

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

Shifting Alliances – Friendshoring in Agricultural Trade

Savin Khadka, Gopinath Munisamy, and Feras Batarseh

Selected presentation for the International Agricultural Trade Research Consortium's (IATRC's) 2023 Annual Meeting: The Future of (Ag-) Trade and Trade Governance in Times of Economic Sanctions and Declining Multilateralism, December 10-12, 2023, Clearwater Beach, FL.

Copyright 2023 by Savin Khadka, Gopinath Munisamy, and Feras Batarseh. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.

Shifting Alliances - Friendshoring in Agricultural Trade

SAVIN KHADKA¹ MUNISAMY GOPINATH, PHD¹ FERAS A. BATARSEH, PHD²

2023 IATRC Annual Meeting Dec 10-12, Clearwater Beach FL

> ¹Dept. of Ag. and Applied Economics University of Georgia

²Dept. of Biological Systems Engineering Virginia Tech.

Outline

Background

Data and Methods

Results

Takeaways

Background

Uncertainties

- → Uncertainty about the future has significant impact on the economy investment, output, trade ...
- → Uncertainty can arise from various sources - conflicts (political/armed/trade), economic, ...

Uncertainties

- → Uncertainty about the future has significant impact on the economy investment, output, trade ...
- → Uncertainty can arise from various sources - conflicts (political/armed/trade), economic, ...
- → Previous work has shown that policy uncertainty in particular has large effects on international trade.
- → Machine Learning vs. traditional methods ...

Uncertainties

- → Uncertainty about the future has significant impact on the economy investment, output, trade ...
- → Uncertainty can arise from various sources - conflicts (political/armed/trade), economic, ...
- → Previous work has shown that policy uncertainty in particular has large effects on international trade.
- → Machine Learning vs. traditional methods ...

Received: 7 November 2022 Accepted: 17 May 2023
DOI: 10.1002/jaa2.69
JOURNAL OF THE AGRICULTURAL AND

ARTICLE

Anomalies in agricultural trade: A Bayesian classifier approach

Savin Khadka¹ | Munisamy Gopinath¹ ⁽⁶⁾ | Feras A. Batarseh²

¹Department of Agricultural and Applied Economics, University of Georgia, Athens, Georgia, USA

²Department of Biological Systems Engineering, Virginia Tech, Arlington, Virginia, USA

Correspondence

Munisamy Gopinath, Department of Agricultural and Applied Economics, 301 Conner Hall, University of Georgia, Athens, Georgia, USA. Email: m.gopinath@uga.edu

Funding information

IATRC, Grant/Award Number: Commissioned Paper Series; Foreign Agricultural Service, Grant/Award Number: NOFO USDA-FAS-10960-0200-10-21-0001

Abstract

This study examines the uncertainty-agricultural trade nexus. Uncertainty effects on macroeconomic indicators such as consumption and investment have been well studied. However, less is known about the relationship between uncertainty and international trade, particularly the heterogeneity of that linkage across sectors. Application of a novel data-driven methodology—anomaly detection and classification via a Naïve Bayesian Classifier—to monthly data at the HS-4 level finds that agricultural imports are reduced when economic policy uncertainty is high. The effects of policy-related uncertainty are more persistent than that of supply-side fluctuations. Anticipatory stock-piling occurred when uncertainty is specific to trade policy.

APPLIED ECONOMICS ASSOCIATION

K E Y W O R D S

anomaly detection, machine learning, policy uncertainty

JEL CLASSIFICATION F14, C45, Q17

Friendshoring

$\rightarrow\,$ Three Cs: consequences and considerations

- COVID Severe disruptions to the supply/demand sides
- Conflict Escalating political and armed disputes
- Climate Change Ongoing discussions about the future of production and distribution

Friendshoring

$\rightarrow\,$ Three Cs: consequences and considerations

- COVID Severe disruptions to the supply/demand sides
- Conflict Escalating political and armed disputes
- Climate Change Ongoing discussions about the future of production and distribution
- → Additional uncertainties \implies Restructuring of supply chains: rivals → allies

Friendshoring

$\rightarrow\,$ Three Cs: consequences and considerations

- COVID Severe disruptions to the supply/demand sides
- Conflict Escalating political and armed disputes
- Climate Change Ongoing discussions about the future of production and distribution
- → Additional uncertainties \implies Restructuring of supply chains: rivals → allies

→ Resiliency vs. Efficiency/Costs

- $_{\diamond}\,\approx$ 5% drop in global production (WTO)
- $_{\diamond}~pprox$ 2% drop in global economic output (IMF)

Background

Q SEARCH SUBSCR

MAGAZINE SUMMER 2020 ISSUE / FRONTIERS

Is It Time to Rethink Globalized Supply Chains?

