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1 Introduction

Within a long-term relationship, a buyer (she) repeatedly procures a fixed quantity of a product
from a supplier (he) and then sells it on the market. The product results from a Cobb-Douglas
technology that combines an observable input and an unobservable one, with prices of both being
public information. The supplier’s efficiency in production is private information and evolves over
time following a geometric Brownian motion. The buyer’s objective is to find a dynamic long-term
procurement contract that maximizes her expected profit.

The first and main finding of our paper is that the dynamic long-term procurement contract
assumes a relatively straightforward form involging a two-part periodic payment. The fixed part of
this payment is based on the initial efficiency type, while the variable part depends on the current
efficiency type. We show that, through the fixed part, the buyer mitigates the burden of information
rents needed to incentivize the truthful revelation of future efficiency types. This is because the
initial efficiency type may, depending on its informativeness, can provide a relatively accurate
prediction of future efficiency levels. Additionally, we observe that the distortion in the input
mix remains constant over time and decreases in the initial type. This reaffirms, from a different
perspective, the significance of the initial information in our procurement contract. Finally, once
the procurement cost is determined, we show how the considered dynamic adverse selection may
negatively affect the optimal order quantity set by a buyer facing uncertain market demand. Lastly,
we show the adaptability of our model to cases where the supplier has private information about
the random evolution of the input price ratio.

A second significant finding emerges from the examination of an even simpler procurement
contract. Given the potential informativeness of the initial efficiency, a natural question arises:
what if the buyer uses a fixed-price and quantity contract? We show that our model may also
be used to analyze this case. The mechanism is simpler and it entails a periodic payment based
only on the initial efficiency type. Upon comparing the two contracts, we observe that a buyer
consistently prefers a fixed-price and quantity contract over a fixed-quantity contract, while the
opposite holds true for a supplier. This difference arises from the fact that with a fixed-quantity
contract, the buyer lacks flexibility to adjust the order quantity in response to evolving procurement
costs. Consequently, the information disclosed by the supplier over time cannot be utilized by the
buyer to improve his position, rendering it not worthwhile to pay the associated information rent.
Conversely, the supplier benefits from receiving rent for disclosing information that, in any case,
does not impact the order quantity.

The paper is structured as follows. The next subsection provides a brief literature overview.
Section 2 introduces our model set-up, while Section 3 characterizes the optimal procurement
contract. Section 4 delves into the properties of the optimal contract, and Section 5 presents

concluding remarks. The Appendices include proofs omitted from the main text.



1.1 Related literature

The principal-agent problem is a a well-established topic in the operations literature, particularly

1 Typically, this

within the context of supply chain contracting under asymmetric information.
information concerns production cost, productive capacity, or demand state. In the majority of
papers, contracts cover a single period, with the solution involving offering a contract that induces
the truthful revelation of the agent’s private information (or type) throught the payment of an
information rent. In other cases, despite dealing with multiperiod contracts, the agent’s type
remains constant over time, simplifying the problem into a static one that can be addressed by
offering optimal static contracts at each period. The complexity increases when dynamic information
asymmetry is considered, as the principal may find value in using information gathered over time
about the agent’s type (see e.g. Laffont and Martimort, 2002, Ch. 8; P. Bolton and Dewatripont,
2005, Ch. 9).

The economics literature addressing dynamic allocation problems similar to ours originates
with Baron and Besanko (1984), who derived optimal contracts in a two-period setting, with types
correlated over time.? Battaglini (2005) explores the repeated sale of a nondurable good to a buyer
over an infinite time horizon, with the marginal benefit evolving over time according to a commonly
known Markov process with two possible types. Pavan et al., (2014) delve into a general dynamic
allocation model with a continuum of types, private information evolving over time and decisions
spanning multiple periods over an infinite time horizon. They provide general necessary conditions
for incentive compatibility and sufficient conditions for revenue-maximizing contracts in different
environments. Bergemann and Strack (2015) extend the previous analysis, developed in discrete
time, with a continuous-time model considering a revenue-maximising principal repeatedly selling
a nondurable good to consumers who possess private information about their willingness to pay.?

Bergemann and Strack (2015) is the closest paper to ours. Similar to their work, private infor-
mation follows a Brownian motion, and the problem is time-separable. However, our model diverges
as we explore a cost-minimizing mechanism, in contrast to their focus on revenue maximization.
Therefore, our emphasis is on the distortion, arising from information asymmetry, in the productive
input mix chosen by the supplier rather than on the quantity of the good sold to the consumer.

Finally, our paper contributes to a growing body of operations literature applying a dynamic
mechanism design approach to explore multiperiod contracts with i) dynamic adverse selection,
and ii) operational decisions that must be made dynamically. Zhang et al. (2010) examine a
supply chain where a single supplier sells to a downstream retailer under asymmetric demand
information, assuming the use of short-term contracts. At the beginning of each period, the supplier
offers a contract, and the retailer makes purchasing decisions anticipating random demand. Excess
inventory, not observed by the supplier, is carried over, and in the next period, a new contract is

designed based on the supplier’s belief about the retailer’s inventory. The optimal contract, in the

'Refer to Chen (2003), Ha and Tang (2017) and Vosooghidizaji et al. (2020) for reviews of this literature.

?See Bergemann and Vilimiki (2019) for a comprehensive review of this literature.

3See Arve and Zwart (2023) for a solution to the non time-separable problem that arises when handling durable
goods.



presence of high production and holding costs, takes the form of a batch-order contract, minimizing
the retailer’s information advantage. Lobel and Xiao (2017) address a similar problem but consider
long-term contracts.* Under backlogging, the optimal long-term contract entails an upfront fee
and a wholesale price charged on periodic orders, while under lost sales, the contract is similar but
the retailer has the option to reduce the wholesale price initially chosen, exercisable at any time
point upon payment of a fixed strike price. In Gao (2015), the buyer is the principal, operating a
multiperiod inventory system with lost sales and a fixed order cost under evolving private supply
information. The optimal long-term contract involves the payment of a real information rent only
in the initial period, compensating for production cost in every period, and distorting the order

quantity in the initial period in order to reduce the information rent.

2 Model set up

Consider a buyer who wants to purchase a periodic quantity of a product from an upstream supplier.
The contract between the parties is finalized at the initial time period ¢ = 0 and its duration is
long enough to be reasonably approximated by an infinite time horizon.’

We make the following assumptions:

B Assumption 1: The parties adopt a fixed-quantity (FQ) contract. We denote by Q the
observable order quantity to be supplied at each time period and, at no loss in terms of generality,
we assume that Q = 1. The buyer sells the product to customers’ at a market price, which is
constant over time and equal to b > 0.8

B Assumption 2: The supplied product is manufactured by means of two inputs: an observ-
able input x; and a non-observable input y;. These inputs are combined based on the following

Cobb-Douglas production function:”
1=0;-af -y, (1)

where a and 1 — a with 0 < a < 1 are the elasticities of output with respect to each input and 6,

is an index of the supplier’s efficiency.

1On short-term vs. long-term contracting in supply chain interactions, see Johnsen et al. (2021).

®The assumption of an infinite time horizon simplifies the analysis, but it does not alter the results as long as the
parties set the contract duration at the initial time period ¢ = 0.

