

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

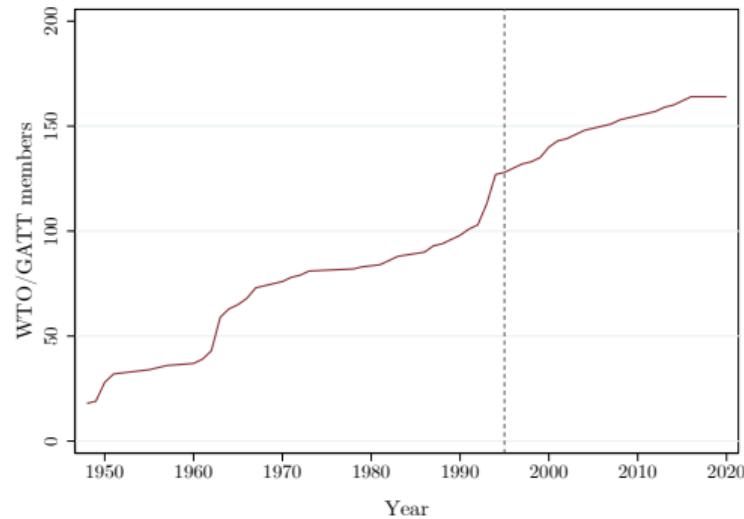
No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Multilateral Economic Integration and Agri-Food Global Value Chains

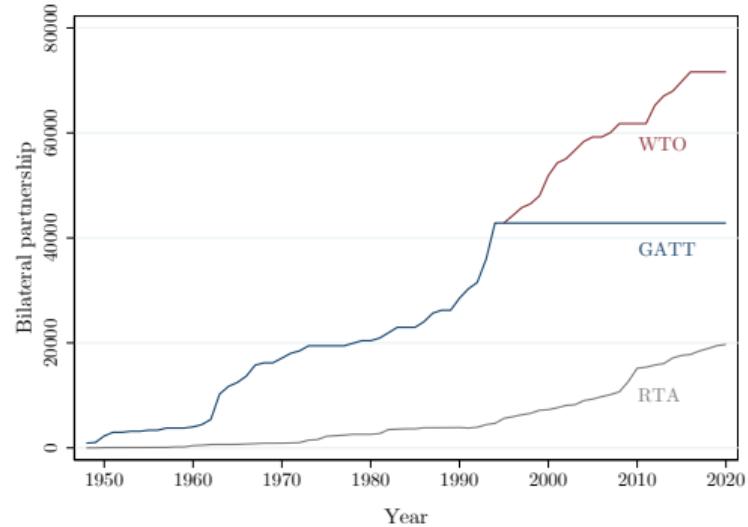
Dongin Kim and Sandro Steinbach

IATRC Annual Meeting
December 13, 2023

email: dongin.kim@ndsu.edu


Motivation

- The development of agri-food **global value chains (GVCs)** have reshaped how international trade functions.
 - ✓ The rise of offshoring via globalization efforts had created a complex agricultural production network (Lim, 2021).
 - ✓ The **intermediate inputs** constitute two-thirds of total world trade (Johnson and Noguera, 2012).
- The World Trade Organization (WTO) contributed to forming modern agri-food GVC by promoting international trade in a multilateral context.
- A question remains whether the multilateral trade liberalization via WTO is still effective.
 - ✓ **Is the WTO Passé?** (Bagwell et al., 2016; Dutt, 2020).


- After Doha round of trade talks frozen, multilateralism is seen as a less preferred option (Baldwin, 2016).
- The regional trade agreements (RTAs) are more suited to the rise of offshoring and GVC as they go beyond the barriers the WTO addresses, such as IPR, labor standards, or investment measures (Baldwin, 2016).
 - ✓ This broader scope of RTAs seemed to reform the globalization regime (*from multilateralism to regionalism).
- A series of reversals in global economic integration in the last decade have slowly turned **against globalization** (Irwin, 2020):
 - ✓ US withdrawal from the Trans-Pacific Partnership
 - ✓ UK's exit from EU
 - ✓ Many renegotiation of existing trade agreements (Dutt, 2020)

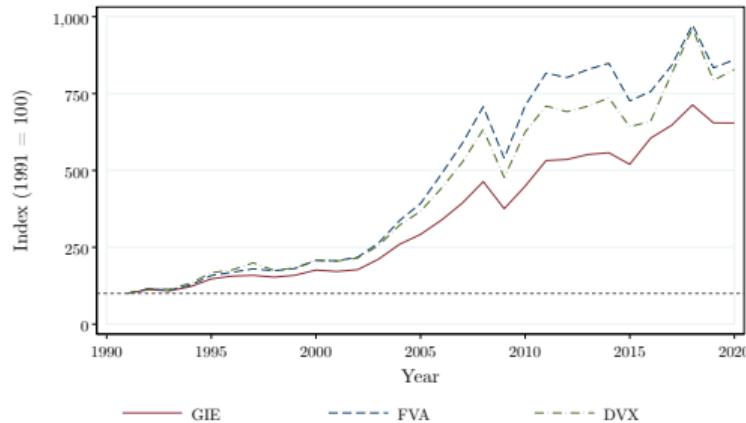
- This study investigates how multilateralism developed over time in the agri-food GVC with the rise and fall of regionalism.
 - ✓ The study relies on a **three-way gravity** framework and **sector-level GVC flow** data covering from 1991 to 2020.
 - ✓ We examine the multilateral liberalization via **WTO over time**, accounting for the dynamics of the RTA developments.
 - ✓ **Event studies** are used to assess short- and long-run consequences.
 - ✓ Investigate **differential effects** across WTO membership type and economic development levels.

GATT/WTO and RTA Development

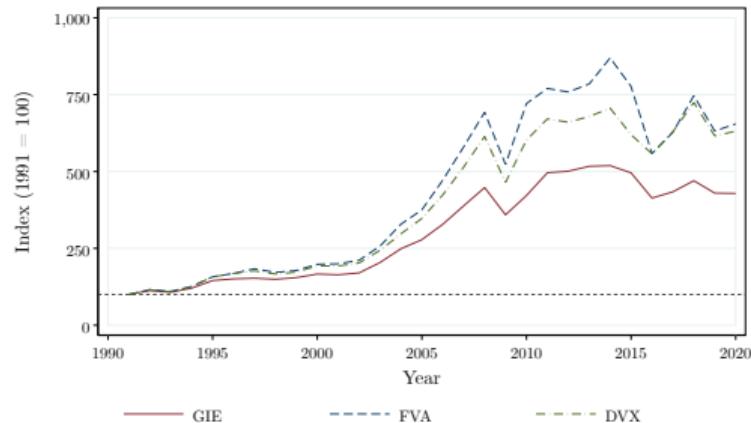
(a) Number of WTO members.

