%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

W) Check for updates

The Stata Journal (2016)
16, Number 1, pp. 229-236

1

Speaking Stata: Truth, falsity, indication, and

negation

Nicholas J. Cox
Department of Geography
Durham University
Durham, UK
n.j.cox@durham.ac.uk

Abstract. Many problems in Stata call for selection of observations according to
true or false conditions, indicator variables flagging the same, groupwise calcula-
tions, or a prearranged sort order. The example of finding the first (earliest) and
last nonmissing value in panel or longitudinal data is used to explain and explore
these devices and how they may be used together. Negating an indicator variable
has the special virtue that selected observations may be sorted easily to the top of
the dataset.

Keywords: dmO0087, true or false, logical, Boolean, indicator variable, dummy
variable, sort, by, panel data, longitudinal data, programming, data management

Introduction: True and false, in Stata and otherwise

The title may hint at a miniature philosophical treatise, but the topic is eminently
practical. We start with these fundamentals:

1. When fed an argument, Stata takes nonzero values as true and zero values as

false. Thus 42 in if 42 would count as true, and 0 in if 0 would count as false,
however unlikely it may be that anybody would write either in Stata. Stata would
always try to do something given if 42, but it would never try that given if 0.

. When producing results for true-or-false evaluations, Stata returns 1 for true and

0 for false. Thus the expression x > 42 would return 1 if and only if x was in-
deed greater than 42, and 0 otherwise. (It is a side issue—but one that bites
often enough to deserve a big flag—to emphasize in this example that any nu-
meric missing value does count as greater than 42.) Similarly, the function call
missing(x) will return 1 if and only if x is missing, and 0 otherwise. “Indicator
variable” is a common term for variables that take on values 1 or 0. “Dummy
variable” is another common term, especially for those who first met the idea in
a regression course.

. It follows that using 1 and 0 for true and false is at root just a convention, al-

though a convention that appears supremely natural and helpful, especially with
knowledge of those tricks possible with 1s and 0s. Thus adding lots of Os and 1s is
precisely how to count how many observations have the condition marked by 1s.

© 2016 StataCorp LP dm0087

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1536867X1601600117&domain=pdf&date_stamp=2016-03-01

230 Speaking Stata: Truth, falsity, indication, and negation

Such (0, 1) values are often labeled Booleans or logicals. However, you can, if
you wish, use other conventions too. The easiest useful alternative is to use —1
for true and 0 for false. That last simple idea is the least standard detail in this
column, so readers broadly familiar with the territory here may want to focus on
that point alone.

George Boole (1815-1864) was a British mathematician who became a professor at
Queen’s College, Cork in Ireland (now University College Cork). He is best remembered
for his works in logic and probability that lie behind the term “Boolean”. His major
book was Boole (1854). An earlier, shorter book (Boole 1847) is among those pieces
collected in Boole (1952). Hailperin (1986) revisited this work from a more modern
perspective. MacHale (1985, slightly revised 2014) gives a full-length biography that
covers his personal life and his family, which remains distinguished to the present, as well
as mathematical contributions. See also Iverson (1962) for a now classical discussion
of logical values in computing; Knuth (2011) for an authoritative survey of zeroes and
ones in programming; and Gregg (1998) for other material on Boolean algebra, circuit
design, and the logic of sets.

The next section of this column uses a slightly tricky problem to illustrate the use
of indicator variables and also their negations. The last section sketches some more
general advice for programmers.

2 lllustration: First and last nonmissing values

Here is a concrete problem. A panel dataset defined by identifiers and a time variable is
speckled with missing values. Your job is to find the first (earliest) and last nonmissing
values for a particular variable. A sandbox for this problem could be the Grunfeld panel
dataset, messed up randomly for the purpose. I set the seed for random numbers for
reproducibility. Here I use Stata 14.1. If you are using a version before 14, your results
will differ slightly, but the principles are unaffected.

. webuse grunfeld
. set seed 2803

. replace kstock = . if runiform() < 0.2
(35 real changes made, 35 to missing)

The Grunfeld dataset includes 200 observations, 20 companies each for 10 years, all
nonmissing, so we expect about 200 x 0.2 = 40 values to be set to missing by such a
call.

Now to the problem. If you know about collapse supporting identification of first
and last nonmissing values, please set that aside. We should not need to destroy a
dataset to find some of its contents. If you know that there are user-written egen
functions to do this, or indeed of any other canned solution, please set that aside also.
We seek a solution from first principles.

N. J. Cox 231

The problem would be easy if there were no missing values. We just need to sort
the data into the right order and identify the first and last values using subscripts to
identify the observations needed.

. bysort company (year): generate first = kstock[1]
. by company: generate last = kstock[_N]

The workhorse here is by:. bysort company: bundles two operations into one, to
first sort on company and then to carry out calculations separately for each group of
observations. As in elementary algebra, the operation on the inside, sort, is carried out
first. In this case, each group of observations is for a single company defining a separate
panel. If observations are already sorted by group (here by distinct values of company),
the sort element is unnecessary but harmless. If observations are not already sorted,
the sort element is essential.