Tn long-term and exclusive relationships, the supplier may hesitate to invest in capacity if anticipating a poor
future return, stemming from low bargaining power in ex-post negotiations or prices that yield an insufficient margin.
Therefore, the parties may choose to adopt a fixed-quantity (FQ) contract to ensure that the supplier can appropriate
a significant portion of the surplus generated by the investment. For further insights into contract and capacity
investment, see e.g. Cachon and Lariviere (2001), Taylor and Plambeck (2007) and Davis and Leider (2015).

"We opt for a buyer/retailer, but one may, at no cost, consider also the case of a manufacturer procuring a
component from a supplier.

®In Section (4.6), we examine a buyer facing stochastic demand and determining the optimal order quantity based
on the expected demand over the considered time horizon.

9Note that we can easily incorporate the impact of the returns to scale in production by adopting the function
Q=0 (¥ yi~™)* with w > 0.



B Assumption 3: The efficiency level, 6;, evolves over time according to the following diffusion
process:!?

d9t/9t =0 - st, (2)

where o is the instantaneous volatility and dL; ~ N(0,t) is the increment of a standard Wiener

process.!! Solving Eq. (2) yields:
0, = (t,00, Ly) = 0 - e~ 27 1oL, (3)

By Eq. (3), as shown immediately, the efficiency level 6; is a function of its initial value 6y, the
volatility o and the contemporaneous shock L;. Note that, as Process (2) is trendless, 6y represents
the best estimate for the values taken by the efficiency index at any later time period ¢ > 0, i.e.
Ey[6:] 00] = 6p. Furthermore, 6, is a persistent process since the contemporaneous shock L; has a
non-vanishing effect on any later 6, with s > ¢.12

Eq. (3) has several interesting properties.!® In particular,

i) the efficiency over time is increasing in its initial level, i.e. 6y, since

op(t,00,L;) 0
o(t, 0o, L) = W = i > 0. (3.1)

The function ¢g(t, 09, L¢) is the so-called stochastic flow, measuring the influence of the efficiency

level Oy on future efficiency levels 6;.
ii) the efficiency over time is increasing in the contemporaneous shock L; since

a¢(t7 007 Lt)

¢L(t7005Lt) — aLt

=0-0; > 0; (32)

iii) the relative impact of the initial efficiency level on future efficiency levels is decreasing in 6y

since

¢9(t7907Lt) . 1 .
é(t,00, L)  Oo’ (3:3)

In Eq. (2), we abstract from the drift to focus on the impact of uncertainty on the outcome. However, note that
introducing a non-zero drift for §; would not alter the quality of our results due to the Markov property of Eq. (2).

1n a Wiener process, dL; = &¢ - Vdt where et ~ N(0,1). Hence, Eo [st} =0 and Ey [de] = dt where Ej is the
expectation taken at time ¢t = 0 (see Dixit and Pindyck, 1994, pp. 63 - 65).

2For a trendless process such as (2), the autocorrelation, pt s, between 0; and 65 is given by:

5 1/2
prs = COV(0:,6,) (e t_1 <1
t,s /7V(9t) . /V(Gs) eo-Zs —1
where s > t. Note that p; s decreases with the distance between s and ¢. Additionally, p¢,s — 0 as either s — oo or
o — 00.
3 Further insights and details can be found in Bergemann and Strack (2015).



iv) the expected impact of the initial efficiency level on future efficiency levels is finite since

Eo(6:100) _ .

Eo(¢e(t,00,Ls)) = % ; (3.4)

v) the relative impact of the initial efficiency level versus the contemporaneous shock is decreasing

in fy and o since

¢9(t7907Lt) . 1
d)L(tveOaLt) N g - 90 > 0. (35)

This means that, all else being equal, 1) a higher initial efficiency level provides less informa-

tion about future efficiency levels since their realizations are more influenced by contempo-
raneous shocks {L;,t > 0} and 2) the initial efficiency level is less informative about future

efficiency levels as uncertainty, i.e. o, increases.

B Assumption 4: While the volatility ¢ is public knowledge, we assume that the supplier is
better informed than the buyer about the initial level 6y and all future realizations {6;,¢ > 0}. The
initial value 6y is distributed on a positive support [0, 0"] = © C R, according to the cumulative
distribution function G(fyp), with a continuously differentiable density g(fp) > 0, g(#') > 0, and
g(0") > 0, which is common knowledge. Furthermore, the distribution function G(fj) is such that

H(0y)/6y, where H(6y) = 1_989&30) is the inverse hazard rate, is monotone and decreasing in 6.
Note that this condition is strictly weaker than the standard increasing hazard rate assumption
(see e.g. Guesnerie and Laffont, 1984, and Jullien, 2000).

B Assumption 5: The buyer commits to a periodic payment p;.

B Assumption 6: Production costs are linearly increasing in the two inputs levels. The unit
costs for input z; and input 1 are equal to ¢ > 0 and k > 0, respectively.

B Assumption 7: Both the supplier and the buyer are risk-neutral and discount future payoffs
using the interest rate r.

B Assumption 8: Both parties can commit themselves not to renegotiate the initial contract.

B Assumption 9: Both parties can not hold inventories.

By Assumptions 5 and 6, the supplier’s periodic utility is given by
u=p— (c -z +k-ye), (4)
while, at ¢ = 0, the expected present value of the intertemporal supplier’s utility flow is equal to:
o0
U—Eo{/ ut‘e”-dt}. (5)
0
The buyer’s periodic utility is given by

W = b_pta (6)



while the expected present value of the intertemporal buyer’s utility flow is equal to:

o0 b o0
W:Eo{/ wt-e_rt-dt}:—Eg{/ pt-e_rt-dt}. (7)
0 r 0
Lastly,

B Assumption 10: The market price b is such that W > 0. Otherwise, the buyer does not

find it convenient to procure the product from the supplier.

3 The optimal procurement contract

The efficiency levels {6;,t > 0} represent the evolution over time of the supplier’s type. According
to Eq. (7), as the order quantity remains constant over time, the supplier’s procurement problem is
a cost-minimization problem. The contract payment must induce the supplier to choose, given his
own efficiency type, a cost-minimizing bundle of inputs. Two agency problems seem to be blended
together since the buyer cannot observe the level of the input {y;,t > 0} used, nor can the supplier’s
initial and subsequent efficiency types be observed. However, considering the fixed and observable
order quantity, we are dealing with a false moral hazard problem since y; can be fully determined

by the following identity:'*
1
Yy = (etl‘?) 1o, (11)

Henceforth, we can concentrate on deriving a procurement mechanism that incentivizes only the
supplier to truthfully report the efficiency types {6;,t > 0}.

Our optimization problem belongs to the class of allocation problems that Bergemann and
Strack (2015) have categorized as weakly time separable. In fact, in our problem, (i) the set of
available allocations at each time period ¢ is independent of the history of allocations and (ii)
the periodic utility functions of both the supplier and the buyer depend only on the initial and
the current private information about the supplier’s efficiency types, i.e. 6y and 6, respectively.

Therefore, we address the procurement problem in the following two steps:!®

1. For any given initial efficiency type 6y, at each ¢ > 0 the buyer offers a single-period contract

with a payment, p?(6;), compensating for the truthful revelation of the current efficiency type
0.

2. As each future realization 6; depends on the initial value 6y and on the contemporaneous
shock Ly, i.e. 0; = ¢(fo, Lt), at t = 0 the buyer sets a periodic payment, p'(p), compensating
for the truthful revelation of the initial efficiency type 6p.

