k2´]=2*(runiform()-0.5) // start value for /mu2
6. matrix ttt[1,`k3´]=2*runiform() // start value for /su2
7. matrix ttt[1,`k4´]=4*(runiform()-0.5) // start value for /pv1
8. matrix ttt[1,`k5´]=2*(runiform()-0.5) // start value for /mv2
9. matrix ttt[1,`k6´]=2*runiform() // start value for /sv2
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10. capture bicop finnow finfut `xvars´, copula(`bestcop´) mixture(both)
> from(ttt) log iterate(`nits´) search(off)
11. local retcode=_rc
12. if e(ll)>`maxll´&`retcode´==0 {
13. matrix maxpar=e(b)
14. local maxll=e(ll)
15. }
16. noisily display "Replication... " `r´ ": logL = " e(ll) " best so far =

> " `maxll´
17. }
18. }

Replication... 1: logL = -769989.06 best so far = -13043.952
Replication... 2: logL = -769989.06 best so far = -13043.952
Replication... 3: logL = -298620.15 best so far = -13043.952
Replication... 4: logL = -13044.151 best so far = -13043.952
Replication... 5: logL = -769989.06 best so far = -13043.952
Replication... 6: logL = -769989.06 best so far = -13043.952
Replication... 7: logL = -769989.06 best so far = -13043.952
Replication... 8: logL = -769989.06 best so far = -13043.952
Replication... 9: logL = -13046.226 best so far = -13043.952
Replication... 10: logL = -769989.06 best so far = -13043.952

. bicop finnow finfut `xvars´, copula(`bestcop´) mixture(both) from(maxpar)
> iterate(50) search(off)
LogL for independent ordered probit model -13062.773

(output omitted )

Generalized bivariate ordinal regression model (copula: clayton, mixture: both)

Number of obs = 5,482
Wald chi2(6) = 866.37

Log likelihood = -13043.952 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

finnow
female -.1659407 .0297574 -5.58 0.000 -.2242643 -.1076172

homeowner .5343804 .0308191 17.34 0.000 .473976 .5947847
unempsick -.7092343 .0404555 -17.53 0.000 -.7885255 -.629943

finfut
female -.008524 2.094358 -0.00 0.997 -4.11339 4.096342

homeowner -.0196506 4.821656 -0.00 0.997 -9.469922 9.430621
unempsick -.0031946 .7761486 -0.00 0.997 -1.524418 1.518029

/cuteq1_1 -1.643005 .045037 -36.48 0.000 -1.731276 -1.554734
/cuteq1_2 -.9138487 .0375694 -24.32 0.000 -.9874833 -.8402141
/cuteq1_3 .1137748 .0354499 3.21 0.001 .0442942 .1832554
/cuteq1_4 1.060686 .0348293 30.45 0.000 .9924221 1.12895
/cuteq2_1 .2728202 33.24207 0.01 0.993 -64.88043 65.42607
/cuteq2_2 .4271055 4.731994 0.09 0.928 -8.847433 9.701643

/depend -2.504887 .2234805 -11.21 0.000 -2.9429 -2.066873
/pu1 -2.228777 1.243522 -1.79 0.073 -4.666035 .2084806
/mu2 .1549464 .1383337 1.12 0.263 -.1161827 .4260755
/su2 .9007953 .0681421 13.22 0.000 .7672393 1.034351
/pv1 -1.702438 .590641 -2.88 0.004 -2.860073 -.5448025
/mv2 .4089723 .6733854 0.61 0.544 -.9108388 1.728783
/sv2 .068307 16.76491 0.00 0.997 -32.79031 32.92692
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theta .0816849 .018255
pi_u_1 .0971959 .1091176
pi_u_2 .9028041 .1091176

mean_u_1 -1.43922 .5266053
mean_u_2 .1549464 .1383337
var_u_1 .4571569 2.1114
var_u_2 .8114322 .1227641
pi_v_1 .1541472 .0770112
pi_v_2 .8458528 .0770112

mean_v_1 -2.244156 3.605769
mean_v_2 .4089723 .6733854
var_v_1 .5076687 17.47826
var_v_2 .0046658 2.29032

Wald test of equality of coefficients chi2(df = 3)= 560.139 [p-value=0.000]
Wald test of independence chi2(df = 1)= 20.023 [p-value=0.000]

. matrix bunequal=e(b)

. estimates store clayton_both

. estimates stats clayton_equ clayton_both

Akaike´s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

clayton_equ 5,482 . -13047.23 16 26126.47 26232.22
clayton_both 5,482 . -13043.95 19 26125.9 26251.48

Note: N=Obs used in calculating BIC; see [R] BIC note.

. lrtest clayton_equ clayton_both

Likelihood-ratio test LR chi2(3) = 6.57
(Assumption: clayton_equ nested in clayton_both) Prob > chi2 = 0.0871

Next, to demonstrate the second form of the bicop syntax, we revert to the option
mixture(equal) and refit the model with the marginally insignificant gender effect
dropped from equation 2. Except for the scaling of the coefficients in equation 2, the
results change little. Again the AIC and BIC are in conflict over whether this is the
best-fitting model.
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. local xvars1 female homeowner unempsick

. local xvars2 homeowner unempsick

. bicop (finnow=`xvars1´) (finfut=`xvars2´), copula(`bestcop´) mixture(equal)
> from(bequal, skip) iterate(50) search(off)
LogL for independent ordered probit model -13063.877