The COVID-19 pandemic should be a wake-up call for managers and prompt them to consider actions that will improve their resilience to future shocks.

Willy Shih . March 19, 2020

Reading Time: 7 min

THE WALL STREET JOURNAL.

ECONOMY | CAPITAL ACCOUNT

Biden's Trade Challenge: Kicking the China Dependency Habit

Officials want to avoid trade deals whose rules boost China's role in supply chains

THE WALL STREET JOURNAL.

ECONOMY

U.S., Allies Weigh How to Reduce Economic Ties With China

Countries seek to lessen dependence on China but maintain global trade, investment

By Andrew Duehren Follow and Greg Ip Follow Updated April 17, 2023 5:14 pm ET

Background

MITSIOAN = MENU

Q SEARCH SUBSCR

MAGAZINE SUMMER 2020 ISSUE / FRONTIERS

Is It Time to Rethink Globalized Supply Chains?

The COVID-19 pandemic should be a wake-up call for managers and prompt them to consider actions that will improve their resilience to future shocks.

Willy Shih . March 19, 2020

Reading Time: 7 min

THE WALL STREET JOURNAL.

ECONOMY | CAPITAL ACCOUNT

Biden's Trade Challenge: Kicking the China Dependency Habit

Officials want to avoid trade deals whose rules boost China's role in supply chains

June 22, 2023 12:01 am ET

THE WALL STREET JOURNAL.

ECONOMY

U.S., Allies Weigh How to Reduce Economic Ties With China

Countries seek to lessen dependence on China but maintain global trade, investment

By Andrew Duehren Follow and Greg Ip Follow Updated April 17, 2023 5:14 pm ET "Rather than being highly reliant on countries where we have geopolitical tensions and can't count on ongoing, reliable supplies, we need to really diversify our group of suppliers. " Janet Allen, US Treasury Secretary (2022)

"We have no eternal allies, and we have no perpetual enemies. Our interests are eternal and perpetual, and those interests it is our duty to follow." Lord Palmerston, UK Prime Minister (1848)

Data and Methods

Product	HS4-Code	2021 Trade Value (billions of USD)	Source					
Meats								
Fresh/chilled Beef	HS-0201	28.8	IHS Markit					
Frozen Beef	HS-0202	32.8	IHS Markit					
Pork	HS-0203	36.9	IHS Markit					
Sheep/Goat	HS-0204	10.5	IHS Markit					
Chicken	HS-0207	30.6	IHS Markit					
Grains and Legumes								
Wheat	HS-1001	61.8	UN-Comtrade					
Corn	HS-1005	52.3	IHS Markit					
Rice	HS-1006	28.4	UN-comtrade					
Soybean	HS-1201	78.5	IHS Markit					
Edible Oils								
Soybean Oil	HS-1507	17.1	IHS Markit					
Peanut Oil	HS-1508	0.713	IHS Markit					
Palm Oil	HS-1511	51.1	IHS Markit					
Sunflower Oil	HS-1512	16.7	IHS Markit					

12.3

Data Summary

Khadka, Gopinath, and Batarseh (2023) - Friendshoring in Agricultural Trade

HS-1514

Rapeseed Oil

2023 IATRC Annual Meeting 6 / 22

IHS Markit

Network Approach

Corn Trade Network for 2022

- \rightarrow Nodes (countries) and Edges (trade)
- $\rightarrow~$ Networks dynamics for analyses and prediction
 - ◊ Centrality Measures, Community Detection, Global Clustering

Centrality Measures

→ Degree Centrality

- Measures connections to other nodes
- \diamond Higher degree centrality \implies trades with more partners
- ◊ eg: more friends on Facebook
- ◊ In directed networks, in-degree = imports partners & out-degree = exports partners
- $\circ \ D_i = \sum_j e(i,j)$, where e(i,j) = 1 if link present, 0 otherwise

