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Abstract

According to the World Health Organization, 235 million people around the world currently suffer from
asthma, including approximately 25 million in the United States. There is substantial epidemiological
evidence particulate matter concentrations and asthma. Based upon county level data from 2001-2014, a
spatial panel framework with weights based upon prevailing wind patterns is used to investigate the direct
and indirect impacts of PM2.5 concentration levels on asthma hospitalization rates in Pennsylvania. This
model controls for population density, precipitation, per capita income, and smoking rate. Results show
that PM2.5 concentrations have positive effects on asthma hospitalization rates (both direct and indirect).
For example, a one µ/m3 increase in PM2.5 concentrations throughout all counties in Pennsylvania raises
the number of annual asthma hospitalizations by over 400, with 53.8% of this increase occurring due to
spillover effects. This study highlights the need for a more accurate impact analysis of ambient air
pollution on asthma that reflects the impacts of both local and neighboring regions’ air quality. In the
case of asthma hospitalization rates from PM2.5 pollutions, an appropriate wind direction algorithm also
is important to identify spillover effects across counties.

1 Introduction

Ambient air pollution adversely impacts air quality and human health (Nel, 2005; Kampa and Castanas,
2008; Anderson et al., 2012). The national average trend of SO2 air quality shows an 87% decrease between
1980-2016 (Environmental Protection Agency, 2016b). With decreasing trends in SO2, ozone, and nitrogen
dioxide, particulates have gained more attention (Brunekreef and Holgate, 2002).

The World Health Organization (WHO) named particulate matter (PM) as the pollutant that affects
people more than any other pollutant (World Health Organization, 2016). The severity and magnitude of
PM health impacts is a function of its size. The smaller the size of PM, the more potential there is to cause
severe damage to the human body (Environmental Protection Agency, 2018). The negative health impacts
of PM are widely discussed in the literature (Pope III et al., 2009; Raaschou-Nielsen et al., 2013; Wang et al.,
2014; Zhu et al., 2017).

The EPA has continuously updated its standards for criteria air pollutants since the passage of the Clean
Air Act of 1990. For instance, the standards for PM have changed three times and ozone pollution standards
have changed two times. One element of enforcement for these standards is designation of attainment or
non-attainment by an area. Attainment/ non-attainment classification by EPA is based on the level of
air pollutants. In the case of a geographic area where pollutant levels are below the NAAQS threshold,
this area is categorized as an attainment area. Unlike an attainment area, a non-attainment area deals with
persistent air quality problems and violates federal health-related standards for outdoor quality (Pennsylvania
Department of Environmental Protection, 2016).
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Figure 1: Attainment vs. non-attainment designation status by county Pennsylvania based on PM2.5 con-
centrations criteria between 2001 and 2014.
Note: Using the data from EPA Green Book, National Area and County-Level Multi-Pollutant Information,
we define attainment vs. non-attainment counties based on the PM2.5 concentrations criteria. If the county
falls in a non-attainment status in any years between 2001 and 2014, we consider it a non-attainment county,
otherwise the county falls in an attainment status.

As a demonstration, Figure 1 shows non-attainment designation for PM2.5 concentrations in Pennsylvania
are located primarily at or adjacent to metropolitan areas in the southeast and southwestern portions of the
state. Pollution dischargers within non-attainment areas are required to comply with tighter environmental
regulations than similar dischargers in attainment areas. For instance, in non-attainment areas, existing
pollution sources are required to install “reasonably available control technology” (RACT) while new sources
of pollution are required to achieve the “lowest available emission rate” in addition to the RACT requirement
(Curtis, 2018).

The main objective in this research is to examine what factors, including PM2.5 concentrations, explain
asthma hospitalization rates in Pennsylvania. Applying a spatial regression model, this analysis provides
us with estimates of both within county and spillover effects among contiguous counties from PM2.5 con-
centrations. The spillover analysis allows us to document the existence of biases that would be found when
using standard, non-spatial models in estimating the impacts of PM2.5 concentrations. To the best of our
knowledge, spillover analysis of PM2.5 pollutions is missing in public health literature. This study aims to
address this gap in the literature.

Spatial connections between counties are created by imposing prevailing wind patterns to determine
neighbor and non-neighbor interactions. The results of a spatial econometric model reveal that county
PM2.5 concentrations are associated with both higher asthma hospitalization rates within the county itself
(a positive direct effect) along with increased hospitalization in neighboring, downwind counties (a positive
indirect effect). Thus, important spillover effects exist from the PM2.5 concentrations on asthma hospital-
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ization rates.