Under the aegis of by:, we can sort on other variables as well as the group identifier.
Here that also is essential. Sorting on year within each panel allows the first value to
be identified using subscript 1 and the last to be identified using subscript _N, which
under by: is the number of observations in each panel and hence also the subscript of
the last observation in each panel. (Easy: if there are 10 observations in a panel, 10 is
also the subscript of the last.) If this is unfamiliar, then you may also want to look for
manual sections discussing by: or go to Cox (2002).

The parentheses () around year are part of the syntax. The variables before
the parentheses, just company in this example, define the groups for which separate
calculations are needed. The variables inside the parentheses, just year here, define
the order of observations within the group when that is important. If the order within
the group is of no consequence, no variables need be included within parentheses. If we
were calculating a group total or mean, the sort order would not matter.

We will come back to what is before and what is inside the parentheses, because it
is a handle helping with all kinds of calculations in Stata that in other software would
often call for nested loops.

That code is not yet the solution to our problem, because we do have missing values.
The first or last values in different panels could be missing. We must not just hope that
is not so. But this is a good start, and the rest of the solution is to add a twist to keep
missing values out of the way.

The best device is to create an indicator variable for missing values:

. generate ismissing = missing(kstock)

. bysort company (ismissing year): generate first = kstock[1]

Let’s go through that more slowly. The new variable ismissing is 1 if kstock is missing
and 0 otherwise. Within each panel, we sort first on ismissing, so all the observations
with missing values on kstock with value 1 on ismissing get sorted after the others
with value 0 on ismissing. Then, within such blocks, we sort on year. So the first
value of stock within each panel should be the first nonmissing value, so long as there

232 Speaking Stata: Truth, falsity, indication, and negation

is at least one nonmissing value. At worst, all the values for a panel on kstock will be
missing, and then calculation will return missing as the first nonmissing value, which
seems fair enough.

As before, the order of variables is crucial: first company, then ismissing, then
year. A different order would usually produce a different sort order for the dataset and
a different answer, probably wrong.

As explained, the parentheses () control exactly how observations are sorted.

e A paraphrase of the last Stata command above is this: within blocks of observa-
tions defined by different values of company—sorted internally first by ismissing
and then by year—find the first value of kstock.

e That is different from this: within blocks of observations defined by different
values of company and ismissing—sorted internally by year—{find the first value
of kstock.

e Both are different from this: within blocks of observations defined by different
values of company, ismissing, and by year, find the first value of kstock.

Which syntax you want is crucially dependent on the problem, but the parentheses are
there to make the distinction you need. Getting it right is the tricky part of using by:.
Getting it wrong a few times and thinking it through with small-sample datasets where
you can see results easily and quickly is the way to learn how to get it right.

So far, so good, but what about the last nonmissing values? Because we sorted
missings to the end of each panel to keep them out of the way, the last value for each
panel will certainly be missing on kstock even if there is only one missing value in each
panel. The solution is to flip the sort order around. This is where negation can be used
to solve the problem.

. replace ismissing = -ismissing

Negation (note the minus sign - in the command just given) flips the 1s all to —1 and
leaves the 0s untouched. Now, we can re-sort with the changed variable.

. bysort company (ismissing year): generate last = kstock[.N]

The observations with missing values for kstock (with ismissing —1) now always come
before those with nonmissing values (with ismissing unchanged at 0). Within those
two subsets, we sort on year. Thus the last nonmissing value should come last, and we
can pick it up using the subscript [_N].

As before, if all the data for a panel are missing, then the result would also be
missing, and again that is fair enough.

N. J. Cox 233

By the way, why is the code not like this?

. generate ismissing = missing(kstock)
. bysort ismissing company (year): generate first = kstock[1]

. by ismissing company (year): generate last = kstock[_N]

The problem with that code is that missings on stock all map to missings on the new
variables. That is often awkward. We could clean up afterward, but for most purposes,
such code creates as many problems as it solves.

If you are interested in how we could clean up, here is one way.

. bysort company (first): replace first = first[1]
. bysort company (last): replace last = last[1]

This is similar logic. Within panels, we sort on the variable of interest, either first
or last. Nonmissing values of interest will then be in the first observation of each
panel and can be copied to all observations in the panel. We do not need conditions on
replace such as if missing(first) or if missing(last) because there is no loss in
overwriting nonmissing values with the same nonmissing values.

Naturally, you could argue that the observations with missings are just useless and
might as well be dropped. That is true if all variables of interest are missing in those
observations; otherwise, it would result in throwing away data that might be useful. (A
recent column of mine, Cox (2015), introduced a program, missings, helpful for such
problems.)

To recap the problem, let’s gather all the commands for the recommended solution:

. webuse grunfeld, clear

. set seed 2803

. replace kstock = . if runiform() < 0.2

. gen ismissing = missing(kstock)

. bysort company (ismissing year): gen first = kstock[1]
. replace ismissing = -ismissing

. bysort company (ismissing year): gen last = kstock[_N]

We will not list the results here, partly because of space but mostly because you can
try this out for yourself. But we should check on the results:

. count if missing(first, last)
. bysort company (first): assert first[1] == first[_N]
. bysort company (last): assert last[1] == last[_N]

The first check is whether any result is missing for the new variables. In principle,
there could be a missing result if any panel was all missing. Because there are none, we
need not take that further. If you have random numbers different from mine, then your
results could be different.