→ Betweenness Centrality

- Measures connections facilitated between other nodes
- $_{\diamond}$ Higher betweenness centrality \implies acts like a bridge
- ◊ eg: mutual friends with lots of people
- ♦ $B_i = \sum_{a,b} \frac{n_{aib}}{n_{ab}}$ = fraction of optimal paths between a and b passing through i

→ Laplacian Centrality

- ◊ Measures global influence on the network
- $_{\diamond}$ Higher Laplacian centrality \implies large change in the network if removed
- ◊ eg: friends with *popular* people
- $\diamond \ L_i = \frac{E_L(G) E_L(G_i)}{E_L(G)}, E_L(G) = \mbox{Laplacian Energy } \& E_L(G_i)$ Laplacian Energy with i removed

Community Detection

- \rightarrow Community = groups of nodes that are densely interconnected.
- \rightarrow More connections within communities and few between communities.
- → Identified by maximizing *modularity*: (Zhu, Chen, and Zeng, 2020)

$$Q = \sum_{c=1}^{N} \left[\frac{L_c}{m} - \lambda \left(\frac{k_c^{in} k_c^{out}}{2m} \right) \right],$$

 L_c = number of intra-community links in community c, m = number of edges in community, λ = resolution limit, k_c^{in}, k_c^{out} = sums of in- and out-degrees of nodes in community c,

\rightarrow To detect optimal communities for each commodity for each year:

- assign each node to its own community
- join pairs of communities such that modularity is maximized
- conclude when no further modularity increase is possible

Clustering

- \rightarrow Measures tendency of connectivity within a network.
- \rightarrow Function of *triangles* observed in a network vs. total *triangles* possible.
- $\label{eq:constraint} \begin{array}{l} \rightarrow \mbox{ For a weighted directed network, clustering coefficient of each node i:} \\ i_c = \frac{N_i}{2(deg^{tot}(i)(deg^{tot}(i)-1)-2deg^{false}(i))} & \frac{\Delta s \mbox{ observed }}{total \ \Delta s \ possible} \\ N_i = \mbox{ number of directed triangles through node i,} \\ deg_i^{tot} = \mbox{ sum of in- and out-degrees of node i,} \\ deg_i^{false} = \mbox{ number of "false" triangles through node i.} \end{array}$
- → The global clustering coefficient of the whole network is the average of clustering coefficient for all nodes:

Average Clustering Coefficient $(G_c) = \frac{1}{I} \sum_i^I t_i$,

I = number of nodes in the network,

 $t_{\,i}\,=\,{
m clustering}$ coefficient for each node i

Results

Centrality Changes - Pork

Centrality Changes for Pork

- $\rightarrow\,$ China now imports from more partners.
- \rightarrow US exporting to fewer partners, Russian imports have collapsed.
- $\rightarrow\,$ Betweenness decreasing for all countries.
- $\rightarrow\,$ China's influence on global network is remarkably higher compared to the US.

Community Detection - Pork

	Average Number of Communities										
Commodity	1995-1999	2000-2004	2005-2009	2010-2014	2015-2019	2020-2022					
Pork	6.6	6.6	6.4	7.6	8.4	8.67					

 $\rightarrow\,$ Number of communities increasing $\implies\,$ network more divided

Community Detection - Pork

	Average Number of Communities										
Commodity	1995-1999	2000-2004	2005-2009	2010-2014	2015-2019	2020-2022					
Pork	6.6	6.6	6.4	7.6	8.4	8.67					