The main contribution of this research to the literature is investigating the spillover effects of the sources
of PM2.5 pollutions on asthma hospitalization rates. In addition, the study introduces a new approach to
evaluating who is considered a neighbor regions based upon prevailing wind direction. After examining the
literature, no previous study has controlled for this type of spatial interaction between PM2.5 concentrations
and asthma hospitalization rates, so that the regional aspects of PM2.5 concentrations have not been inves-
tigated. Since PM2.5 and other air pollutant concentrations move through the atmosphere, neglecting their
transportation underestimates the real impact of air quality.

The rest of the manuscript proceeds as follows. Section 2 provides background information on national
and states’ trends in asthma and its associated costs to society. Section 3 discusses ambient air pollution
and, specifically, PM2.5 concentrations and asthma. Section 4 explains the study area. Section 5 provides
details of the model developed for this research. Section 6 describes the data and spatial data considerations.
Section 7 provides the results and section 8 concludes with a discussion and policy implications.

2 Asthma: symptoms, time trend, and cost

Asthma is a chronic respiratory and inflammatory lung disease characterized by episodes or attacks of
impaired breathing. Even though scientists argue that there is not a specific, well-known cause for asthma,
a combination of environmental factors and genetics are considered as the disease triggers (Centers for
Disease Control and Prevention, 2013). Being exposed to multiple environmental factors exacerbate asthma
symptoms. Akinbami et al. (2011), and Akinbami et al. (2012) list airway irritants such as tobacco smoke
and air pollution, allergens, respiratory infections, stress and exercise among common asthma attach triggers
that exacerbate symptoms.

2.1 National and state asthma trend, and the burdensome cost of asthma on
society

Since the early 1980s, asthma has shown an upward trend in all ages, genders, and racial groups in the U.S.
(Asher et al., 2006). About 25 million Americans currently suffer from asthma, about one in every 13 people.
Asthma is leading chronic disease and the third leading cause of hospitalization among individuals under 18
years of age (Center For Disease and Control, 2013b). Even though the overall trend of asthma’s current
prevalence is increasing on both the national and the state levels over a period of 15 years, individual states
follow a different pattern.

The Behavioral Risk Factor Surveillance System (BRFSS) provides the current asthma prevalence on the
state level. Florida, Alabama, Pennsylvania, and Utah are among the high increase states for adult asthma
prevalence. Compared to the average percentage increase in the U.S. between 2001-2015 (43%), Pennsylvania
experienced a slightly higher increase rate at 47%.

Asthma can affect people of different age and racial groups, but is more common among minorities.
Asthma represents a significant burden on individuals and society in terms of reducing productivity and
increasing healthcare system demands (Crighton et al., 2012).

According to the EPA’s asthma fact report, “asthma accounts for 14.2 million physician office visits,
439,000 discharges from hospital inpatient care, and 1.8 million emergency department visits each year”
(Environmental Protection Agency, 2016a) (p. 1). In 2008, 14.2 million reported asthma as the reason for
missed days of work (Center For Disease and Control, 2013a). Reports show asthma accounts for 13.8 million
missed school days in 2013 (United State Environmental Protection Agency, 2011).

The most recent estimates for the annual economic cost of asthma in the U.S. shows an increase from
$12 billion (equivalent to about $28 billion in 2019) in 1994 to $56 billion (equivalent to about $69 billion)
in 2011 (National Hospital Ambulatory Medical Care Survey, 2011; National Hospital Ambulatory Medical
Care Survey, 2011). The cost involving asthma hospitalization in Pennsylvania follows the same increasing
trend over the years (Pennsylvania Department of Health, 2012). In the next section, the connection between
ambient air pollution and PM2.5 will be discussed.
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3 Asthma and ambient air pollution

Ambient air pollution impacts public health both on short and long-term bases. The most recent estimate
reports that outdoor air pollution is responsible for more than 3% of the annual disability-adjusted life
years lost in 2010 (Guarnieri and Balmes, 2014). Traffic and fossil-fuel power generation contribute the
largest shares to urban air pollution (Perera, 2017; Cohen and Pope 3rd, 1995). With the increasing rate of
urbanization in the U.S., more individuals face the negative effects of exposure to pollution.

The negative effects of PM2.5 on human health in general and particularly on asthma are at the core of
this study. Many researchers address the effects of short-term and long-term exposure to PM2.5 (Tatum and
Shapiro, 2005; Eder et al., 2006; Künzli et al., 2009; Anderson et al., 2012; Harris et al., 2018; Veremchuk
et al., 2018). For example, a one-year exposure to 10 µ/m3 in PM2.5 has been estimated to increase mortality
by 7.5% (Global Catholic Climate Movement, 2017). In another recent study, scientists show that an annual
exposure increase of 10 µ/m3 for PM2.5 leads to an average loss of life expectancy between 9 and 11 years
(Andersen, 2017). One of the issues with PM2.5 concentrations is that there is not an exact threshold
for the concentration level. Recent studies show that the harmful effects are observed even in areas with
concentration less than a third of the EPA current standard (Datz, 2015).