"See Laffont and Martimort (2002, Section 7.1.4, pp. 287-290) for further details.
5In the following, for notational convenience, we drop in ¢(t, 6o, L:) the direct dependence on time t.



3.1 Incentive-compatibility conditions

In this section, we present the conditions for a direct incentive-compatible mechanism robust to
7

consistent deviations.'® These deviations are defined as follows:!

Definition A deviation is defined as consistent if a supplier of efficiency type 0y misreports (/9\0 at
t = 0 and continues to misreport é\t = ¢(§0, Ly) instead of its true type 6, at all future dates
t>0.

This means that, after an initial misreport 50, the supplier will report an efficiency type ét
following the same diffusion process that would be followed by his true efficiency type 6;. Therefore,
the buyer will not be able to detect the deviation, and payments will be set according to the
misreported é\o and its consistent evolution over time.

As standard, let’s proceed backward. Assume that at ¢ = 0 the supplier has, by setting an
appropriate p! (), reported the true . The buyer can then offer a standard single-period contract

at each time period ¢ > 0. The periodic supplier’s utility function is as follows:

u(Bo, 01, 6:) = (00, 6) — (¢ we(B:) + k - ye(6:,6,)), (8)
where 0; is the report by a supplier-type 6, p(bo, 5,5) = p*(0o) + pz(gt), and, by Eq. (1),

1

Ye(0,0¢) = (Br - 24(0,)*) T+ (8.1)

The payment p2(§t) must be set such that the supplier reports é\t = 0; thruthfully. In order to do

SO:

Lemma 1 At each t > 0, necessary and sufficient conditions for incentive compatibility require

that the payment p?(6;) is set such that:

Ou(fo,0)) k() (9)

(%?t N 11—« Gt ’
&vt(@t)
< 0.
0, =0 (10)

Proof. See Appendix A. =
Once p?(#;) is determined, we step backward to set the payment p'(p). Also in this case, the
payment can be determined by solving a standard static problem.

At t = 0, the expected present value of the intertemporal supplier’s utility flow is equal to:

U(Qo,é\o) = Ey {/000 [p(g’o) - (c . xt(é\o) + k- yt(Oo,@\o))] -e_”dt} , (11)

Y This class of deviations is considered in Esé and Szentes (2007), Pavan et al. (2014) and Bergemann and Strack
(2015).
17See Bergemann and Strack (2015, Definition 3, p. 826).



where 0 is the report by a supplier-type 6o, p(6o) = p'(6o) + p2(¢(0o, Lt)), z+(00) = z¢(6(fo, Lt))
and, by Eq. (1),
y(0o,00) = (6(0o, L) - x4(0p)) T-o. (11.1)

The payment p' (50) must be set such that the supplier reports B0 = 6o thruthfully. In order to do

S0,

Lemma 2 At t = 0, necessary and sufficient conditions for incentive compatibility require that the

payment p*(6p) is set such that:
oU (6) k /oo b9(6o, Lt) —rt
= - B 0;)  ————L ) e "'dt 12
90 l—a ° { 0 we(6e) ¢(6o, L¢) ‘ ’ (12)

dxt(Ht)
<0. 1
&y = 0 (13)

Proof. See Appendix A. =

3.2 The two-part payment

Let’s start by considering the first step of the procurement problem. Assuming that the supplier
has reported his true 6y, the buyer can determine i) the optimal input mix, (z}(6;),y;(6:)), and ii)

the optimal payment, p?*(6;), by solving the following problem:

oh (%)
min / Ey {/ p(0o,0;) - e - dt} - g(0o) - dbo, (14)
0 0

x(01), ye(0¢) Jo!
s.t. (1), (9), (10),

where p(6o, 0;) = p'(6p) + p*(0:) is the total periodic payment resulting from the sum of the fixed
payment p'(fp) and the time varying payment p?(6;). Note that, as p' () does not depend on 6;,
Problem (14) captures the repetition, at each ¢ > 0, of a standard static incentive problem where
both the incentive compatibility Conditions (9) and (10) must hold (see Baron and Myerson, 1982;
Laffont and Martimort, 2002).

Let’s now turn to second step of the problem. Once p?(6;) is determined, the buyer must set
the payment p'(6p) such that the supplier reports his intial type 6y truthfully. However, as p**(6;)
has been set such that, for any given initial 6y, the supplier reports his type 6; truthfully, the
buyer determines the optimal payment p'*() by solving a static incentive problem where both
the incentive compatibility Conditions (12) and (13) must hold.



Solving both problems yields the following proposition:

Proposition 1 Under the above assumptions, at each t > 0 the buyer offers the supplier a two-part

payment p*(0o,0;), which includes:

k 09lo (f EO{ ui (5) ¢S(S;Lt)} et dt) - ds

1% (5 Lt)
p (o) =7 : : (15)
l-a —I° Eo{ etytz() dz}-e_”t-dt
as fized part, and
ii)
O yx(
P00 =0+ k0 + e [ (16)
as variable part, where the optimal input miz (xf(0:),y;(0:)) is such that
a  yi(6:) c
. = : (16.1)
— * H(0
L—a zf(0:;) . (1 + 6(700)>

Proof. See Appendix B. =

4 The properties of the optimal procurement contract

In this section, we present and discuss the properties of the optimal procurement contract derived

above.

4.1 The optimal input mix

By Eq. (16.1), the optimal input levels are chosen such that the technical rate of substitution

ie. 1% - z*;ggg, equals the input price ratio, i.e. ¢/k - ( + 1 - (590)) , where (1 + 1 - é9°)>

is the wedge taking into account the distortion due to the initial efficiency type 8y being private

information. To further analyze the impact of the distortion, let’s use, as benchmark, the optimal
input mix under a first-best scenario. In this case, as information is symmetric, the distortion

vanishes, and the cost-minimizing input mix, (z{ ?(6;), y{ ®(6;)) , satisfies the following condition:

o w0 _c (17)
l-« LBFB(Qt) k’
where, by Eq. (1),
1 c 1—a\ 4 1 c 1—a\“®
FB — — . — FB = — . —_ . -
(0r) = 0, <k - ) s Y (Or) ) (k - ) : (17.1-17.2)

Using Eq. (1), Eq. (16.1) and Eq. (17), we find that:

10



(1-a)
21(0,) = 2FB(0)) <1 b H(90)> R +FB(0,), (17.3)

11—« 90
1 ICH A
060 =00 (1+ ) <. (17.4)

By Eq. (17.3) and Eq. (17.4), in a second-best scenario, the input mix is always distorted in favor of

the observable input x;. This is because a higher price is implicitly charged for the non-observable

input wy, i.e. k- (1 + ﬁH(gzO)) > k. The distortion is constant over time'® and decreasing in 6y

since, by assumption, d (H(6y)/6o) /dfy < 0. Hence, there is no distortion at the top, i.e. 6y = 6",
over the entire time horizon. Information about the initial efficiency type 6y is central in our
procurement mechanism. This can be explained by considering that, as 6, = ¢(6o, L), the buyer
exploits the information about 6y to predict future efficiency levels. This, in turn, allows pinning
down the distortion to the level associated with 6y. Further, in order to highlight its centrality even

more, using Eq. (17.3) and Eq. (17.4) and rearranging, we find that

vi (0) _ ) ‘
x; (0r) l'fB(HU) . (1 + 1% H(eo))

(17.5)

that is, the second-best input ratio, y; (6;)/z;(6;), remains constant over time and equals the ratio

between the first-best level of the unobservable input, yf? (), and the distorted first-best level of

the observable input, zf 2 (6y) - <1 + ﬁ Hégo)), both determined using the initial efficiency type

o.