(b) Country pairs under policies.

- A GVC includes “a series of stages involved in producing a product or service sold to consumers, with each stage **adding value**, and at least two stages being produced in **different countries**” (Antràs, 2020).
- We use a **macro approach** to decompose the value-added components of exports to define bilateral GVC flows (Borin and Mancini, 2019; Hummels et al., 2001, 1998; Koopman et al., 2014).
 - ✓ Domestic value-added (**DVA**): Value added in exports by domestic industries.
 - ✓ Foreign value-added (**FVA**): Value added in exports by foreign industries.→ “**Backward GVC participation**”
 - ✓ Indirect value-added (**DVX**): Value added that is embodied in the exports of other countries.→ “**Forward GVC participation**”


The matrix of the value-added content of trade

	Country 1	Country 2	Country 3	...	Country N	
Country 1	F^{11}	F^{12}	F^{13}	...	F^{1N}	DVX
Country 2	F^{21}	F^{22}	F^{23}	...	F^{2N}	
Country 3	F^{31}	F^{32}	F^{33}	...	F^{3N}	
...	
Country N	F^{N1}	F^{N2}	F^{N3}	...	F^{NN}	
	FVA					


Note. F^{rs} is a matrix showing inter-sector flows between country r and country s .

- ✓ Total Value Added (TVA) = $DVA + FVA$
- ✓ Total Indirect Value Added (TVX) = $DVA + DVX$

Evolution of GVC Flows

(a) Agricultural Sector.

(b) Food Sector.

Note. Gross Industry Exports (GIE), calculated using multi-region input-output data for international trade components, can be compared to traditional export statistics.

Comparing with other sources (*Gross Exports).

- Because GVCs entail multiple border crossings, trade barriers have **magnifying effects** on GVC flows (Balié et al., 2019; Ferrantino, 2012; Greenville et al., 2017; Maskus et al., 2005).
- Accordingly, lowering these barriers becomes proportionately crucial for the facilitation of GVCs.
- No existing study exclusively assesses this aspect, as numerous studies concentrate on conventional trade flows (Anderson, 2010; Bureau et al., 2019; Grant and Boys, 2012; Honma, 2006).

Structural Gravity Framework

We rely on a multi-sector IO framework (Shepherd, 2022):

- Producers choose intermediates from the lowest-cost supplier, then sell their outputs domestically or in foreign markets.

$$\pi_{ij}^{kv} = \frac{\lambda_j^k [c_j^k \kappa_{ij}^{kv}]^{-\theta^k}}{\sum_{h=1}^N \lambda_h^k [c_h^k \kappa_{ih}^{kv}]^{-\theta^k}} \quad (1)$$

- π_{ij}^{kv} is the export share of i in j 's imports for sector k and end use v .
- λ_j^k and θ^k denote the Fréchet distribution for Ricardian productivity.
- c_j^k is the cost of an input bundle and κ_{ij}^{kv} is the iceberg trade costs.

Empirical Specification

We add an explicit time subscript t to the GVC flow model, leading to the three-way gravity model:

$$X_{ijt}^{kv} = \exp\left(\alpha_{it}^{kv} + \gamma_{jt}^{kv} + \delta_{ij}^{kv} + \beta_{\tau} \tau_{ijt}^{kv}\right) \times \exp\left(\sum_{n=1991}^{2020} \beta_n I(n)_{ij}\right) \times \eta_{ijt}^{kv}, \quad (2)$$

- X_{ijt}^{kv} is GVC flows from country i to j in sector k for end use v in year t .
- α_{it}^{kv} and γ_{jt}^{kv} are the fixed effects capturing the inward and outward trade resistance terms.
- δ_{ij}^{kv} is the directional dyadic fixed effect.
- τ_{ijt}^{kv} is the vector of trade cost dummies (e.g., both are GATT/WTO members; RTA partners).
- $I(n)_{ij}$ is a dummy variable taking the value of one for international trade for each year T , and zero otherwise. → 'Globalization Measure' (Bergstrand et al., 2015).

2023 Eora global supply chain database (Lenzen et al., 2013): [Summary Statistics](#).

- A multi-region input-output (MRIO) sector-level table.
- About 16,000 sectors and 190 countries from **1991 to 2020**.
- We classified 26 aggregated sectors using the ISIC (Rev.3) system.
 - **Agriculture**: 01 (*Agriculture*) & 02 (*Forestry*)
 - **Food**: 15 (*Manufactured food and beverage*) & 16 (*tobacco products*)

Trade liberalization:

- GATT/WTO membership (World Trade Organization, 2023a).
- Economic integration agreement database (NSF-Kellogg Institute, 2023).
 - All bilateral trade agreements until 2017.
 - Complemented with the RTAs reported to WTO (World Trade Organization, 2023b).

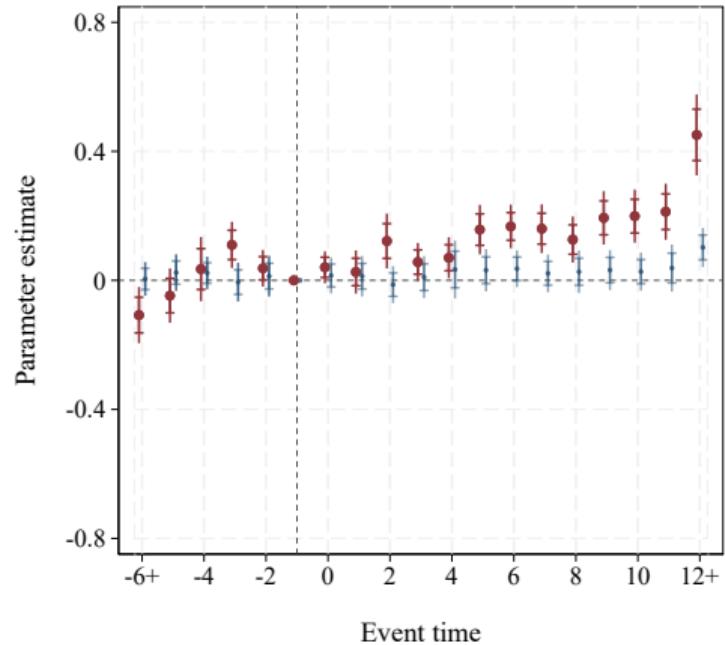
Baseline Results

	TVA	TVX	TVA	TVX
(a) Agricultural Sector				
GATT/WTO	0.471*** (0.049)	0.369*** (0.049)	0.449*** (0.046)	0.364*** (0.048)
RTA	-	-	0.076*** (0.016)	0.040** (0.018)
Observations	1,048,696	1,048,136	1,048,696	1,048,136
Pseudo R-squared	0.999	0.999	0.999	0.999
(b) Food Sector				
GATT/WTO	0.489*** (0.043)	0.442*** (0.054)	0.480*** (0.042)	0.425*** (0.051)
RTA	-	-	0.040** (0.016)	0.091*** (0.016)
Observations	1,047,950	1,047,950	1,047,950	1,047,950
Pseudo R-squared	0.999	0.999	0.999	0.999