ightarrow Number of communities increasing \implies network more divided

Year	China community	imps	exps	US community	imps	$_{\rm exps}$	Russia community	imps	exps
2011	Australia, Canada, Chile, China, Colombia, Costa Rica, Indonesia, Japan, Mexico, Peru, Philippines, South Korea, Taiwan, United States (20)	10.61	8.64	Australia, Canada, Chile, China, Colombia, Costa Rica, Indonesia, Japan, Mexico, Peru, Philippines, South Korea, Taiwan, United States (20)	10.61	8.64	Argentina, Brazil, Ecuador, Egypt, Georgia, Kenya, Macau, Paraguay, Russia, Senegal, Singapore, Ukraine, Uruguay, Venezuela, Vietnam (15)	2.78	0.85
2013	Botswana, Brunei Darussalam, China, Ireland, Malaysia, Namibia, South Africa, United Kingdom, Zambia (9)	2.51	0.67	Australia, Canada, Chile, Colom- bia, Indonesia, Japan, Mexico, Peru, Philippines, South Korea, Taiwan, United States (21)	8,56	7.46	Argentina, Brazil, Egypt, Georgia, Kazakhstan, Kenya, Macau, Norway, Paraguay, Russia, Senegal, Singapore, Ukraine, Uruguay, Venezuela, Viet- nam (16)	3.04	0.96
2015	Bolivia, Chile, China, Costa Rica, Peru, South Korea	3.02	0.73	Belize, Canada, Colombia, Ecuador, El Salvador, Guatemala, Honduras, Indonesia, Japan, Mexico, Nicaragua, Panama, Taiwan, United States (12)	6.92	6.81	Argentina, Australia, Belarus, Brazil, Congo, Egypt, Malaysia, Paraguay, Russia, Senegal, Serbia, Singapore, Thailand, Ukraine, UAE, Uruguay, Vietnam (21)	2.09	1.26
2017	China, Ireland, Qatar	2.35	0.34	Canada, Colombia, Ecuador, El Sal- vador, Ghana, Guatemala, Honduras, Indonesia, Japan, Mexico, Nicaragua, Panama, Philippines, Taiwan, United States (15)	8.46	7.59	Argentina, Australia, Belarus, Brazil, Cote d'Ivoire, Egypt, Kazakhstan, Mozambique, Nigeria, Paraguay, Rus- sia, Singapore, South Africa, Ukraine, Uruguay, Venezuela (23)	2.06	1.46
2019	Argentina, Belarus, Brazil, Chile, China, Egypt, Georgia, Paraguay, Russia, Singapore, South Africa, Sri Lanka, Thailand, Turkey, Uruguay, Vietnam (22)	5.73	1.93	Australia, Canada, Colom- bia,Guatemala, Indonesia, Japan, Mexico, Peru, Philippines, South Korea, Taiwan, United States (15)	10.14	7.63	Argentina, Belarus, Brazil, Chile, China, Egypt, Georgia, Paraguay, Russia, Singapore, South Africa, Sri Lanka, Thailand, Turkey, Uruguay, Vietnam (22)	5.73	1.93
2021	Argentina, Brazil, China, Egypt, France,Kenya, Paraguay, Portugal, Serbia, Singapore, Spain, Uruguay, Vietnam (24)	12.03	10.55	Canada, Colombia, Costa Rica, El Salvador, Guatemala, Honduras, Japan, Mexico, Nicaragua, Panama, Philippines, Thailand, United States (13)	9.36	9.72	Belarus, Russia	0.12	0.08

Notes: All imports and exports figures are in billions of US\$. Numbers in parentheses at the end of the community column represent the number of members in the community.

Communities - Pork (2013)

Communities - Pork (2019)

Clustering - Pork

- \rightarrow Declining clustering coefficient \implies decline in network stability (less interconnected than before)
- $\rightarrow\,$ Same pattern is observed in other food commodities.

Centrality Changes - Corn

Centrality Changes for Corn

- \rightarrow China's now imports from more partners.
- $\rightarrow\,$ US not exports to fewer partners.
- → Betweenness decreasing for all countries, US trends upwards after Phase One agreement and COVID recovery.
- \rightarrow US's influence on global network is declining.

Community Detection - Corn

	Average Number of Communities										
Commodity	1995-1999	2000-2004	2005-2009	2010-2014	2015-2019	2020-2022					
Corn	7.0	7.2	6.6	7.2	6.8	7.33					