In a study done by the Schneider et al. (2010), estimates for the health impacts of PM2.5 emitted from
coal-fired power plants and automobiles in the U.S. show over 13,000 deaths, 9,700 hospitalizations, and
20,000 heart attacks in 2010 with a total monetized value of more than $100 billion. Beelen et al. (2014),
Schwartz et al. (2007), and Schneider et al. (2010) argue that long-term exposure to PM2.5 is associated with
higher mortality risk, even when concentrations are below the standard limit. In other words, they believe
there is no “safe threshold” for PM.

In Lipsett et al. (1997), the authors show the relationship between emergency room visits and exposure
to PM10 in Santa Clara County, California during the winters of 1988-1989 through 1991-1992. A time-series
analyses using Poisson regression was applied and the results indicate a consistent relationship between the
number of ER visits and PM10. In addition, Liu et al. (2008) conducted a study on 182 children with asthma,
ages 9 to 14 over a 4-week period between October and December of 2005 in Windsor, Ontario, Canada.
Using mixed-effects regression models and adjusting for confounding variables, their results indicate that the
air pollution may increase airway oxidative stress and decrease small airway function of asthmatic children.

Another study by Mann et al. (2010) choose 315, 6-11 years old children with asthma in Fresno, California
between November 2000 and April 2005. The authors applied statistical analysis and time series estimations
to find that boys with mild intermittent asthma exposed to PM2.5 had increased risk of wheeze. Meng et al.
(2010) surveyed 1,502 individuals in the San Joaquin Valley, California for daily or weekly asthma symptoms
and asthma-related ED visits or hospitalization in the past year. The statistical analysis applied adjusting
for age, gender, race/ethnicity, poverty level and insurance status. The results indicate that individuals
exposed to higher level of PM2.5 are more likely to have asthma symptoms and ED/hospital visits.

In addition to Mann et al. (2010) and Meng et al. (2010) studies, Silverman and Ito (2010) describe the
effects of PM2.5 on asthma symptoms by using a daily time-series analysis of 6,008 asthma ICU admissions
and 69,375 general (non-ICU) asthma admissions in New York City hospitals from April to August over the
1999 to 2006 time period. The results show children with asthma are affected by particulate matter.

In the northern portion of the United Kingdom, Namdeo et al. (2011) conducted a time series analysis
to capture the effects of PM on respiratory hospital admissions (and mortality) mainly among the elderly
population between April 2002 and December 2005. The results indicated that PM10 is positively associated
with respiratory hospital admissions. Conducting research the short-term effects of particulate matter on
pediatric asthma emergency admissions in Athens, Greece over the period 2001-2004 is a study by Samoli
et al. (2011). These authors use daily time-series data provided by children’s hospitals and fixed pollu-
tion monitoring stations. Results from Poisson regression models confirm that exposure to PM10 increases
emergency hospital admissions for pediatric asthma.

Glad et al. (2012) gathered data from 2002 to 2005 for individuals with a primary discharge diagnosis of
asthma presented to 1 of 6 EDs in Pittsburgh, Pennsylvania. The authors apply a case-crossover methodology
to be able to control for the effects of subject-specific covariates such as gender and race. Their results
indicate that exposure to PM2.5 has an effect on African American populations. In another study, by
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linking residential address of 481 subjects with current asthma and using a 4 km grid air pollutant surface
developed by the French Institute of Environment, Jacquemin et al. (2012) apply multinomial and ordinal
logistic regressions and find that long term exposure to PM10 is associated with uncontrolled asthma in
adults.

In a review article, Ristovski et al. (2012) examine research on the health effects of diesel particulate
matter by adopting a two-step research methodology: (1) characterizing the physico-chemical properties
of diesel PM (DPM), and (2) relating specific DPM constituents to inflammation, innate and acquired
immunity, and oxidative stress. Malig et al. (2013) study the relationship between coarse particles and
respiratory emergency department visits from 2005 to 2008 within 35 California counties. A time-stratified
case-crossover design is applied to control for time-invariant confounders and seasonal influences. The result
shows coarse particle exposure may trigger asthma exacerbations.