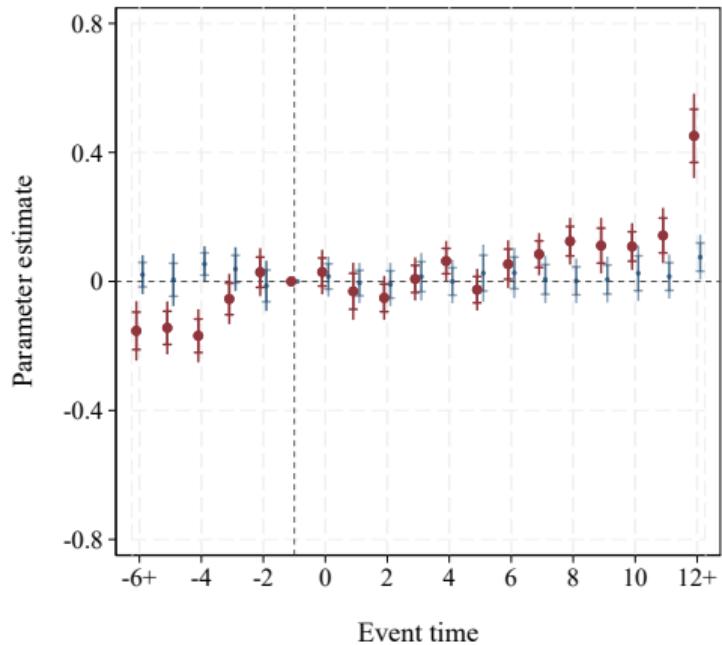
Table 1. GATT/WTO Effects on Agri-food GVC Flows.

- We transformed the semi-elasticity estimates using $(\exp(\beta) - 1) \times 100$.
- **Agriculture:** 56.7 % more TVA and 43.9 % more TVX between GATT/WTO members.
- **Processed food:** 61.6 % more TVA and 53.0 % more TVX between GATT/WTO members.
- ✓ RTA does not significantly influence GATT/WTO effects but is positively associated with GVC flows to a smaller degree.

Treatment Dynamics

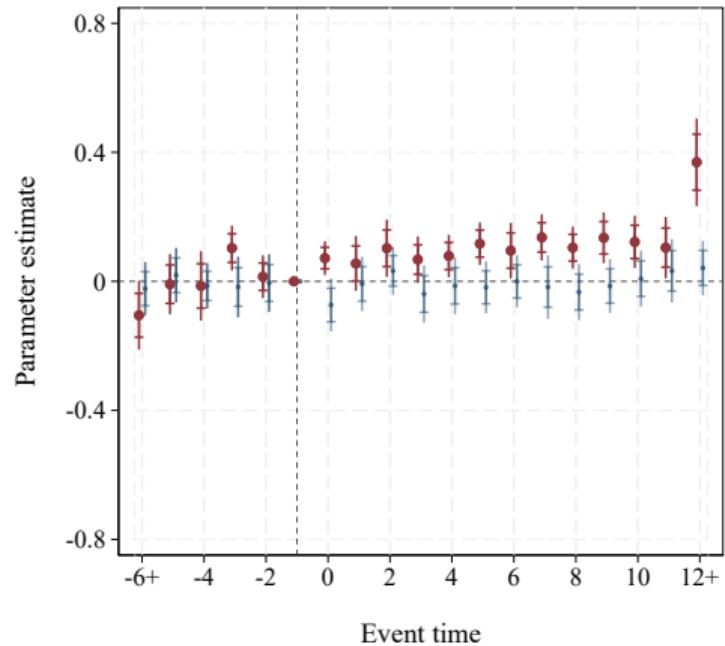

Understanding the dynamics of GVC flow adjustments to trade policy changes is vital (Anderson and Yotov, 2023; Egger et al., 2022).

- ✓ The treatment **anticipation** and a **delayed** response to trade policy changes.
- ✓ Both GATT/WTO and RTA may take time to manifest themselves due to rounds of negotiation, phase-in periods for tariff and non-tariff barrier reduction schedules, and granting periods for developing countries (Bagwell and Staiger, 1999; Burstein and Melitz, 2013; Flentø and Ponte, 2017)

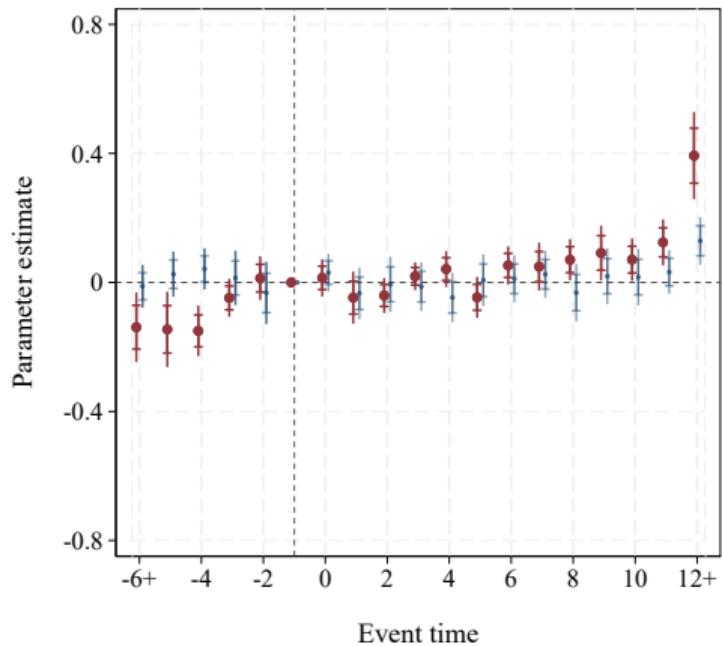

We rely on the following event study design:

$$X_{ijt}^{kv} = \exp\left(\alpha_{it}^{kv} + \gamma_{jt}^{kv} + \delta_{ij}^{kv} + \sum_{r \neq 0} 1\left\{\tau_{ijt}^{kv} = r\right\} \beta_{\tau}^r\right) \times \exp\left(\sum_{n=1990}^{2020} \beta_n I(n)_{ij}\right) \times \eta_{ijt}^{kv}, \quad (3)$$

Treatment Dynamics Results i



(a) Agricultural TVA.



(b) Food TVA.

Treatment Dynamics Results ii

(c) Agricultural TVX.

(d) Food TVX.