Iteration 0: log likelihood = -13052.337
Iteration 1: log likelihood = -13049.144
Iteration 2: log likelihood = -13049.134
Iteration 3: log likelihood = -13049.134

Generalized bivariate ordinal regression model (copula: clayton, mixture: equal)

Number of obs = 5,482
Wald chi2(5) = 881.41

Log likelihood = -13049.134 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

finnow
female -.1651425 .0294366 -5.61 0.000 -.2228371 -.1074479

homeowner .5245214 .0303039 17.31 0.000 .4651268 .583916
unempsick -.7072024 .0402962 -17.55 0.000 -.7861816 -.6282232

finfut
homeowner -.2079559 .0312757 -6.65 0.000 -.2692553 -.1466566
unempsick -.1139064 .0417335 -2.73 0.006 -.1957025 -.0321102

/cuteq1_1 -1.640419 .0441888 -37.12 0.000 -1.727027 -1.55381
/cuteq1_2 -.908388 .036365 -24.98 0.000 -.9796621 -.8371138
/cuteq1_3 .1135852 .0346939 3.27 0.001 .0455864 .1815841
/cuteq1_4 1.04191 .0374511 27.82 0.000 .968507 1.115313
/cuteq2_1 -1.016769 .0319153 -31.86 0.000 -1.079322 -.9542159
/cuteq2_2 .5183207 .0309565 16.74 0.000 .4576471 .5789943

/depend -2.520257 .2268808 -11.11 0.000 -2.964936 -2.075579
/pu1 1.760666 .7653936 2.30 0.021 .260522 3.26081
/mu2 .4740137 .1367034 3.47 0.001 .2060798 .7419475
/su2 .5423894 .1763895 3.07 0.002 .1966723 .8881065

theta .0804389 .01825
pi_u_1 .853293 .0958151
pi_u_2 .146707 .0958151

mean_u_1 -.0814973 .0611763
mean_u_2 .4740137 .1367034
var_u_1 1.076078 .0428315
var_u_2 .2941863 .1913436

Wald test of equality of coefficients chi2(df = 2)= 552.485 [p-value=0.000]
Wald test of independence chi2(df = 1)= 19.427 [p-value=0.000]

. estat ic

Akaike´s information criterion and Bayesian information criterion

Model Obs ll(null) ll(model) df AIC BIC

. 5,482 . -13049.13 15 26128.27 26227.41

Note: N=Obs used in calculating BIC; see [R] BIC note.
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To show the differences in results that can follow from using bicop rather than
bioprobit, we now use the predict command to construct predictions for expectations
of the change in FWB conditional on current reported FWB. These are sample means
of estimates of Pr(Y2 = s|Y1 = r,Xi). The following code computes the predictions for
the Gaussian model and the equal-mixtures Clayton specification for s = 1 (expected
worsening of FWB) and s = 3 (expected improvement) and all r = 1, . . . , 5, summarizing
the relationship by plotting them against r.

. generate tee=_n if _n<=5
(5,477 missing values generated)

. foreach c in clayton_equ gaussian {
2. generate up`c´=.
3. generate down`c´=.
4. forvalues t=1/5 {
5. quietly {
6. estimates restore `c´
7. capture drop tmp*
8. predict tmp if e(sample), pcond2 outcome(`t´,3)
9. predict tmp1 if e(sample), pcond2 outcome(`t´,1)
10. summarize tmp, meanonly
11. replace up`c´=r(mean) if tee==`t´
12. summarize tmp1, meanonly
13. replace down`c´=r(mean) if tee==`t´
14. }
15. }
16. }

(5,482 missing values generated)
(5,482 missing values generated)
(5,482 missing values generated)
(5,482 missing values generated)

. drop tmp*

. line upgaussian upclayton tee, graphregion(fcolor(white) ilcolor(white)
> icolor(white) lcolor(white) ifcolor(white)) msymbol(none) xtick(1(1)5)
> xtitle("Current financial wellbeing") xscale(titlegap(2)) xlabel(1(1)5)
> ytitle("Pr(better)") yscale(titlegap(5)) lpattern(solid longdash)
> lcolor(black black)
> legend(col(2) label(1 "Bivariate ordered probit") label(2 "Generalized model"))

. line downgaussian downclayton tee, graphregion(fcolor(white) ilcolor(white)
> icolor(white) lcolor(white) ifcolor(white)) msymbol(none) xtick(1(1)5)
> xtitle("Current financial wellbeing") xscale(titlegap(2)) xlabel(1(1)5)
> ytitle("Pr(worse)") yscale(titlegap(5)) lpattern(solid longdash)
> lcolor(black black) legend(col(2) label(1 "Bivariate ordered probit")
> label(2 "Generalized model"))

Figures 2 and 3 show these plots. The most striking feature is that the generalized
bicop model suggests considerably more pessimistic expectations conditional on a low
current level of FWB, particularly for the expectation of further worsening. Note that
the data come from a period of government austerity targeted particularly on welfare
recipients following a deep recession, so these pessimistic predictions are not implausible.
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Figure 2. Predicted probability of expectation of better FWB conditional on current
FWB
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Figure 3. Predicted probability of expectation of worse FWB conditional on current
FWB

The source of the difference is the different patterns of dependence built into the
Clayton and Gaussian copulas: the former model implies strong positive dependence in
only the left tail (low actual and anticipated FWB), whereas the latter implies uniform
dependence. Although the Clayton model used to generate the plot also allows for a
departure from normality in each residual, in this particular application, the form of
the marginals makes much less difference to the properties of the fitted model than the
choice of copula.
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