Year	China community	imps	exps	US community	imps	exps	Russia community	imps	exps
2011	Australia, Canada, China, Ghana, Guatemala, Honduras, Japan, Mex- ico, Namibia, Nicaragua, South Africa, South Korea, United States (22)	13.18	15.59	Australia,Canada, China, Ghana, Guatemala, Honduras, Japan, Mex- ico, Namibia, Nicaragua, South Africa, South Korea, United States (22)	13.18	15.59	Albania, Austria, Belgium, France, Germany, Ireland, Italy, Nether- lands, New Zealand, Norway, Poland, Romania, Russia, Serbia, Slovakia, Slovania, Spain, Syria, Turkey, United Kingdom (36)	7.20	6.56
2013	Canada, China, Ghana, Japan, Mex- ico, Nicaragua, South Africa, United States, Venezuela (19)	10.97	8.02	Canada, China, Ghana, Japan, Mex- ico, Nicaragua, South Africa, United States, Venezuela (19)	10.97	8.02	Austria, Belgium, France, Georgia, Germany, Greece, Hungary, Ireland, Italy, Netherlands, New Zealand, Norway, Poland, Romania, Russia, Serbia, Sweden, Switzerland, Turkey, United Kingdom (36)	7.29	7.11
2015	China, Egypt, Estonia, Israel, Kaza- khstan, Laos, Lithuania, Myanmar, Portugal, Ukraine (10)	3.66	3.77	Bolivia, Canada, Colombia, Japan, Mexico, Peru, United States, Venezuela (15)	9.08	9.68	Belarus, Belgium, Bulgaria, France, Georgia, Germany, Greece, Hungary, Italy, Netherlands, New Zealand, Norway, Poland, Romania, Russia, Spain, Sweden, Switzerland, Turkey, United Kingdom (37)	7.06	5.92
2017	Belgium, China, Denmark, Finland, France, Germany, Ireland, Israel, Netherlands, Norway, Poland, Portu- gal, Qatar, Spain, Ukraine, United Kingdom (22)	6.46	5.74	Canada, Colombia, Japan, Kaza- khstan, Mexico, Peru, United States, Venezuela (16)	8.99	10.36	Albania, Australia, Georgia, Macedo- nia, Montenegro, Russia, Serbia, Ser- bia and Montenegro, South Korea, Turkey (14)	2.69	1.24
2019	Belarus, Belgium, China, France, Germany, Iceland, Israel, Nether- lands, Poland, Spain, Ukraine, United Kingdom (22)	8.61	7.77	Belize, Canada, Colombia, Costa Rica, El Salvador, Guatemala, Hon- duras, Japan, Mexico, Nicaragua, Panama, United States, Venezuela (14)	8.15	7.99	Austria, Bulgaria, Croatia, Cyprus, Georgia, Greece, Hungary, Italy, Kazakhstan, New Zealand, Qatar, Romania, Russia, Serbia, Turkey (28)	3.62	4.12
2021	Canada, China, Colombia, Costa Rica, El Salvador, Guatemala, Hon- duras, Japan, Mexico, Panama, United States, Venezuela (12)	19.69	17.81	Canada, China, Colombia, Costa Rica, El Salvador, Guatemala, Hon- duras, Japan, Mexico, Panama, United States, Venezuela (12)	19.69	17.81	Georgia, Iran, Iraq, Ireland, Rus- sia, Singapore, Turkey, UAE, United Kingdom (20)	5.09	3.65

Notes: All imports and exports figures are in billions of US\$. Numbers in parentheses at the end of the community column represent the number of members in the community.

Communities - Corn (2013)

Communities - Corn (2019)

Clustering (Corn)

 \rightarrow Declining clustering coefficient, similar to pork and other commodities.

Clustering

Takeaways

- → Food supply chains are changing: new influencers, more sub-chains, tendency towards deglobalization.
- → Friendshoring in early stages...
- \rightarrow Resiliency and safeguards are major thrust areas.
- → Food security is under threat if supply chains deglobalize (availability and access issues).

Appendix

Centrality Measures

Community Detection

	Average Number of Communities										
Commodity	1996-2000	2001-2005	2006-2010	2011-2014	2015-2019	2020-2022					
Meats											
Fresh/chilled beef	4.8	6.6	9.4	8.4	8.6	7.00					
Frozen beef	6.0	7.8	5.4	7.2	7.2	8.33					
Pork	6.6	6.6	6.4	7.6	8.4	8.67					
Sheep/goat	6.2	6.4	6.0	7.6	9.4	7.33					
Chicken	6.0	7.0	6.4	7.2	8.4	7.33					
		Grain	s and Legum	es							
Wheat	7.0	8.6	8.2	7.8	8.4	9.0					
Corn	7.0	7.2	6.6	7.2	6.8	7.33					
Rice	8.4	9.8	9.0	8.2	8.8	9.33					
Soybean	8.8	8.2	7.2	8.0	8.6	11.33					
		E	Edible Oils								
Soybean Oil	6.0	7.0	9.4	9.6	9.2	9.33					
Peanut Oil	4.6	5.2	4.6	5.8	5.4	5.0					
Palm Oil	8.8	11.0	9.4	11.4	11.8	13.33					
Sunflower Oil	5.2	7.6	8.2	8.8	9.0	9.0					
Rapeseed Oil	5.0	7.2	7.0	7.4	7.6	6.67					

Clustering