While numerous studies have analyzed the relationship between ambient air pollutants and asthma, ev-
idence of this association on a regional scale is still mixed. The discussion presented by North Carolina
Attorney General in 2006 arguing pollution from TVA’s coal-fired power plants in Tennessee causing dam-
ages the health of North Carolina’s residents is an example of the regional effects of ambient air pollution
(Environmental Appeals Court, 2008). No previous research, however, has estimated the spatial spillover
of PM2.5 pollutions. Due to a misspecification issue when not accounting for spatial spillover, the results
of any regression estimation may be biased. In other words, when using a non-spatial regression analysis,
we assume health outcomes at a county basis, like asthma hospitalization, are independent of the pollution
levels (PM2.5 concentrations for example) in neighboring counties. This assumption ignores the effects of
PM2.5 concentrations on adjacent counties. By ignoring spatial spillover effects, the total effect of PM2.5

concentrations on health outcomes may be underestimated.

4 Study area

Asthma related indicators are not available for all the states on a county level. Because of this data limitation,
instead of a regional or national analysis, we focus on one state, Pennsylvania. Asthma in Pennsylvania is
a serious concern. In 2017, the current asthma prevalence rate in Pennsylvania for adults was reported at
10.9%; that is far higher than the average rate among adults in the U.S. (7.6%) (Henry J Kaiser Family
Foundation, 2017). Delaware, Philadelphia, Montgomery, Bucks, and Washington are the counties with the
highest asthma hospitalization rate, while Mifflin, Snyder, Juniata, Clinton, and Huntington counties have
the lowest number of asthma hospitalizations. What the counties with a high asthma hospitalization rate
and counties with a low asthma hospitalization rate have in common is their population density. Counties
with a higher population density are struggling with more asthma triggers than counties with lower asthma
hospitalization rate, which are usually more rural.

5 Models

A spatial regression model is used to investigate the impacts of PM2.5 concentrations on asthma hospitaliza-
tion rates. Spatial regression models differ from regression models by inclusion of a spatial interrelationship
between observations of geographic areas such as cities, counties, states, or even countries (Elhorst, 2014).
In a spatial model, each observation belongs to a location whereas observations in a non-spatial regression
are independent (LeSage and Pace, 2009). This locational linkage is a fundamental point for the observation
dependency assumption in spatial regression. Among the three types of spatial interaction effects, this study
focuses on exogenous interactions among the independent variable (X). The spatial lag of X model (SLX)
assumes that the dependent variable for each observational unit depends on an independent variable from
other units of observations.

Independentvariablexofunit j −→ Dependentvariableyofunit i (1)

A SLX model can be expressed as
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Y = αιN +Xβ +WXθ + u (2)

where Y is asthma hospitalization, WX denotes the interaction among the independent variables. β and
θ represent a K × 1 vector of parameters to be estimated. W is the spatial weight matrix which accounts for
identification of neighbors. There are four types of spatial weight matrices commonly used in applied studies:
(i) p-order binary contiguity matrices. Contiguity weight matrices assume only those units of observations
that share a common border are neighbors (p = 1 also called first-order neighbors). When p = 2, neighbors
and neighbors of neighbors are considered and so on; (ii) inverse distance matrices are based on distance
between observation i and j; (iii) q-nearest neighbor matrices when q is a positive and an integer number
defined based on the research question by the researcher; and (iv) block diagonal matrices when a group of
units have intercorrelation with each other, but not with the rest of the observations (Elhorst (2014)).

As pointed out by Anselin and Rey (1991), the proper choice of a spatial weight matrix is an important
issue in empirical research. Generally, all mentioned forms of neighbors in spatial models deal with symmetric
weight matrices. However, sometimes the most accurate definition of neighbors does not follow a symmetric
form. Commuting flows in the transportation literature and regional labor market performance are two
well-known examples of asymmetric spatial weight matrices. More related to our study, Chen et al. (2018))
capture the effect of wind direction on the PM10 concentrations at the municipal level in China as an example
of a dynamic and asymmetric spatial weight matrix dependent on weather patterns.

Yang et al. (2017) and Yang and Chou (2015) explore the effects maternal exposure to downwind sulfur
dioxide levels on the occurrence of low birth weight (LBW). They used zip code level of observations and
control for wind direction by implementing a four-step procedure. Since these two studies did not apply
a spatial regression model, this research is motivated by Cheng et al. (2014) and Chen et al. (2018) who
introduce dynamic, asymmetric weight matrices into traffic modeling and PM10 concentrations, respectively.
These authors argue that for some cases, such as network data and PM10 concentrations, a general homoge-
neous spatial weight matrix is inadequate and we need to apply a heterogeneous (and/or dynamic) spatial
weight matrix.

Applying this same rationale, our study introduces an empirical model based on a weight matrix built
upon prevailing wind direction. Based on this prevailing wind pattern, unit i is considered a neighbor for
unit j if and only if it is located upwind of j. Since unit j is downwind of unit i, unit j is not considered
a neighbor for unit i. Following this logic, a weight matrix is constructed based upon the annual average
prevailing wind map for Pennsylvania counties (World Forecast Directory, 2019).