Heterogeneity by GATT/WTO Membership

There is a potential heterogeneity of WTO effects when formal membership in the GATT is supplemented (Dutt, 2020; Grant and Boys, 2012; Tomz et al., 2007).

- We estimate Eq. 2 and Eq. 3 but allow for distinct WTO membership effects for the three sets of dyads in a single estimation:
 1. Both countries are formal GATT members
 2. One country is a formal GATT member.
 3. Both are newly joined the WTO.

Heterogeneity by GATT/WTO Membership

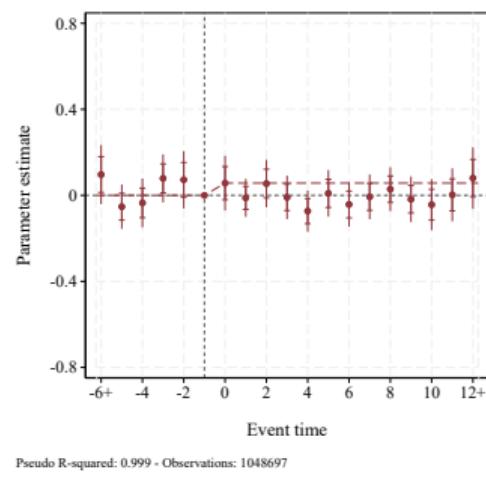
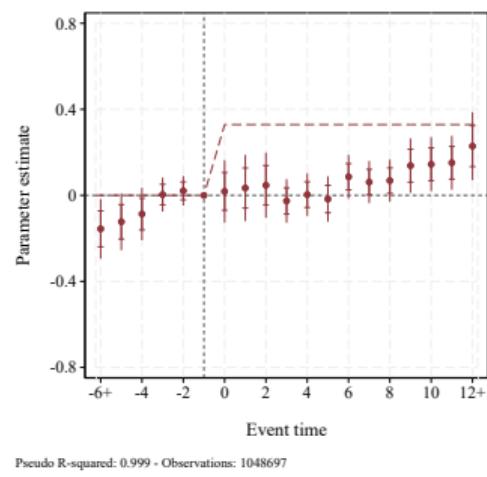
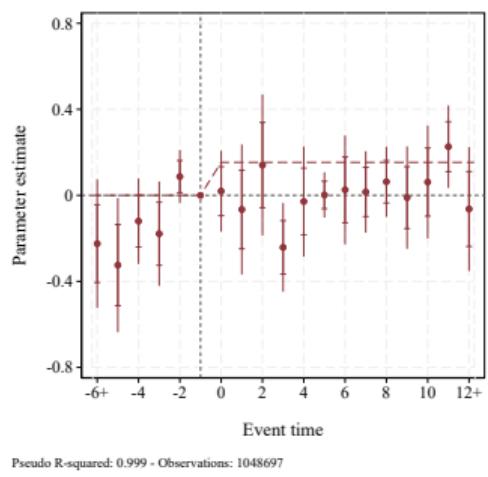

	Agricultural Sector		Food Sector	
	TVA	TVX	TVA	TVX
Both old (GATT)	0.055 (0.042)	0.192*** (0.068)	0.107** (0.043)	0.271*** (0.063)
Old & new	0.318*** (0.054)	0.272*** (0.054)	0.310*** (0.054)	0.294*** (0.045)
Both new (WTO)	0.118 (0.098)	0.127 (0.096)	0.066 (0.099)	0.117* (0.067)
RTA	0.076*** (0.016)	0.041** (0.018)	0.039** (0.016)	0.090*** (0.016)
Observations	1,048,696	1,048,136	1,047,950	1,047,950
Pseudo R-squared	0.999	0.999	0.999	0.999

Table 2. Differential Effects by GATT/WTO Membership Type.

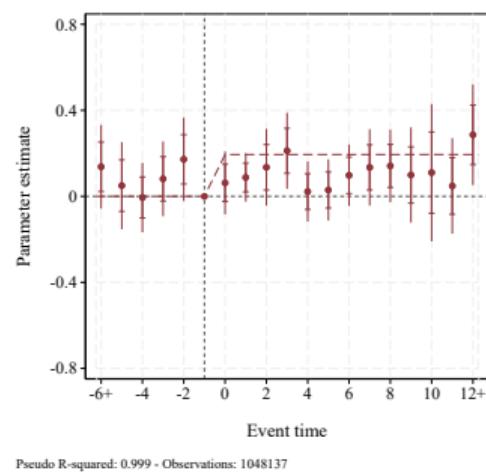

- There are substantial differential effects across membership types.
- During the last three decades (1991-2020):
- ✓ The agri-food GVC has developed the most between old and new members.
- ✓ No statistically significant evidence of the GVC development between new members.

Heterogeneity by GATT/WTO Membership

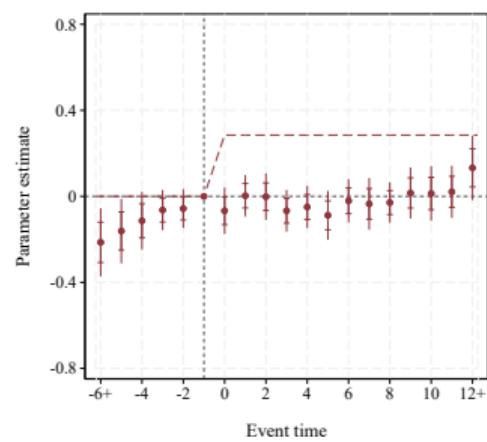

Figure. Agriculture TVA.

(a) Both old.

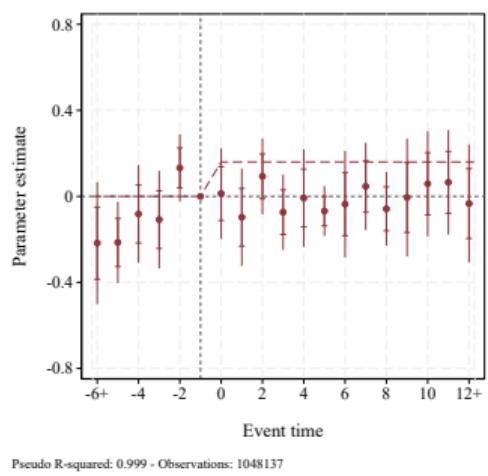
(b) Old & new.


(c) Both new (WTO).

Note. The figure shows the dynamic treatment parameters, 95 percent confidence intervals, and uniform sup-t bands for the event-time coefficients.