4.2 The persistence of the shocks

By using Eq. (1) and Eq. (16.1), we find that:

| o
c —«

x;(0;) = — - . , 18
((0) =5 _k_(l_i_ﬁ'Hégo)) o | (18)
1 c 11—«

Yi (0r) = o : : (19)
01 X (1 + L %‘ZOU o
As can be immediately seen, both x}(0;) and y; (0;) are decreasing in 6; since dxge(ft) = —x5(0:)/0: <

0 and %gft) = —y;(0:)/0: < 0. This means that, at each time period ¢, the higher the efficiency,

the lower the amount needed for both input factors. Furthermore, using the Ito’s lemma, it can be

18The dynamic of the distortion over time depends, through the stochastic flow, on the nature of the initial
information and on the shape of the stochastic process governing the evolution of the state variable. In our case, the
initial information is about the initial state of the process, but it may very well concern a parameter of the stochastic
process itself, such as the drift or the volatility. See Bergemann and Véliméki (2019) for examples and discussion.
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easily shown that z}(6;) and y;(6;) follow the same geometric Brownian motion,'’

in particular,

dxi(0;) /x5 (0;) = dy; (0;) )y} (0;) = 0% - dt 4+ o - dLy. (18.1-19.1)

To explore the role played by the initial efficiency type 6y, let’s rearrange Eq. (18) and Eq. (19) as

follows: ; ;
x; (01) = =" (6o) - 8;:, yi (0) = y* (o) - 9—‘:, (18.2-19.2)
where:
i 1-(1-0a)
1 c l—«o
x*(0g) = — - . , (18.3)
H(6
bo LE (1 + L %) o
1 c 1l -«
y*(0) = . , (19.3)
to LE (1 + L %) a |

represent the optimal input levels initially chosen by a supplier with efficiency type 6g.

By using Eq. (18.2) and Eq. (19.2), the optimal input expansion path can be visualized by
projecting over time the initial optimal input levels, i.e. (z*(6p),y*(6p)) , using the ratio 6y/6;. At
any given time period ¢ > 0, if the supplier exhibits improved efficiency, i.e. 6; > 0, a lower amount
of both inputs is used for production; conversely, if the efficiency is lower, i.e. 6; < 0y, a higher
amount of both inputs is required. The properties? of the Process (2) indicate that the optimal
input levels chosen at time periods close to t = 0 are more strongly and positively correlated than
those chosen at time periods distant from ¢ = 0 , with correlation diminishing as the distance

increases. Furthermore, we find that:?!

2

E{2}(01)} = 2*(00) - ¢!, E{w; (6)} =y"(60) - ", (18.4-19.4)

implying that, in expected terms, the optimal input levels diverge from x*(6y) and y*(6p), increasing
over time.

Changing perspective to focus on the informativeness of the initial efficiency type 6g, note that
the ratio 0y/0; is the inverse of the stochastic flow ¢g(6o, L) = 0;/00 = e~ 20 tHoLe, Therefore,
in Eq. (18.2) and Eq. (19.2), we consider the influence that the information about 6y has on
information about the future efficiency types 6;. The lower ¢g(6o, L¢), the weaker the influence of
and the larger the margin by which the optimal input mix (z;(6:), y; (6¢)) deviates from the initial
input mix (z*(0y), y*(0o)).

9See, for instance, Dixit and Pindyck (1994, p. 82).
?0See Section 2 (Assumption 3).
21See Appendix C for the calculation of these expected values.
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Last, comparative statics with respect to 6y reveal that:

aln (14 715 - 20)

dz¥(6;) d9 (6o, L)
dy RO T A dfy (185
and
. aln (14 L5 - 20)
Wil6) _ e,y [ 2200 L) _ o & , (19.5)
o t ¢ (0o, Lt) dfo

By Eq. (18.5) and Eq. (19.5), both optimal input levels are decreasing in the term d:;((eio,’LL;)) = %.

As stated in Section 2, this term measures the relative impact of the initial supplier’s efficiency
on his efficiency over time. Consistently, the buyer proposes a procurement mechanism that, by
using the information about the initial efficiency type, induces a reduction in the amount of inputs
used over time. As 0y increases, its relative impact on future efficiency types decreases, leading
to a smaller reduction. The second terms in Eq. (18.5) and Eq. (19.5) represent the distortion

dln(l—&-ia Héio))

arising from 6y being private information. In particular, the term o

represents, in

absolute value, the rate at which the distortion vanishes. A higher rate implies a higher yée(et) and

dln(14+ L. H(%)
the lower dxc;( ) If the rate is sufficiently high, i.e. ( ld? % )
0

1, ¢9(0o,Lt)
= (;(900’ Ltt) , the second

>

term in Eq. (19.5) dominates the first one, and dyt (et) > 0; otherwise dyt (et) < 0. This implies that
a faster vanishing of distortion leads to a wider margln for the suppher to exploit the imperfect

substitutability of the two inputs.

4.3 The payment

Let’s now discuss the periodic payment p* (g, 6;). By Eq. (15), the fixed part, p**(6), corresponds
to the annuitization of two components
The first component, i.e. £ - (fo EO{ y; (5) - (s, Lt)} t-dt) - ds, represents the

o (s,Lt)
information rent that the buyer pays for incentivizing tﬁe thruthful revelation of the initial efficiency
type fp. The second component, i.e. T2 [ Ey { Oet %(z) : dz} -e~ " . dt, to be subtracted from
the first one, is equal to the expected present value of the flow of future information rents paid for
incentivizing the thruthful revelation of the efficiency type 6, at each time period.

By Eq. (16), the variable part, p**(6;) > 0, compensates the supplier for the production cost
borne, i.e. c-x}(6;) + k- y;(6;), and pays him an information rent , ie. % - Oet %(Z) - dz, for
the truthful revelation of the efficiency type ;. The production cost and the information rent are
decreasing and increasing in 6y, respectively.

As highlighted above, the buyer exploits the informativeness of 6y for predicting the future
efficiency types 6;. This, in turn, allows reducing future information rents. In fact, note that when

considering the periodic payment p*(y, 6;), the buyer pays, on the one hand, the information rents

13



for the truthful revelation of the efficiency type 6; through p?*(6;) and, on the other hand, she
extracts, through p'*(6p), the equivalent annuity of their expected present value.

Lastly, in Appendix C, we show that while p'*(6y) < 0 consistently, the periodic payment
p*(0o,0¢) is always strictly positive.

4.4 The value functions

Substituting the payment p(6y, 6;) into Eq. (4) and Eq. (6), the periodic payoffs for the supplier

and the buyer are:

w(l,00) = —— . F -[/:Oy*(s)-ds+y*(90)-(1—T_02-2>], (20)

r—o?2 1—a« ! S r

and

w(bo, 0r) = b —p(bo, 0:) = b — (c- 27 (0r) + K - 4 (0:) + u(bo, b)), (21)

respectively.