Using El Dorado Weather, Inc. map, the prevailing wind direction in Pennsylvania was determined to
be southwest to northeast. According to this prevailing wind direction, for instance, Washington County, in
the southwest portion of Pennsylvania, is a neighbor of Allegheny and Westmoreland Counties. However,
being down wind, both Allegheny and Westmoreland Counties are not neighbors for Washington County. In
addition, since a weight matrix needs to be exogenous to the estimation procedure, a geographical weight
matrix based upon prevailing wind direction fits this requirement. The notion of geographical proximity has
been applied widely in previous literature (e.g., (Jaffe, 1989; Jaffe et al., 1993; Attila, 2000; Chagas et al.,
2016)).

In addition to ambient PM2.5 concentrations, empirical studies have shown several other factors are
associated with asthma incidents. Included among the independent variables are: smoking rate (Chen et al.,
1999; Thomson et al., 2004; Gilliland et al., 2006), population density (Leinberger, 2010; Solé et al., 2007),
and Hispanic population (Center For Disease and Control, 2013a) and per capita income (Kozyrsky et al.,
2010). Each control variable is expected to be positively correlated with asthma incidence. While per capita
income level has been shown to be negatively correlated with asthma incidence (Kozyrsky et al., 2010),
asthma hospitalization rate is utilized here which leads us to believe that as per capita income declines,
there are more low-income households in a county that may not have enough financial resources nor health
insurance to afford to visit a hospital when breathing difficulties arise For this reason, our expectation for
the impact of a per capita income variable on hospitalization rate is different from those in the literature.
Finally, weather variables of precipitation and humidity have had mixed effects in the literature (Jerrett
et al., 2008; Ho et al., 2007).

The empirical model is defined as:
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AsthmaHospitalizationit = β0 + β1PM2.5Concenterationsit + β2Precipitationit

+β3PerCapitaIncomeit + β4SmokingRateit + β5PopulationDensityit + β6HispanicPopulationit

+θWPM2.5Concenterationsjt + νi + ωt+ εit

(3)

where AsthmaHospitalization stands for the asthma hospitalization number in county i and time t, PM2.5

Concenterations represents PM2.5 concentrations in county i and timet, SmokingRate is the smoking rate
in county i and time t, PopulationDensity shows the population density in county i and time t, Precipitation
shows the precipitation in county i and time t, HispanicPopulation is the percent of Hispanic population in
county i and time t, while νi and ωt are county and year fixed effects, respectively. Elhorst (2014) notes that
“for the specification of more complicated behavioral hypotheses, including effects” (time fixed effect, space
fixed effect, and two-way fixed effect) (p. 2), spatial units have unique characteristics which are not always
possible to control for all of these characteristics. Panel estimation introduces a dummy variable for spatial
units in the estimation to capture unobservable predictors for units νi. Our model also controls for time
fixed effects to capture unobservable predictors over time (ωt). Given the use of county fixed effects, there
should be no need to control for other factors, such as the availability of hospitals in each county, which
do not change very much over time. The term WPM2.5concenterations denotes the spatial components of
PM2.5 concentrations. θ represents the spillover effects of PM2.5 concentrations. This coefficient explains
the effects of PM2.5 concentrations of neighboring county (j) on the asthma hospitalization rate in county
(i).

6 Data

Data for constructing the empirical models come from different sources. The rate of hospitalizations for
asthma are derived from the National Environmental Public Health Tracking Program (NEPHTP) for 2001-
2014 and classified using the International Classification of Diseases, ninth Revision (ICD-9). We work with
age-adjusted hospitalization rate. The data covers ICD-9-CM: 493.XX diagnosis codes. More asthma related
indicators such as asthma prevalence among adults, asthma prevalence among children, and emergency
department visits for asthma are reported, but only over a more limited number of years and states. By
definition, hospitalization data does not include asthma among individuals who do not receive medical care
or who have not been hospitalized, including those who die in emergency rooms, in nursing homes, or at home
without being admitted to a hospital, and those treated in outpatient settings. NEPHTP provides asthma
hospitalization information by counties for 28 selected states. Data are based on the date of admission rather
than the date of discharge. Data represents the number of admissions rather than the number of individuals
admitted to the hospital. In most cases, admissions of residents to out-of-state hospitals are excluded. Data
are based on the county of individual residency.