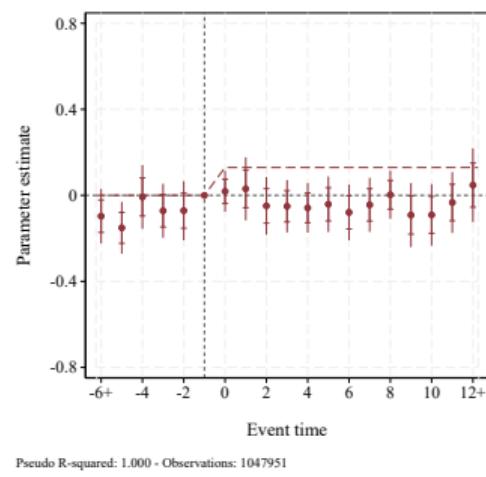

Pre-period adjusted.

Heterogeneity by GATT/WTO Membership

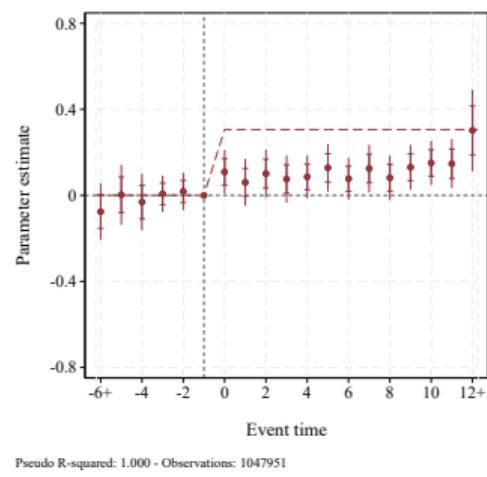

Figure. Agriculture TVX.

(a) Both old.

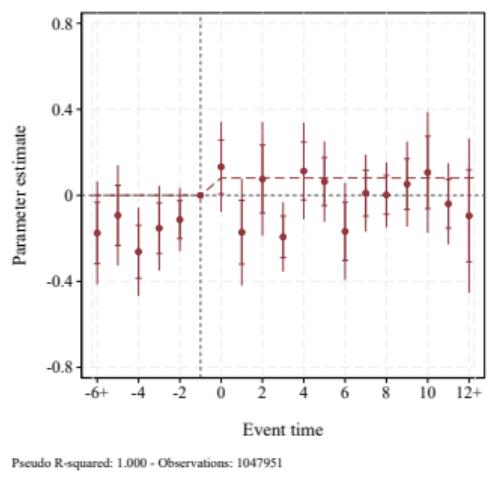
(b) Old & new.


(c) Both new (WTO).

Note. The figure shows the dynamic treatment parameters, 95 percent confidence intervals, and uniform sup-t bands for the event-time coefficients.

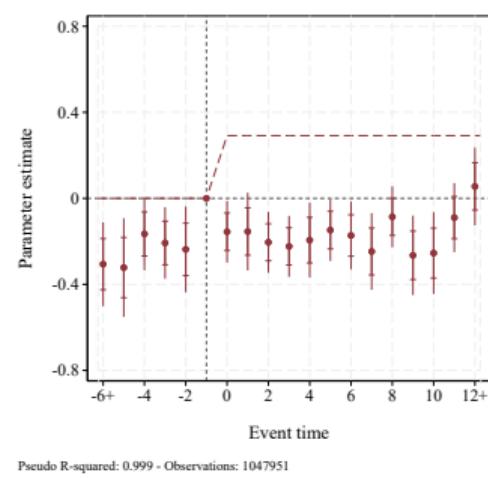

Pre-period adjusted.

Heterogeneity by GATT/WTO Membership

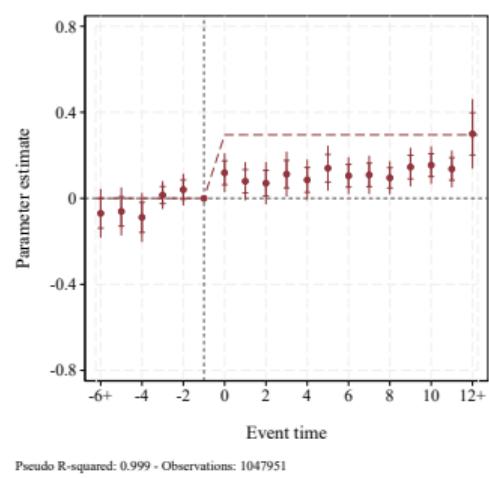

Figure. Food TVA.

(a) Both old.

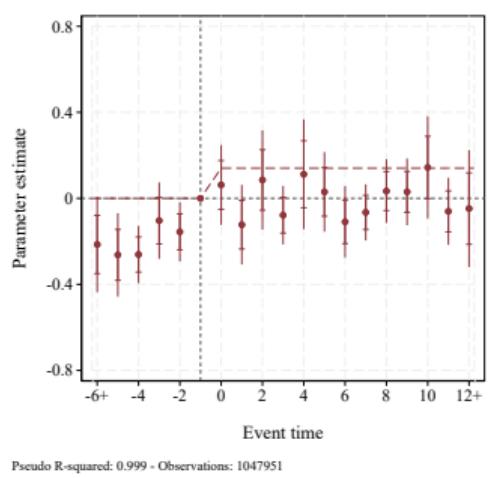
(b) Old & new.



(c) Both new (WTO).


Note. The figure shows the dynamic treatment parameters, 95 percent confidence intervals, and uniform sup-t bands for the event-time coefficients.

Heterogeneity by GATT/WTO Membership


Figure. Food TVX.

(a) Both old.

(b) Old & new.

(c) Both new (WTO).

Note. The figure shows the dynamic treatment parameters, 95 percent confidence intervals, and uniform sup-t bands for the event-time coefficients.

Heterogeneity by Economic Development Stage

There are **asymmetric treatments** between developed and developing countries in WTO and RTA (Flentø and Ponte, 2017; Subramanian and Wei, 2007; Tang and Wei, 2009).

- ✓ Development countries face immediate tariff reduction while developing countries are initially granted fewer obligations to liberalize tariff barriers in GATT/WTO (Subramanian and Wei, 2007).
- ✓ RTA often creates asymmetric treatment between countries in different development stages due to the unequal capability to standard harmonization, IPR, or environmental regulations (Disdier et al., 2014, 2008; Santeramo and Lamonaca, 2022)
- We categorize transactions into four directions based on income classification: North and South.

Heterogeneity by Economic Development Stage

	Agricultural Sector		Food Sector	
	TVA	TVX	TVA	TVX
GATT/WTO				
– North-to-South	0.339*** (0.057)	0.325*** (0.065)	0.405*** (0.049)	0.439*** (0.077)
– North-to-North	0.479*** (0.062)	0.338*** (0.054)	0.480*** (0.062)	0.405*** (0.053)
– South-to-North	0.445*** (0.060)	0.370*** (0.057)	0.455*** (0.062)	0.459*** (0.056)
– South-to-South	0.421*** (0.053)	0.395*** (0.060)	0.472*** (0.047)	0.461*** (0.065)
RTA				
– North-to-South	0.091*** (0.024)	0.055** (0.028)	0.050** (0.021)	0.072*** (0.023)
– North-to-North	0.013 (0.025)	0.023 (0.029)	-0.025 (0.030)	0.115*** (0.024)
– South-to-North	0.159*** (0.030)	0.084*** (0.026)	0.092*** (0.031)	0.103*** (0.025)
– South-to-South	0.039** (0.019)	0.015 (0.029)	0.050** (0.024)	0.081** (0.040)
Observations	1,026,080	1,026,263	1,026,080	1,026,080
Pseudo R-squared	0.999	0.999	0.999	0.999

Table 3. Differential Effects by Income Level.