The utility left to the supplier is equal to the periodic amount of information rents paid for
compensating the thuthful revelation of both 6y and 6;. Interestingly, these rents reflect the implicit
adoption of a risk-sharing mechanism based on the information about 6y. In fact, whenever the

. . . . . o2
supplier performs sufficiently worse than expected in terms of efficiency, i.e. 6; < =7 -0y < 0y =

E(0¢), the second term in Eq. (20) is negative. Therefore, a penalty applies in response to the
higher production cost that, by Eq. (21), the buyer must cover with the payment. Otherwise, i.e.

0; > T_TC’Z - 0p, a reward applies in response to the lower production cost.

By Eq. (20), the expected present value of the intertemporal supplier’s utility flow is equal to:

Bo y*(s)
k ol . dS
. = 2 2 07

U(6) = Fo {/OOO (0, 0,) - e - dt} - (22)

— r—o
with U(6') = 0.

Moving from Eq. (20) to Eq. (22), it is worth highlighting that the buyer is able to extract,
in expected terms, the present value of the flow of all future information rents. In fact, note that
—— - Ey {fooo y*(0p) - et dt} = Ey { Ooo y*(6o) - %(t) et dt}. This is, of course, not suprising
considering how the buyer sets p'*(fp).

Differentiating U (fg) with respect to 8y and o2, we find that

*(0o)
dU (6p) ko g
- : 22.1
dbo 11—« r—02>0’ (22.1)
dU (6 0
Ulo) _ U) -, (22.2)

do? r— o2

respectively. By Eq. (22.1) and Eq. (22.2), the rent U(6p) left to the supplier is increasing in both

the initial level and the volatility of his efficiency type. This result relates to the informativeness of

14



his initial efficiency type about his efficiency type over time, which is decreasing in both 6y and o.
This leads to higher rents to be paid to a supplier with a higher initial efficiency type and a more
volatile efficiency type.

Lastly, the expected present value of the intertemporal buyer’s utility flow is:

W(6o) = 2 — Eo {/pr*(eoﬂt) e dt} S <c 0]+ k:?' ) U(90)> . (23)

T r—o

By Eq. (23), the benefit accruing to the buyer’s is given by the present value of the flow of
revenue associated with the sale of the product, i.e. g. From this amount, the buyer subtract the

procurement cost, which includes: i) the expected present value of the flow of production costs, i.e.
c~a:*(00)+k:2~y* (6o)
r—0

Differentiating W () with respect to 6y and o2, we find

and ii) the rent U(6p) paid to the supplier.

dx™ (0 dy™* (0,
awey) _ (e fmt ket ww) (23.1)
d90 r— 0'2 d00 ’ '
= ( Cor T ) <0 (23.2)

respectively.

Even tough the rent U(fy) is increasing in the supplier’s initial efficiency type, the net rev-
enue W (fy) accruing to the buyer is increasing in 6. This is because a higher 6y reduces the
expected present value of the flow of production costs, and this reduction dominates the in-
crease in the rent. Conversely, a higher volatility in the evolution of the efficiency type re-
duces W(6y). Here, in addition to the effect driven by the rent, i.e. %
tion is also due to the higher expected present value of the flow of production costs. In fact,
note that, by Eq. (18.4) and Eq. (19.4), the expected input levels E {z}(0;)} and E {y;(6:)}

increase exponentially over time at a rate equal to o2.

> 0, the reduc-

4.5 Fixed quantity vs. Fixed price and quantity contract

In this section, we consider a potential fixed-price and quantity (FPQ) contract where the parties
agree on the periodic provision of a fixed product quantity at a fixed unit price. In particular,
assume that at ¢ = 0 the buyer considers a procurement mechanism to be based exclusively on the
initial efficiency type. The choice can be justified considering that, at that date, 6 is, in expected
terms, the best available estimate of the future efficiency types since Eg[6] 0] = 6p. The solution
to this procurement problem can be found using our model. In fact, it suffices to consider the
limit case where the realizations of the future 6; are perfectly correlated over time (or perfectly

persistent), i.e. lim,_,0 ¢g(0o, Ly) = 1. In this case, the optimal FPQ contract corresponds to the
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repetition of a standard static contract where??

6o *(g
pl00) = c°(00) + by 00) + o [T (24)

is the periodic fixed payment.
In this case, the periodic payoffs for the supplier and the buyer are:

6o *(g
@(60) = — /9 Y8) g, (25)

l—« ! S

and
w(0o) = b —p(bo) =b— (c-2"(6o) + k- y*(6o) +u(bo)) (26)

respectively.

As it can be immediately seen by comparing these payoffs with the ones under a FQ contract,
i.e. Eq. (20) and Eq. (21), the impact of the efficiency shocks is now shifted entirely to the buyer’s
side. In fact, by its own definition, a fixed price and quantity contract secures a positive payment
irrespective of #;. If compared with the case of a FQ contract, the supplier is worse off only for
sufficiently high 6;; otherwise he is always better off. In particular, note that he definitely does
better when, trivially, 6; is such that u(fg,6;) < 0.2

However, when considering the deal at an intertemporal level, we find that
Proposition 2 The supplier prefers always a FQ contract to a FPQ contract since

k . 9910 y*s(i) -ds (27)
1—a r ’

U(Qo) > U(Qo) =

while the buyer prefer always a FPQ contract to a FQ contract since

b (C'w*(90)+k'y*(90)

W(0o) < W(bo) = - ;

+ U(Ho)) : (28)

The result in Proposition 2 may seem surprising since, as discussed above, the supplier does
not face any payment risk under a FPQ contract. However, note that, when taking an intertem-
poral perspective, the payment variability that the supplier would face under a FQ contract is, in
expected terms, fully absorbed. This is because, as shown above, —— - Eq { fooo y*(0p) - et dt} =
Ey { Io" v (6o) - Z—(t’ et dt}. The result can then be explained by reminding that under a FQ
contract the buyer is not able to adjust the order quantity in response to the time-varying pro-
curement cost. Hence, as the information about the supplier’s efficiency, gathered over time at a

cost, is not valuable in this respect, the buyer prefers a cheaper FPQ contract based on a periodic

>2The use of information after the time period ¢ = 0 generates the so-called ratchet effect. Hence, even though the
efficiency levels are perfectly correlated over time, the buyer is better off by committing to the repetition of a static
contract (see Bolton and Dewatripont, 2005, Ch. 9).

23In Appendix C, we determine under which conditions these scenarios materialize.
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procurement cost, which is reasonably approximated using only the initial efficiency type. Oppo-
site considerations hold for the supplier who, conversely, cashes an additional rent for revealing

information that, in any case, would not affect the order quantity.

4.6 Stochastic market demand

In this section, we relax the assumption ¢ = 1 and consider a buyer facing market uncertainty.
Let’s assume that the buyer’s revenue associated with the periodic sale of a generic quantity @) of
the product is given by:

B(ne, Q) = n: - b(Q), (29)

where b(Q) is a determistic component with b(0) = 0, '(Q) > 0 and b”(Q) < 0 and 7; is a demand
shift factor that evolves stochastically over time according to the following geometric Brownian
Motion:

dne = a-n - dt +w - n - dMy, (29.1)

where « is the drift parameter, w is the instantaneous volatility and dN; ~ N(0,t) is the increment
of a standard Wiener process. As standard, we assume that r > « to ensure that the expected
present value of the buyer’s revenue flow is finite.