For the independent variable of interest, we created a measurement of annual PM2.5 concentrations level
based on data provided by CDC-NEPHTP. NEPHTP reports different air quality indicators, such as air
toxics, mortality benefit associated with reducing PM2.5 concentrations level, and days above regulatory
standard for Ozone and PM2.5. PM2.5 concentrations levels are based on seasonal averages and daily mea-
surement for monitor and modeled data. A Downscaler (DS) model is applied by the U.S. Environmental
Protection Agency (EPA) to predict the measurements for county and day observations with missing values
in monitoring data. The data generation process in DS is based on statistical fusion of the Air Quality
System (AQS) and Community Multiscale Air Quality (CMAQ) model-predicted concentration values. AQS
was used for observations with monitoring data.

Population data come from the Bureau of Economic Analysis (BEA). Precipitation data are collected
through PRISM climate group is supported by the USDA Risk Management Agency, and the National
Center for Biotechnology Information published cigarette smoking prevalence in U.S. counties. Finally, for
the spatial weight matrix, a shape file of Pennsylvania counties consisting of the latitudinal and longitudinal
coordinates of all the 67 counties is adapted from the U.S. Census Bureau (Tiger) report.

Contiguity and neighborhoods in spatial analysis play vital roles (Tobler, 1970). To control for spillover
effects of PM2.5 concentrations, 67 contiguous counties were included in our analysis. Wind map of the
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Table 1: Descriptive Statistics

Variable Mean Standard Min Max Expected
Deviation sign of

coefficient

Asthma Hospitalization age-adjusted rate (per 10,000) 12.51 4.78 4.6 32
PM2.5 Concentrations (µ/m3) 12.23 2.42 7.8 23.3 +
Smoking Rate (%) 19.67 2.95 9.04 25.7 +
Precipitation (Inches) 46.03 8.54 24.73 83.86 +
Per Capita Income (Thousand dollars) 33,725 8,343 18,263 75,835 -
Population Density (Pop./mi2) 446.87 1,330.46 12.04 10,911.16 +
Hispanic Population % (expressed as a decimal) 0.030 0.035 0.003 0.216 +
Number of observations 938

Table 2: Results of 1st-order spatial autoregressive rho calculations for county level asthma hospitalization
rates in Pennsylvania (age adjusted rates)

2001 2014

Rho 0.961 0.980
z-probability 0.000 0.000

United States and World Forecast Directory, El Dorado Weather, Inc. are used to make the weight matrix.
Descriptive statistics for each variable are reported in Table 1 along with the expected signs of PM2.5

concentrations and the control variables. Aside from the descriptive statistics for all the observations, we
compare descriptive statistics for attainment and non-attainment counties. Asthma hospitalization rate and
PM2.5 concentrations are very different in attainment vs. non-attainment counties.

Our motivation to work with a spatial model in this analysis is based upon air pollution movement tied
to geographical distance. One should expect to see the residence of downwind locations being affected by
air pollution levels from upwind areas. Before we analyze the model in a spatial regression framework, we
used an intuitive way to identify asthma hospitalization rate clusters. Figure 2 shows a map of asthma
hospitalization rates for 2014, the last year of the dataset. Some spatial clusters are obvious in 2014.
Philadelphia, Montgomery, Delaware and Bucks counties in the southeastern part of the state all had asthma
hospitalization rates in the highest category. In addition, there is another cluster of high category rates in
the southwest part of the state. Each cluster is associated with a metropolitan area (either Philadelphia and
Pittsburgh).

The next step after visualizing asthma hospitalization among counties is to detect spatial autocorrelation.
To test for asthma hospitalization rate autocorrelation, we applied the 1st-order spatial autoregressive (FAR)
estimates code written by James P. LeSage, available through the spatial econometrics Toolbox for Matlab.
FAR output includes the rho coefficients that indicates the autocorrelation between a dependent variable
and a dependent variable in surrounding neighbors. Table 2 shows the results for the 1st-order spatial
autoregressive estimates for two points of time and its z-probability. These tests reveal that there are
significant spatial autocorrelations among counties in Pennsylvania. This means that Pennsylvania asthma
hospitalization rates tend to be clustered together.

7 Results

Both the in-county and out-of-county spillover effects of PM2.5 concentrations on asthma hospitalization are
examined by estimating a two-way fixed effect spatial panel model. We test the null hypothesis that the