- No evidence showing substantial differences across transactions by income class for GATT/WTO effects on agri-food GVC flows.
- RTA is more likely associated with positive agri-food GVC flows between developed and developing countries.
- ✓ RTA extends beyond mere tariff reduction; our findings provide evidence of its role in eliminating non-tariff barriers between North and South.

Conclusion

The WTO is not Passé for agri-food GVC.

- GATT/WTO positively correlates with recent agri-food GVC development.
- No evidence shows a shift in the agri-food GVC regime towards RTAs.
- WTO's impact increases over time, surpassing RTA's influence on agri-food GVC.

Heterogeneous WTO effects by membership types and income levels.

- The recent agri-food GVC development was more pronounced among WTO members when at least one trading partner holds formal GATT membership.
- WTO's multilateral liberalization leads to an even development regardless of income levels, while RTA effects are more prominent between North and South.

Q&A

Reference i

Anderson, J. E. and Yotov, Y. V. (2023). Estimating gravity from the short to the long run: A simple solution to the 'international elasticity puzzle'. *NBER Working Paper*, 30809.

Anderson, K. (2010). Can the WTO reduce agricultural trade distortions? *The Journal of International Trade & Economic Development*, 19(1):109–134.

Antràs, P. (2020). Conceptual aspects of global value chains. *World Bank Economic Review*, 34(3):551–574.

Bagwell, K., Bown, C. P., and Staiger, R. W. (2016). Is the wto passé? *Journal of economic literature*, 54(4):1125–1231.

Bagwell, K. and Staiger, R. W. (1999). An economic theory of GATT. *American Economic Review*, 89(1):215–248.

Baldwin, R. (2016). The world trade organization and the future of multilateralism. *Journal of Economic Perspectives*, 30(1):95–116.

Reference ii

Balié, J., Del Prete, D., Magrini, E., Montalbano, P., and Nenci, S. (2019). Does trade policy impact food and agriculture global value chain participation of Sub-Saharan African countries? *American Journal of Agricultural Economics*, 101(3):773–789.

Bergstrand, J. H., Larch, M., and Yotov, Y. V. (2015). Economic integration agreements, border effects, and distance elasticities in the gravity equation. *European Economic Review*, 78:307–327.

Borin, A. and Mancini, M. (2019). Measuring what matters in global value chains and value-added trade. *World Bank Policy Research Working Paper*, 8804.

Bureau, J.-C., Guimbard, H., and Jean, S. (2019). Agricultural trade liberalisation in the 21st century: Has it done the business? *Journal of agricultural economics*, 70(1):3–25.

Burstein, A. and Melitz, M. (2013). *Trade liberalization and firm dynamics*, volume 2, chapter 88, pages 283–328. Cambridge University Press.

Disdier, A.-C., Fontagné, L., and Cadot, O. (2014). North-South standards harmonization and international trade. *World Bank Economic Review*, 29(2):327–352.

Reference iii

Disdier, A.-C., Fontagné, L., and Mimouni, M. (2008). The impact of regulations on agricultural trade: Evidence from the SPS and TBT agreements. *American Journal of Agricultural Economics*, 90(2):336–350.

Dutt, P. (2020). The wto is not passé. *European Economic Review*, 128:103507.

Egger, P. H., Larch, M., and Yotov, Y. V. (2022). Gravity estimations with interval data: Revisiting the impact of free trade agreements. *Economica*, 89(353):44–61.

Ferrantino, M. J. (2012). Using supply chain analysis to examine the costs of non-tariff measures (ntms) and the benefits of trade facilitation. *World Trade Organization Working Paper*, ERSD 2012-02.

Flentø, D. and Ponte, S. (2017). Least-developed countries in a world of global value chains: Are WTO trade negotiations helping? *World Development*, 94:366–374.

Grant, J. H. and Boys, K. A. (2012). Agricultural Trade and the Gatt/WTO: Does Membership Make a Difference? *American Journal of Agricultural Economics*, 94(1):1–24.

Reference iv

Greenville, J., Kawasaki, K., and Beaujeu, R. (2017). How policies shape global food and agriculture value chains. *OECD Food, Agriculture and Fisheries Papers*, 100.

Honma, M. (2006). WTO negotiations and other agricultural trade issues in Japan. *World Economy*, 29(6):697–714.

Hummels, D., Ishii, J., and Yi, K.-M. (2001). The nature and growth of vertical specialization in world trade. *Journal of International Economics*, 54(1):75–96.

Hummels, D., Rapoport, D., and Yi, K.-M. (1998). Vertical specialization and the changing nature of world trade. *Economic Policy Review*, 4:79–99.

Irwin, D. A. (2020). *Free Trade under Fire*. Princeton University Press.

Johnson, R. C. and Noguera, G. (2012). Accounting for intermediates: Production sharing and trade in value added. *Journal of International Economics*, 86(2):224–236.

Koopman, R., Wang, Z., and Wei, S.-J. (2014). Tracing value-added and double counting in gross exports. *American Economic Review*, 104(2):459–494.

Reference v

Lenzen, M., Moran, D., Kanemoto, K., and Geschke, A. (2013). Building eora: A global multi-region input-output database at high country and sector resolution. *Economic Systems Research*, 25(1):20–49.

Lim, S. (2021). Global agricultural value chains and structural transformation. *NBER Working Paper*, 29194.

Maskus, K. E., Otsuki, T., and Wilson, J. S. (2005). The cost of compliance with product standards for firms in developing countries: An econometric study. *World Bank Policy Research Working Paper*, 3590.

NSF-Kellogg Institute (2023). NSF-Kellogg Institute Data Base on Economic Integration Agreements.
<https://kellogg.nd.edu/nsf-kellogg-institute-data-base-economic-integration-agreements>.

Santeramo, F. G. and Lamonaca, E. (2022). Standards and regulatory cooperation in regional trade agreements: What the effects on trade? *Applied Economic Perspectives and Policy*, 44(4):1682–1701.

Reference vi

Shepherd, B. (2022). Modelling global value chains: From trade costs to policy impacts. *World Economy*, 45(8):2478–2509.

Subramanian, A. and Wei, S.-J. (2007). The WTO promotes trade, strongly but unevenly. *Journal of International Economics*, 72(1):151–175.