Provided that, as assumed in our model set-up, the production technology is a Cobb-Douglas
with constant return to scale, the expected present value of the procurement cost flow associated

with the periodic provision of ) units of the product is:

c-x*(bo) + k- y*(6o)

r—o?

ClonQ) = ( +U@)) Q. (30)

Hence, the expected present value of the buyer’s intertemporal utility flow is equal to:**

W0, Q) = Bo{ [ 0@ e - C0.Q) = P bQ) - C0nQ). (3)

The order quantity @@ must maximize W (6p, 19, @). From the first-order condition of the maximiza-

tion problem, we obtain:

_Mo b/(Q*) _ c-x*(6o) + k- y*(0o)

r—ao r—o2

+U(6p). (32)

In Eq. (32), as standard, we require that at @Q* the marginal revenue, i.e. the expected present
value of the marginal revenue flow, is equal to the marginal cost, i.e. the expected present value of
the marginal procurement cost flow. Note that, by the properties of b(Q), the higher the marginal
cost, the lower the order quantity @*. In contrast, the higher the current state of demand, 7o, the
higher the marginal revenue, and, consequently, the higher the order quantity Q*.

Let’s consider, for example, the case where b(Q) = Q7 /v with v < 1. Substituting into Eq. (32)

?"Note that here, in line with Assumption 10, we assume that 7o is such that W (8o, n0, @) > 0.
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and solving for Q* gives:

1

* * —1|1—

r—ao r—o

and
W(e()? 7o, Q*) -

¢ - (SO ey @ (34

Concerning the impact of volatility in the evolution of the efficiency type, we find that

dQ* 1 Q*
= — . 0 33.1
do? 11—y r—o2 <5 ( )

and

r—02+ do?

<0. (34.1)

dW (00,10, Q") _ W (o, 7m0, Q") < Q" dQ")
do2 Q*

A higher volatility increases the expected present value of the marginal procurement cost flow. In

response to this increase, the buyer orders a lower quantity of the product. While this choice helps

reduce the expected present value of the procurement cost flow, it also lowers the expected present

value of the revenue flow. The dominance of the second effect over the first results in an overall

negative impact on the net revenue, W (6y, o, @*).

5 Concluding remarks

We conclude by showing that our results apply also when considering some alternative specifications
of the procurement problem. For instance:

1) Let’s consider the case where both input prices evolve randomly over time. As standard, we
can recast the problem in a single stochastic variable using, for instance, the input price k; as the

numeraire and letting the input prices ratio ¥, = ¢;/k; evolve as the geometric Brownian motion:

dpy /by = p - dt + & - dNy, (35)

where p is the drift parameter, ¢ is the instantaneous volatility and dM; ~ N(0,t) is the increment
of a standard Wiener process.
Applying the same procedure used to solve our problem, one can easily verify that the optimal
input levels x}(60;) and y; (6;) must satisfy:
o  yr(6) Y

I—a 2j(0) 14 L. A0 (36)
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Combining Eq. (1) and Eq. (36) yields

~(1-a)
* 1 wt 11—«
zy (01, 10t) = 9 (1 T Héeo) g ) , (36.1)
11—« o
. 1 by l-a\"
e o

The optimal payment can then be determined following the steps outlined in Section 3. It is
noteworthy that, since both ¢y and 6; follow a geometric Brownian motion, x} (6, v:) and y; (64, 1+)
also follow a geometric Brownian motion.?> The analysis of the properties of the mechanism is then
similar to the one developed in Section 4.

2) Let’s consider the case where §; = 1 for any ¢t > 0, and the buyer has private information
about the ratio 1, = ¢;/ky, still following Eq. (35). In this case, the optimal input levels z} (6;) and
vy (0;) must satisfy:

oy () Uy
. = ) 37
L—a zi() 14 GG (37)
Combining Eq. (1) and Eq. (37) yields
. ~(1-a)
% l-«a
COR DR , (37.1)
NECOET
* ¢ 1 e
+ 900) o

The optimal payment can then be determined following the steps outlined in Section 3. Note that,
also in this case, both z} () and y; (1) follow a geometric Brownian motion. The analysis of the
properties of the mechanism is then similar to the one developed in Section 4.

As leads for future work, exploring the impact of flexible order quantities on procurement
strategy is intriguing, especially considering the interplay of adverse selection and moral hazard
stemming from the presence of an unobservable input factor. Additionally, the limited liability of

the supplier, given its potential realism, is another aspect deserving attention.

?5See, for instance, Dixit and Pindyck (1994, p. 82).
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A Appendix

A.1 Incentive compatibility
A.1.1 Lemma 1

Taking as given a truthful report 6y, the supplier’s periodic utility function is equal to:

w00, 00,0) = p(00,01) — (e 20(B0) + k- yu(00,81) ) (A1)

where 8y is the report by a supplier-type 6;, p(&o,at) = p*(6p) +p2(5t), and, by Eq. (1),

1

(04, 0,) = (0, - 2,(6,)*) T

The FOC for the optimal report é\t is:

dpz@t)_d:ct@)‘(ﬁk. . .yt<9t’5t>>:0, (A.2)
1

db db, —a zy(0,)

A truthful report is optimal if Condition (A.2) holds at b, =0, ie.

dp*(6:)  dat(6;) a  y(0r)
o '(C_k'l—a'xt(et))zo' (A.2.1)

Further, the following local SOC must hold:

P?p?(0r)  dPai(0) (c— k.o . yt(et/y\é\t))
d6? do? I=a ay(0r)

5. )
_ (d=m(0) 1 o ~
( db, mt@)) k- oy Yt (64, 0)

or

d2p2(0,)  d2a(6)) s
F '<ka'ﬁ'zi("i)>+ <0

A3.1)
da+ (0 1 \? o (
- ( C;étt) ’ Z‘t(et)) ’ k ’ (lfa)2 : yt(et)
Differentiating Eq. (A.2.1) yields
d2p2(0;)  d2x4(0y) a (1)
ZG?t B d;gt (C_kﬂzi(ei))+ =0 (A22)
_dwi0) g o w(0) <i 1 dai(0:) 1 ) =u 2.
do, (1—a)?  z¢(6r) 0t do:  x:(0:)
Plugging Eq. (A.2.2) into Condition (A.3.1), we obtain
62'&(00 975) da:t(ﬁt) [0 yt(et) 1
’ = k- . -—<0 A3.2
89? d@t (1 — Oé)2 xt(ﬁt) Ot = ( )
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which holds only if 4% < o,
As shown by Laffont and Martimort (2002, pp. 134-136), local incentive constraints also imply
global incentive constraints. Hence, a truthful revelation mechanism can be characterized by the

following two conditions:

ou(bo,0;)  k 1 1

aet = I — o . Hft . (91‘, . CL’t(et) ) 1-a (A4)
= i . yt(et), at each t > 0,
11—« Gt
9210 _ . at each t > 0. (A.5)
00,

This concludes the proof.