The second and third checks are whether results are constant within panels. If we
sort on first (similarly on last) within panels, then any different values would be
shaken apart. Here the result of assert would be an error message if the assertion were

234 Speaking Stata: Truth, falsity, indication, and negation

not true: literally, no news is good news. Know that there was no such message. For
more on assert, see any or all of its help, its manual entry, and Gould (2003).

3 Invitation: Some wider uses

Let’s close with some general advice, especially for programmers. A common early
device in programs is writing

. marksample touse

which creates an indicator variable with value 1 for observations to be used and with
value 0 otherwise. That meaning explains the conventional name, touse, meaning
(if you did not spot it) “to use”. In practice, that variable is temporary, referred to
thereafter as ‘touse’, an incidental detail here.

Such a variable permits all kinds of useful stuff, often starting with
. count if “touse”

to determine if there are not any observations to apply a command to, in which case
your program should probably bail out now, even if a zero count is good news for some
purpose. (Perhaps the purpose of the command is to look for something unwanted, so
a zero count is indeed good news.)

Sometimes, it is simpler to throw out observations you do not want to work with,
provided that the dataset has been saved or preserved or is not of long-term utility:

. keep if “touse~

Often the main point is just to control which part of the dataset is used, say, for a graph
or some statistical analysis, so the qualifier if ‘touse’ could be common in a program.

None of the uses mentioned so far in this section is affected by negating ‘touse’
so that its values are —1 and 0. We know —1 is not 0, hence true, and 0 manifestly
remains 0 and false. But why would you do that? The main reason is whenever sorting
the observations you want to the top of the dataset makes anything easier.

For example, I find that 1ist is frequently a good way to output results. Its excel-
lent subvarname option provides an easy way to label columns. Its separation options
separator () and sepby() are often useful. It is smart on your behalf about spacing
and boxing. And there are other advantages besides: see, for example, Harrison (2006).

Once I have counted how many rows will be in the table, the output is then often
arranged by a single command of the form list ... in 1/whatever. The observation
numbers will often be relevant to the displayed results; if not, they can always be
suppressed.

N. J. Cox 235

That is a small trick, but one that I have found helpful in programming. Indeed,
working interactively as well, it can be useful whenever the observations of most interest
come first in the dataset.

4 Conclusion

What makes a language practical to learn and to use? Often it is that a small number
of key concepts allow a large number of problems to be solved directly and efficiently.

In this column, we have looked at a bundle of key Stata concepts that very much
belong together: indicator variables, by: for groupwise calculations, and deliberate and
delicate control of sort order to enable exactly what you want. A particular twist is
that negating an indicator can be useful too: logical values of —1 remain true and
immediately allow a sort order that can be as or more convenient than the standard
order in which true values follow false.

5 References

Boole, G. 1847. The Mathematical Analysis of Logic, Being an Essay Towards a Calculus
of Deductive Reasoning. Cambridge: Macmillan, Barclay, and Macmillan.

. 1854. An Investigation of the Laws of Thought, on Which are Founded the
Mathematical Theories of Logic and Probabilities. London: Walton and Maberley.

. 1952. Studies in Logic and Probability. London: Watts.

Cox, N. J. 2002. Speaking Stata: How to move step by: step. Stata Journal 2: 86-102.

. 2015. Speaking Stata: A set of utilities for managing missing values. Stata
Journal 15: 1174-1185.

Gould, W. 2003. Stata tip 3: How to be assertive. Stata Journal 3: 448.

Gregg, J. R. 1998. Ones and Zeros: Understanding Boolean Algebra, Digital Circuits,
and the Logic of Sets. Piscataway, NJ: IEEE Press.

Hailperin, T. 1986. Boole’s Logic and Probability. A Critical Exposition from the Stand-
point of Contemporary Algebra, Logic and Probability Theory. Amsterdam: North-
Holland.

Harrison, D. A. 2006. Stata tip 34: Tabulation by listing. Stata Journal 6: 425-427.
Iverson, K. E. 1962. A Programming Language. New York: Wiley.

Knuth, D. E. 2011. The Art of Computer Programming, Volume 4A: Combinatorial
Algorithms, Part 1. Upper Saddle River, NJ: Addison—Wesley.

MacHale, D. 1985. George Boole: His Life and Work. Dublin: Boole Press.

236 Speaking Stata: Truth, falsity, indication, and negation

. 2014. The Life and Work of George Boole: A Prelude to the Digital Age. Cork,
Ireland: Cork University Press.

About the author

Nicholas Cox is a statistically minded geographer at Durham University. He contributes talks,
postings, FAQs, and programs to the Stata user community. He has also coauthored 15 com-
mands in official Stata. He was an author of several inserts in the Stata Technical Bulletin and
is an editor of the Stata Journal. His “Speaking Stata” articles on graphics from 2004 to 2013
have been collected as Speaking Stata Graphics (College Station, TX: Stata Press, 2014).