8



Journal of Regional Analysis & Policy 50(1): 1–15

Figure 2: Asthma hospitalization rates in Pennsylvania counties, 2014 data

spillover effects of PM2.5 concentrations are statistically different from zero. To be capable of comparing the
results with a model without controlling for spillover effects, we report the OLS estimation that excludes
any spillover effects of PM2.5 concentrations. The joint effects (direct and indirect) in the spatial model are
larger than the direct effect in OLS model, while the source of the effects is different in two models. The
OLS model ignores the out of county effects assuming all the effects of PM2.5. on asthma hospitalization in
county “j” raised by PM2.5 in county “j”. Unlike PM10, PM2.5 is a fine particle, which can travel further
than PM10. Our analysis is based on the assumption that unlike PM10 concentrations, which will diminish
considerably as the distance between neighbors increases, PM2.5 concentrations will diminish with a lower
rate as the distance between neighbors increases. To do a placebo test and check the reliability of the
model, we tried applying a different weight matrix by using the reverse prevailing wind direction and the
results shows statistically insignificant indirect effects. We also tested to see whether the means of asthma
hospitalization rate vary between attainment and non-attainment counties. The result of the t-test shows
the mean of asthma hospitalization is statistically different in attainment vs. non-attainment counties (t-stat
= 18.76, attainment counties’ mean = 10.71, non-attainment counties’ mean = 15.97).

The estimated results are reported in Table 3. In both models, the PM2.5 concentrations variable has a
positive and significant coefficient, meaning that there is a positive, within county correlation between PM2.5

concentration and asthma hospitalization rates. A one µ/m3 increase in PM2.5 concentrations is associated
with an estimated 0.128 per 10,000 population increase in the asthma hospitalization rate within the county
where this increased concentration occurs. The indirect effects of PM2.5 concentrations are shown by the
coefficient of PM2.5 concentrations in neighboring counties’ variable (Table 3). This coefficient is positive and
statistically significant at the 10% level, meaning that asthma hospitalization rates increase with increasing
PM2.5 concentrations in upwind counties. A one µ/m3 increase in PM2.5 concentrations in county i is
associated with an estimated 0.154 per 10,000 higher rate of asthma hospitalizations in downwind counties.

Other positive and statistically significant influences on asthma hospitalization include population density,

9



Journal of Regional Analysis & Policy 50(1): 1–15

Table 3: Asthma hospitalization estimation results for the OLS and the SLX model

Variable OLS model (age-adjusted rate) SLX model (age-adjusted rate)

PM2.5 Concentrations 0.210*** 0.128***
(0.060) (0.074)

Precipitation -0.008 -0.008
(0.009) (0.009)

Per Capita Income 0.1*** 0.1***
(0.02) (0.02)

Smoking Rate 0.063 0.060
(0.051) (0.051)

Population Density 0.003* 0.003*
(0.001) (0.001)

Hispanic population % 18.225*** 19.753***
(4.889) (4.952)

PM2.5 Concentrations in neighboring counties - 0.154***
(0.083)

Year fixed effect Yes Yes
County fixed effect Yes Yes

Adjusted R-squared 0.96 0.96

Number of observations 938 938

Numbers in the parentheses represent P- values
*, **, and *** refer to 10% 5%, and 1% significance levels, respectively.

per capita income, and Hispanic population percentage. Since the constant term in a fixed effect panel
estimate that includes both year and county fixed effects is essentially not interpretable, we provide no
explanation for the constant in this model.1

8 Conclusions and policy implications

The objective of this study is to understand the asthma related health impacts from PM2.5 concentrations.
More specifically, the impacts of both in-county and neighboring county PM2.5 concentrations on asthma
hospitalization rates in Pennsylvania are investigated. A balanced panel of 67 counties in Pennsylvania
over fourteen years (2001-2014) is applied to estimate the effects and capture the spillovers from PM2.5

concentrations on asthma hospitalization rates across counties. In this research, we identify an important
aspect missing in the health impact analysis literature of ambient air pollution - the presence of statistically
significant spatial autocorrelation among county level asthma hospitalization rates. This presence implies
that the ordinary least square estimations (non-spatial models) may lead to a biased result and underestimate
the overall impact of PM2.5 concentrations on asthma hospitalization rates. Spatial models incorporate the
intercorrelation between county level PM2.5 concentrations and thereby capture the spillover effects of these
concentrations. In addition, applying spatial analysis without correctly employing wind direction to identify
each unit’s neighbors also generates inaccurate estimations of PM2.5 concentrations impacts. Putting into
practice the proper upwind and downwind relationships between counties within an ambient air pollution
impact assessment is a key element to derive a precise impact estimation.

Our results suggest that county level PM2.5 concentration is an important explanatory factor in asthma
hospitalization rates. This finding is similar to the ndings of numerous studies, including Glad et al. (2012),
Mann et al. (2010), Meng et al. (2010), Liu et al. (2008), Jacquemin et al. (2012), Malig et al. (2013),
Samoli et al. (2011), and Silverman and Ito (2010). While there are several GIS-based studies focused on
the locational impacts of asthma (Yap et al., 2013; Crighton et al., 2012; Hanchette et al., 2011), asthma
hospitalization impacts from PM2.5 concentrations occurring in upwind counties have not previously been
discussed in the literature.