A.1.2 Lemma 2

At t = 0, the time-varying terms in the periodic utility function, (6, 50), depend on fo through
the function 0; = ¢(§0,Lt)- Therefore, the expected present value of the intertemporal supplier’s

utility flow is equal to:
U (60, 00) = Eo { / [p(80) — (-2 @0) + k- (60, 80) ) | - e‘”dt} , (A.6)
0

where é\g is the report by a supplier-type 6y, P(go) = pl(@\g) +p2(¢(§07 Ly)), l‘t(é\o) = xt(¢>(f9\0, L))
and’ by Eq' (1)7
yt(907 90) = (¢(90, Lt) . xt(ao)a)_l—oz .

The FOC for the optimal report 50 is:

*dpbo) _dui(o) (o wbo.00)\| | _
o [ s (e w )] )y

A truthful report is optimal if Condition (A.7) holds at fo = 6o, i.c.

Iy e N PR S

Further, the following local SOC must hold:

o [ @plo)  dwy(bo) (c—k- 2. yt(00,00)
Eoy / dégd (%0) K e albo) e "t <0 (A.8)
_(ezt(bo) 1 2 L. __a 0, -
0 dfo xt(§0)> K (1-a)? be(%0, b0) fo=0o
or ) )
@Pp(0o) _ dPz(60) (. 1. _a . yt(bo)
o) /OO degd 00 do? ) (c—k- 125 xt(90))+ e S < 0. (A.8.1)
0 _(45900 ) xt(eo))2 k- (1—aa)2’ : yt(90)
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Differentiating Eq. (A.7.1) yields:

d?p(60) _ d*z¢(6o0) (e—k- 2. yt(eo))+

0o do? do? 1—a  x4(6o)
1 (6 (6o) —r
Ey /0 — o) k- a)g-xt(lgo) (%) Gg(0, Li)+ | e "dt ¢ =0. (A7.2)

o

Plugging Eq. (A.7.2) into Condition (A.8.1), we obtain

PUo) , o * (dxi(fo) 1 y(bo) et
PUO [ L w0 ) <o s

Hence, a truthful revelation mechanism can be characterized by the following two conditions:

8U(90) B yt 90 »
00 dl’t(et) . 1 ) yt(Ho) ) . e—rt
EO {/0 < dgo th(Qo) ¢(007Lt) ¢9(007Lt)> dt} <0. (AlO)

This concludes the proof.

B Appendix

B.1 Proof of Proposition 1

As standard, we abstract, for the moment, from considering the second-order Conditions (A.5) and
(A.10). By the Envelope Theorem (see Milgrom and Segal, 2002, Theorem 1 and Theorem 2) and
using Condition (A.9) we have:

U(o) = llja'/;oEo{/oooyt(S)-m-e_”dt}-ds

_ 1’ja /;0 </OOO Eo {;{;f?a -¢S(5,Lt)} -e—”-dt> - ds, (B.1)

1

yi(s) = (&(s, Lt) - we(o(s, L)) ==

Note that the lowest efficiency type gets zero rents, i.e. U(#!) = 0.

where
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Using Eq. (B.1) and integration by parts, we obtain:

/;h U(bo) - g(6p) - dfo = : lj - -/;h [/;0 </OOOE0 {¢yt(L)) ¢S(3,Lt)} et dt) -ds] - g(0o) - dby
:_1l—€a'[/;o </OOOE°{¢?; Ly) } o dt) ] 90))0
(e {aty oo}

- &-/f () 2ol 20 ) 10000

= 1_a / (/ Eo {ye(0,)} - e dt) H(b) 9(6o) - dfo. (B.2)

Integrating Eq. (5) in the interval [01, 9"} and rearranging yields:

/:h Eo {/Ooop(eo,et) et dt} - g(00) - dby = /;h U(6o) - g(6o) - dfo+

l l

ol

- dt
- dt

- " { [ mt0) + k- wto) e dt} - g(60) - dfo. (B.3)

!

Hence, substituting Eq. (B.2) into Eq. (B.3), we obtain

/;h Ey {/Ooop(eo,at) : e—”-dt} - g(00) - dby = h </OOO Eo{y:(61)} - e dt) ' Héf()) - 9(bo) - dbo

+/:h E, {/Ooo(c i (0) + k- y(0y)) e dt} - 9(6o) - dbo

l

:/:h [/OOOEO{C.%(@)M. <1+ 1ia : Héf“) .yt(et)} -e‘”-dt] -g(60) -y (B.4)

Using Eq. (B.4), Problem (14) can be rearranged as follows:

min /eh /OOE ez + k- (14 —— O oVt e g(60)-dbo, (B.5)
x¢(0¢),y:(0¢) Jol 0 0 Bt 11—« 90 Yi\Ye giYo 0, .

where, by Eq. (1),

1

Ye(0r) = (01 - 24 (0:)”) T2 (B.5.1)

Using the first-order conditions, the optimal input combination (x}(6:),y;(0:)) must satisfy the

(10 L 2O o i)

i 4
—a b l—a zi(6) Kk

following equation:
(B.6)
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Substituting Eq. (B.5.1) in Eq. (B.6) yields:

where:

m*(00)=m3(90)=1'(2'1_a>_(1_a)-<1+ : -H”O))(l_a),

to
l—«o @ 1 H(eo) e
o« ) '<1+1—a. 6o > '

y* (o) = yo(0o) = 010 : (

> o

(B.7.1)

(B.8.1)

Using Eq. (B.7), we can easily show that both the second-order Conditions (A.5) and (A.10) are

satisfied since: da (0 “ (9
xt( t):_xt( t)<07
d9t et

and

i O) 9 O0) (g0 /6,) + 2 (B) - (1/60) — 7(00) - (00/62) - 60(60, L)

ddy — dbp
1 H(6p)
dx*(0o) 1 dln (1 + ot T)
d¢90 ( 0/ t) ZUt( t) 00 ( a) d@o <0,
since, by assumption, %&)/9@ <0

Differentiating Eq. (B.8) with respect to 8; and 6y yields:

dyf(@t)_ yik(gt)
@, 5 ¥

and

dy; (0:) _ dy*(6o)
dby dbo

. din (1+ oL - 2)
+(00/0:) = —y; (0) - % 0 :

dhfl 1"1‘%&}1(00) d * 9 .
( : % ) > L and ) > 0, otherwise.
dbfo dbfo ?

Note that %}ft) <0if

a-0g

(B.9)

(B.10)

(B.11)

(B.12)

Let’s now determine optimal variable part of the payment, i.e. p?*(6;). At each time period

t > 0, the periodic utility associated with the optimal input mix (x}(6;), v (6;:)) would be equal to

u(0o,0:) = p'(00) + p** (0r) — (c- 27 (6:) + k - y; (6r))-
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Integrating Eq. (A.4) yields:

k i (2)
— = . -dz. B.14
l0,00) = u00,0) = 72— [ s (B.14)
No rents should be paid when the efficiency type 6; drops to 0. Therefore, p?*(0) = c-z}(0)+k-y;(0)
and, according to Eq. (B.13), u(fo,0) = p'(fy). Substituting u(6p,0) = p*(fy) into Eq. (B.14)
yields

(0o, 01) = pL(0) + —— . /Oet i) g, (B.15)

l—« z

Last, substituting Eq. (B.13) into Eq. (B.15) and rearranging, we obtain

: /Ot ZAONN (B.16)
0

0 = e w0+ kg 0) + - [

Using Eq. (B.15), the expected present value of the intertemporal supplier’s utility flow is
U(6o) = Eo {/ u(6o, 0;) - e~ - dt}
0