Tang, M.-K. and Wei, S.-J. (2009). The value of making commitments externally: Evidence from WTO accessions. *Journal of International Economics*, 78(2):216–229.

Tomz, M., Goldstein, J. L., and Rivers, D. (2007). Do we really know that the WTO increases trade? Comment. *American Economic Review*, 97(5):2005–2018.

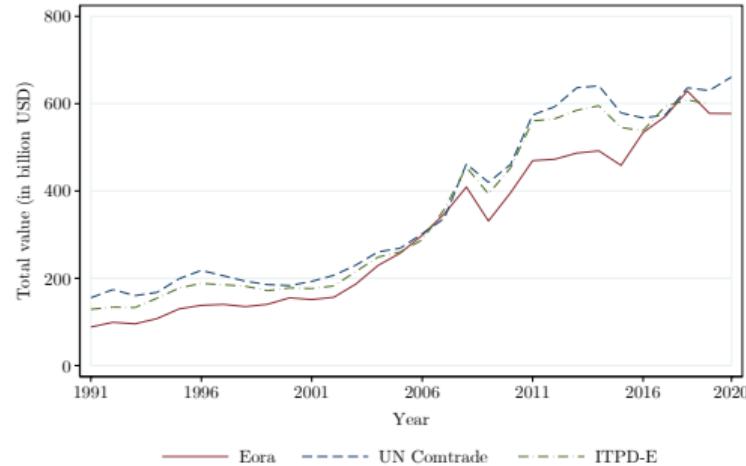
World Trade Organization (2023a). Members and Observers.
https://www.wto.org/english/thewto_e/whatis_e/tif_e/org6_e.htm.

World Trade Organization (2023b). Regional Trade Agreements Database.
<https://rtais.wto.org/UI/PublicMaintainRTAHome.aspx>.

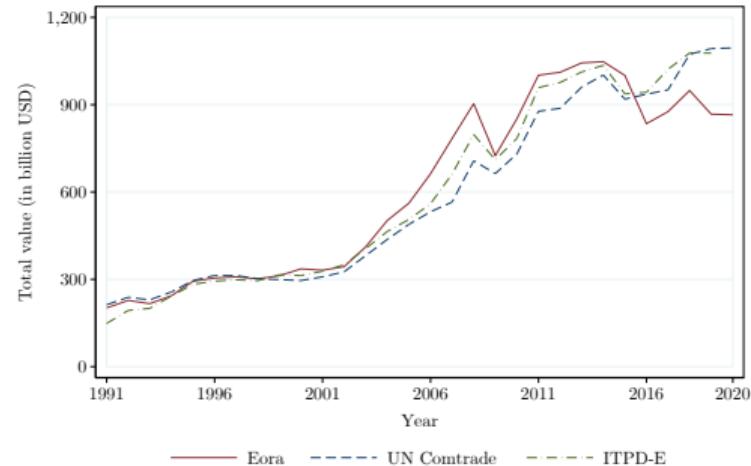
Appendix ii

Table A1. Summary Statistics.

	Mean	SD	$\Delta(1991/2020)$	Min.	Max.
<i>(a) Agricultural Sector</i>					
TVA	12.50	457.00	0.21	0	101,210
TVX	8.39	296.00	0.17	0	56,923
<i>(b) Food Sector</i>					
TVA	12.90	804.00	0.18	0	597,204
TVX	13.50	890.00	0.20	0	612,959
<i>(c) All Sectors</i>					
TVA	12.90	804.00	0.18	0	597,204
TVX	13.50	890.00	0.20	0	612,959


Note. $\Delta(1991/2020)$ represents the annual growth rate. The units for the remaining statistics are scaled in million USD.

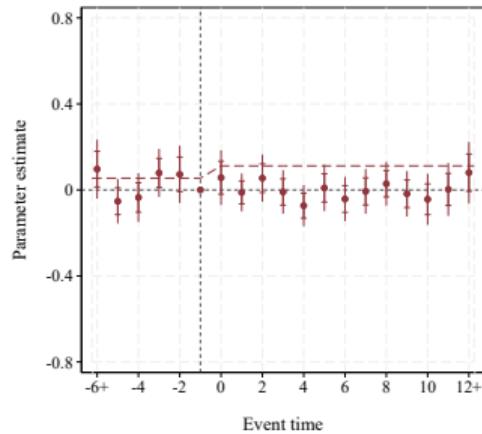
Appendix ii


Table A2. WTO Effects on Agri-food Gross Export Flows.

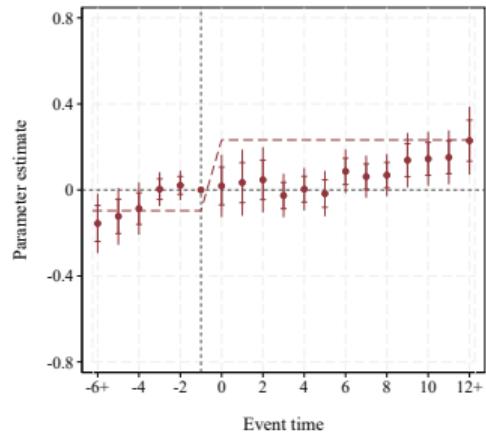
	GIE	GIE
<i>(a) Agricultural Sector</i>		
WTO/GATT	0.401*** (0.065)	0.388*** (0.065)
RTA		0.058** (0.023)
Observations	1,049,069	1,049,069
Pseudo R-squared	0.999	0.999
<i>(b) Food Sector</i>		
WTO/GATT	0.390*** (0.071)	0.385*** (0.072)
RTA		0.033* (0.018)
Observations	1,049,069	1,049,069
Pseudo R-squared	0.999	0.999

Appendix iii

(a) Agricultural Sector.


(b) Food Sector.

Note. The figure compares the gross exports based on the 2023 Eora database with UN Comtrade and ITPD-E.

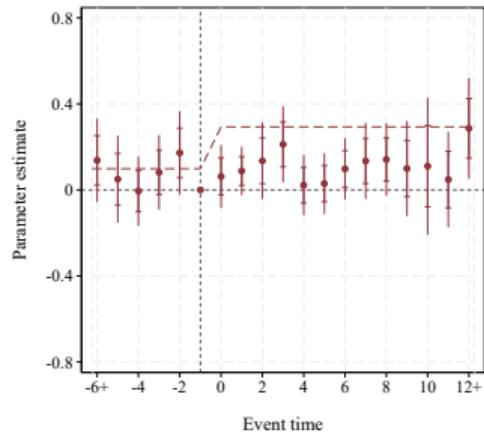

[Go back](#)

Appendix iv - 1

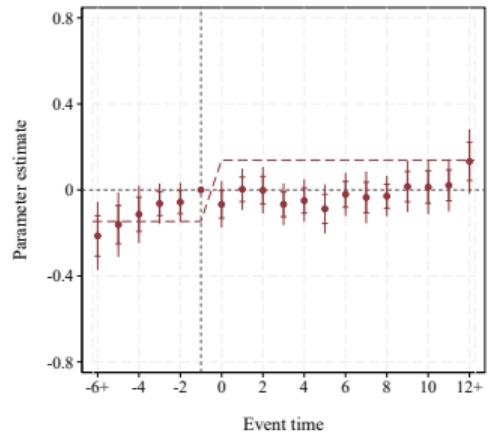
Figure. Agriculture TVA.