From Table 3 results, a one µ/m3 increase in PM2.5 concentrations is associated with a combined asthma

1We also estimate a separate model to include county specific time trends to see if time trend for counties follow the same
pattern. Most of the counties follow a negative time trend.
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hospitalization rate increase of 0.28 per 10,000 population within both the county itself where the increase
occurs as well as in downwind counties. This study’s findings have policy implications for both federal and
local governments. In December 2012, EPA reduced PM pollution standards by tightening the annual PM2.5

standard from 15 to 12 µ/m3. Even small changes at lowering the standard could have significant impacts
on public health. Giannadaki et al. (2016) note that governments continue to adopt stricter limits for annual
mean PM2.5 level. As shown in this research, lower limits for PM2.5 concentrations lead to substantial
reductions in at least one negative human health outcome - asthma hospitalizations.

Although ambient air pollution has gained more attention for many years and there has been imple-
mentation of many regulations and air quality standards to help control pollution levels, still more work
needs to be done. As one example, if the existing method to calculate the PM2.5-attributable health effects
is not capturing the spillover effects, the findings from this study show that inclusion of the out of area
health effects of PM2.5 concentrations are potentially important in the consideration of setting or revising
primary PM standards. Because the regulation of pollutants is an economic burden for the power generation
sector and society in general (Curtis, 2018), the most accurate accounting of human health effects is needed
when considering pollution standard reductions – i.e. those which incorporate spillovers effects. Since non-
attainment designations along with their incumbent increased regulation on pollution dischargers happen at
city and county levels, the spillover benefits from these additional regulations need to be considered as the
human health impacts of air pollution spread beyond regulated areas.

Several limitations in the research are recognized. First, to account for wind patterns, future research
should consider a more detailed algorithm that involves wind speed and wind rose when computing a weight
matrix. Wind rose is a diagram that shows the relative frequency of wind direction in a particular place. In
practice, wind direction and speed change over time, so to investigate the effects of ambient air pollution,
one needs to continually adjust the neighbors according to the frequency of wind direction and speed. For
this research, corresponding information about direction and speed were not available for each county and
each year. Thus, the empirical results found here may change with more accurate data of wind patterns.
The weak statistically significant indirect effect of PM2.5 concentrations could be an indicator showing that
this analysis might benefit from generating a more precise wind direction weight matrix.

In addition to incorporating a more precise wind speed and direction weight matrix, we are aware that the
impact of out-of-state effects is not captured in this analysis. Downwind counties located on the border with
states of Ohio and West Virginia, are affected pollution concentrations of adjacent counties in neighboring
states. While we are well informed of this effect, being adjacent county “j” in a neighboring state is a time
invariant characteristic for county “i” border county in Pennsylvania. For this reason, we did to include a
binary variable to control for any border effect that may exist because it would be dropped when the fixed
effects models are estimated.

A third limitation is that asthma hospitalization data are currently only available at the county level
for the state of Pennsylvania. Access to asthma prevalence and asthma emergency department visits data
for conducting new estimations using asthma related incidents would provide researchers with a better
estimation of PM2.5 impacts. Also, we are aware that household locational decisions may be affected by
pollution concentration. It is possible that households with asthma patients may choose to live within areas
of Pennsylvania with lower pollution concentrations in response to this condition. Given the current design
of the study, we are unable to control for this fact. However, if households with members that suffer from
asthma are going to move as a result of this condition, they are as likely to move out-of-state to a warmer
climate as somewhere in the state of Pennsylvania.2,3

As a final limitation, expanding the study region by applying all U.S. counties will provide a better
understanding of the health impacts of the pollution. Unfortunately, data for all the counties in the U.S.
are not available at this point in time. Having access to these point data pollution levels may enable the
researchers to achieve results that are more accurate. Unfortunately, the pollution data for points in county
level in a time series is not readily available. One would expect point source data on pollution to show
greater effects on asthma hospitalization.

Further research should consider improving on the above limitations by imposing a more accurate wind

2For more information, refer to: https://www.aafa.org/asthma-capitals-top-100-cities-ranking/
3For more information, refer to: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3519344/
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pattern, expanding estimations to include emergency department visits and asthma prevalence, and a county
level analysis on the national level are recommended for future works. Considering the limitations for the
study, the current out-of-county PM2.5 impacts can be viewed as a lower bound effect. The current outcome
does contribute to the literature by examining the impact of ambient air pollution on human health by
specifically documenting and estimating the cost of asthma spillover effects across Pennsylvania counties
from PM2.5 concentrations.

As discussed in the previous sections, finding an accurate algorithm to deal with the spillover between
pollutants and asthma matters. The weight matrix which defines the neighbors based on wind direction was
determined to be the most accurate algorithm to investigate spillover effects of the pollution.
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