(o) Gt *
:/ Eo {p1(90)+ - / b (2) -dz}-e—”-dt
0 1-—a Jg z
1 9 k ) O, *
_Pr (%) —|—-/ Ey {/ vi(2) -dz} e "t dt. (B.17)
0 0

r l—«o z

Let’s now turn to the fixed part of the payment, i.e. p'(p).?® Since, by construction, the payment

p?*(0;) induces, irrespective of the initial report 6, the truthful report of 6;, we have:

R 1/n 0o O , %
U (60, 80) = © (fO) +’“-/ Eo{/ vi(2) -dz}-e_”t-dt. (B.18)
0 0

l-« z
As it is optimal to report 6; truthfully at each ¢t > 0, we have:

OuBo.0:) _ k  yi(6)
80t 11—« 975

. (B.18.1)

Hence, as 0; = ¢(6p, L), the derivative of Eq. (B.18) with respect to the initial efficiency type 60
reduces to Condition (A.9) whereas integrating Condition (A.9) yields Eq. (B.1). Therefore, the
fixed part can be determined by equating Eq. (B.1) to Eq. (B.17) and solving for p'*(fg). This
yields:

0 foe) *(g .
PR I (J5= Bo { 45 - 6uls, Loy - et - at) - ds .
p(0o) =T — - 5. 47 () ) (B.19)
1—« _fo EO{ 0 ytz dz} ce Tt dt

*0ur proof follows Theorem 2 in Bergemann and Strack (2015).
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C Appendix

C.1 Useful formulas

Let’s first state some useful results to be used later. By the properties of Process (2):%7

1. ¥y = In[6;] has a normal distribution with mean ¥y — %2 -t and variance o2 - t. Hence,
E6,) = E(eﬂt) =TTt = ¢,

2. fr=1In [0;1] = —In[f;] = —9; has a normal distribution with mean —(ny— %2 -t) and variance
o? - t. Hence, ,

0'2 [ed
E(0;) = E(et) = e~ Wo=F0+5 4 — g1 et

Using these results yields:

Eo{x}(6:)} = 2*(60) - o - Eo {0, '} = 2*(6p) - 7, (B.20)
Eo {y;(61)} = y*(60) - 00 - Bo {6, } = y*(60) - ", (B.21)
and
= Lot — OO * et g = z*(6)
o { /0 21 (0) dt} [ B tai o) ar = %) (B.22)
) B2

C.2 The optimal two-part payment

First, the first term into brackets in Eq. (B.20) can be rearranged as follows

6o 00 *
Jo (L ey oot o)
6o 00 1
:/91 (/0 Eg{yf(s)}f_”-dt)-s-ds
0o [e) 0o y*(s) .
:/91 </0 y*(s)~e‘(’"“’2)t-dt> é-ds= Q’T_S(ﬂds. (C.1)

Substituting Eq. (C.1) in Eq. (B.20) yields

o= [ oo TR { [ ) el 0

Note that p'*(6) < 0 since foet %(Z) cdz = — 09’5 dygz(z) - dz diverges.

*"See Dixit (1993, Section 1.3).
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By using Eq. (C.2) and Eq. (B.16), we obtain

(90,91:):17 *(60) + p**(6:)
fo s) r—o?
=c- :L'I(Qt) + k- y:(ﬁt) 1 — |:/ y . -ds + <y*(00) — . . y;(et)>:|
Q@ b0 4 (s
-1 r 0 4% (s
=c-xzy(0) - [1—<1+1ia-Hé§O)> +7’—02.11—€a.</91 yi ) -ds+y*(90)) >0

(C.3)

C.3 Value functions

Let’s now consider the periodic utility associated with the contract. Subtracting the input cost,

ie. c-xf(0y) + k- yf(0;), from the periodic payment p*(6y, 0;) yields

u(bo.0) = —— . [/; V) g4y (00) - <1 oo Z‘Z)] . (C.6)

r—os 1l—« ! s T

The expected present value of the intertemporal supplier’s utility flow is equal to:

U(6y) = Eo {/Ooo u(fo,0) - e - dt}

__r k fooo( 9910 y*és) -ds)-e*’"t-dt—i-
r—o? l—a« 00) - [5° (1— = {Z—S}) cemT . dt
o y*(s)
k ol dS
= s >0 C.7
l-a r—o2 =~ (C7)

Taking the derivative of U(fp) with respect to 6y and o? yields

*(60)
dU(6o) kg
— . 7.1
dby Y T—J2>0’ (C.7.1)
dU(6o) _ U(bo)
p— . .2
do? r—o? 0 (C.72)

respectively.
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The expected present value of the intertemporal buyer’s utility flow is equal to:

b

W(Go) - ; - EO

{/Ooop*(Ho,Ht)-e_Tt-dt}

b *° _r
=2 | [T e Batai 00y + k- B g 00 -+ U )
0
b ~x*(0p) + k- y* (0
:_<C z*(6o) A ( 0)+U(90)>
r r—o
b l-—a 1 H@)\ ' z*(6)
= {c- 1+ - ~<1+1a' 0, > ‘7«702+U(90) ) (C.8)
Taking the derivative of W (6p) with respect to fy and o yields
( W o\ —1  din(14L. 2l .
dW(H()) . C _17 <1 + 1_1a é00)> : ( 1d€0 e ) "z (00)+
T 52 ~1 -
I R e O
( HOo)\ ™' (da* (o) |, =*(0
d (ol ) (2 )
_ ¢ 1-a 1 HO)\ Y| dz*(60)
Hoo)\ ™' 20
+1. (1 + - (goo>> )
c 1 H)\ | da*(6))
S l1=11 . . 8.1
7"—(72 [ <+1—Ot 00 ) d@o >0’ (08 )
dW (6o) _ (e x*(00) + k - y*(0o) n dU (6p)
do? r— o2 do?
1 c-z*(0) + k- y* (6o)
= - . U6 0. C.8.2
r—o2 ( r—o? +U() ) < ( )
respectively.
C.4 The buyer’s periodic utility
Using Eq. (C.6), we can derive the condition that must hold for having u(6y, 6;) < 0, i.e.
u(0079t) < 07
—
00 y*(s) . dS + *
y*(bo)
r. ol sr_(72 <yt(9t),
-
01
2 < A(bo), (C.9)
to
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%0 ¥*(s) 4 -1
where A(f) = =2 Jo e + 1> <1

r y*(6o)
Using Eq. (C.6) and Eq. (25), we can derive the condition that must hold for having u (6, 6;) >
u(fp), i.e.

u(&o, Qt) > H(QU),

6o , * 2 <2
[(/ y(s)-ds>-<1—r U)+y*(90)'<1—r 7 -90>]20,
! S T T 0,5
—

* —1
0, r—o? gelom'ds r—o?
— > . 5 11— 1 A(0p). 1
b~ v [ v (60) VAN (€40

In the limit case where 02 — r, Condition (C.9) does not hold whereas Condition (C.10) does.

2

In general, as o° increases, Condition (C.9) and Condition (C.10) becomes more and less binding,

respectively, since
dA(6o) A(6o)
= — 0. C.11
do? r—o? © ( )
Last, in the limit case where 0 — 0, Condition (C.9) does not hold wheras Condition (C.10) does,

since, as lim,_,0 0 = 6y, u(6o, ;) = u(6y) > 0.
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