(a) Both old.

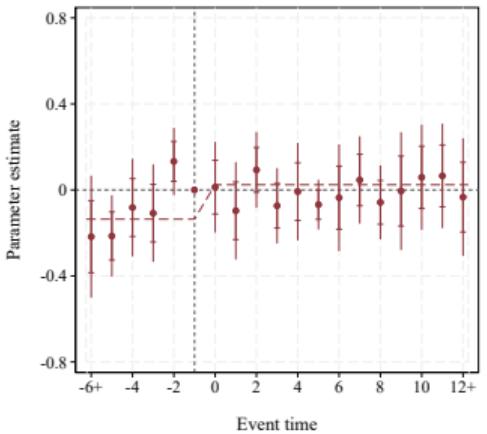
(b) Old & new.


(c) Both new (WTO).

Note. The figure shows the dynamic treatment parameters, 95 percent confidence intervals, and uniform sup-t bands for the event-time coefficients.

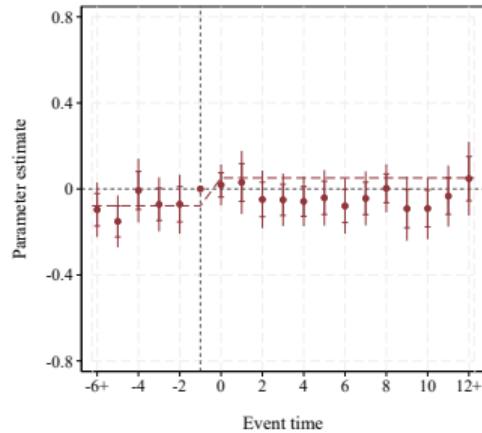

Go back.

Appendix iv - 2

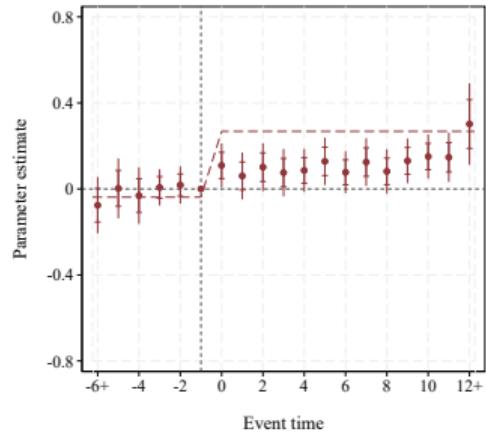

Figure. Agriculture TVX.

(a) Both old.

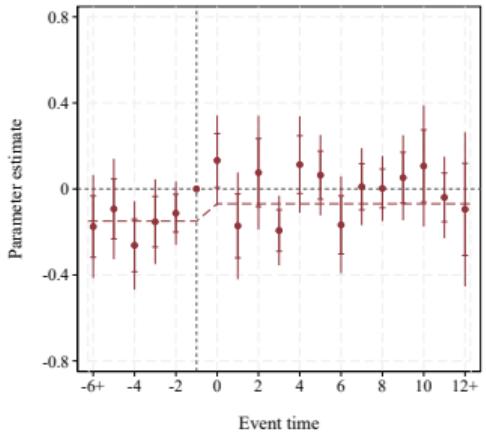
(b) Old & new.


(c) Both new (WTO).

Note. The figure shows the dynamic treatment parameters, 95 percent confidence intervals, and uniform sup-t bands for the event-time coefficients.

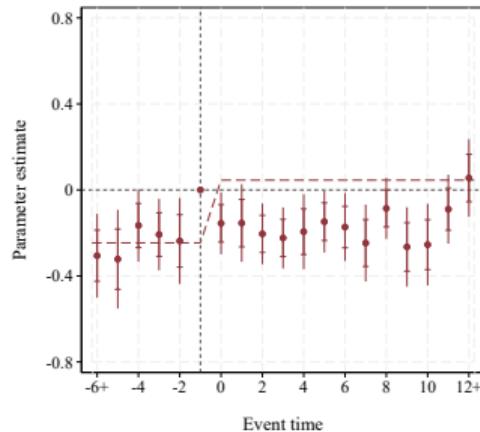

[Go back.](#)

Appendix iv - 3

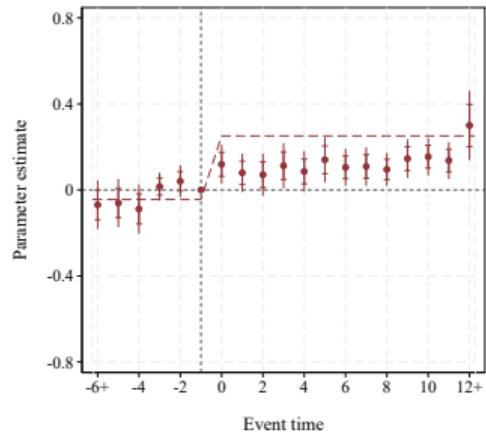

Figure. Food TVA.

(a) Both old.

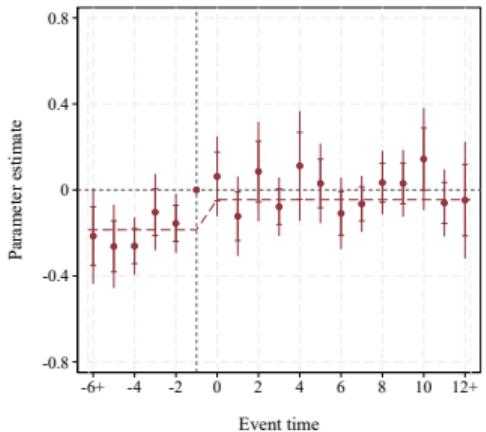
(b) Old & new.


(c) Both new (WTO).

Note. The figure shows the dynamic treatment parameters, 95 percent confidence intervals, and uniform sup-t bands for the event-time coefficients.


[Go back.](#)

Appendix iv - 4


Figure. Food TVX.

(a) Both old.

(b) Old & new.

(c) Both new (WTO).

Note. The figure shows the dynamic treatment parameters, 95 percent confidence intervals, and uniform sup-t bands for the event-time coefficients.

Go back.