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Abstract

We study optimal dynamic lockdowns against Covid-19 within a commuting network. Our

framework integrates canonical spatial epidemiology and trade models, and is applied to cities

with varying initial viral spread: Seoul, Daegu and NYC-Metro. Spatial lockdowns achieve

substantially smaller income losses than uniform lockdowns. In NYM and Daegu—with large

initial shocks—the optimal lockdown restricts inflows to central districts before gradual relax-

ation, while in Seoul it imposes low temporal but large spatial variation. Actual commuting

reductions were too weak in central locations in Daegu and NYM, and too strong across Seoul.
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1 Introduction

Commuting networks are the backbone of cities, allowing interactions that are vital for economic

growth. On a typical day, Manhattan receives as many commuters as its residents–about 1.6 million

people. Two months after the onset of Covid-19, NYC metro commute flows were 48% below pre-

pandemic levels. Weighing the economic costs against the benefits of stopping Covid-19, was this

reduction too large or not large enough? To fight a highly infectious disease without a vaccine,

public authorities must decide if and how to curtail movements across locations connected via

commuting and trade.1 How should lockdown policies be set across locations and time?

In this paper we establish an efficient benchmark against which to measure the losses from

uncoordinated or spatially uniform lockdown efforts. We study optimal dynamic lockdowns to fight

pandemics in a commuting network using a framework that integrates standard spatial epidemiology

and trade models.2 In the model, a disease spreads through interactions of commuters at the

workplace. Lockdown policies directly reduce the real income of workers who stay at home and

increase shopping costs, and indirectly impact other locations through shifts in expenditures.3

In reality, policies that close specific businesses preclude commutes along particular routes. Our

planning problem determines the fraction of each origin-destination commuting flow allowed to

operate at each point in time to minimize the economic costs and the loss of lives. We also

implement optimal lockdowns by origin or destination that resemble less flexible closures (e.g.,

lockdowns by neighborhood).

We apply the model using real-time commuting data across districts in two South Korean cities,

Seoul and Daegu, and cellphone mobility data across counties in the NYC Metro area (NYM).

We compare optimal pandemic-fighting strategies across intensities of the initial virus shock and

contrast them with the observed commuting responses. We analyze Korean cities because Korea

has tested for Covid-19 at greater intensities than most countries, making the timeline of their case

data more reliable.4 Seoul is the largest city in Korea and experienced a relatively small caseload,

while Daegu (Korea’s fourth-largest city) experienced the country’s largest shock. We study NYM

because of its economic importance and rapid spread.

We compute the optimal lockdown given the Covid-19 spread when lockdown policies were an-

nounced. The model matches pre-pandemic commuting flows and wages across locations (Korean

districts and NYM counties). We estimate the transmission rate using data on the spatial distribu-

1Lockdowns were announced fairly uniformly across bordering U.S. states, with a mean difference of 4 days,
although there has been variation in county-level policies. For example, New York, New Jersey, and Connecticut
imposed almost simultaneous lockdown in March 2020, while Illinois did so more two weeks before Missouri (Raifman
et al., 2020).

2The spatial SIR model we formulate is closely related to the multi-city epidemic model in Arino and Van den
Driessche (2003), in which the disease is transmitted from infected residents of location i to susceptible residents of
location j when they meet in location k. The trade model follows Anderson and Van Wincoop (2003).

3Caliendo et al. (2018) and Monte et al. (2018) study diffusion of local shocks across and within cities in related
gravity models.

4Korea had performed 0.878 tests per thousand people at the time of its 1000th patient compared to 0.086 in the
U.S. Stock (2020), Manski and Molinari (2020), Korolev (2020), and Atkeson (2020a) discuss challenges arising from
infrequent testing.
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tion of new cases and commuting flows over time. We use geocoded credit card expenditure data

from Seoul to estimate the impact of lockdown on the travel costs of shopping.

Our first results show that in NYM and Daegu—where the virus initially spread very quickly—

locations with high virus-diffusion potential are subject to a strict initial lockdown, eliminating up

to 70% of pre-pandemic inflows, which is partially relaxed over 3 to 6 months. In NYM, many

locations are locked down early, but only the top-3 central locations (Manhattan, Brooklyn, and

Bronx) remain closed for a long time in expectation that a vaccine arrives. In contrast, in Seoul—

where the initial spread of Covid-19 was much smaller—the planner initially locks down only a few

locations of relatively high centrality. As the virus spreads, the lockdown intensifies and retains

considerable spatial variation.

Our main result reveals large benefits from spatial targeting. Specifically, we find substantially

lower real-income losses from spatial targeting compared to an optimal but spatially uniform lock-

down. Given the actual case count by April 30, spatial targeting would have led to 20%, 32%, and

58% lower economic costs in Daegu, Seoul, and NYM, respectively, than the optimal uniform lock-

down. We find that optimal lockdowns by destination of commuting flows are almost as efficient as

the fully flexible benchmark, suggesting that spatially targeted business lockdowns may be enough

to reap the benefits of spatial targeting.

Finally, we compare the optimal benchmark with the observed commuting reductions resulting

from government action and commuters’ precautionary behavior. On average across locations,

commuting declines reached troughs of 79%, 36%, and 79% below pre-pandemic levels in Daegu,

Seoul, and NYM before modestly reverting upward. In NYM and Daegu, these city-level declines

are not far from the optimal benchmark. However, the most central (peripheral) locations exhibited

a weaker (stronger) reduction in commuting than what would have been optimal. Across Seoul,

the actual commuting reductions were too strong compared to the optimal. As a result, across all

three cities, the real income losses could have been much smaller through optimal spatial targeting.

Studies of optimal epidemic control in economic models include Goldman and Lightwood (2002)

and Rowthorn and Toxvaerd (2012) and, in the context of Covid-19, Atkeson (2020b), Alvarez et al.

(2020), Jones et al. (2020), Piguillem and Shi (2020), Rowthorn (2020), and Rowthorn and Toxvaerd

(2020), among others. Acemoglu et al. (2020), Baqaee et al. (2020), and Glover et al. (2020) among

others study lockdown with heterogeneous agents.

Adda (2016) demonstrates that diseases spread through transportation networks exploiting

variation from public-transport strikes in France, and Viboud et al. (2006) show that work-related

flows correlate with influenza’s regional spread in the United States. For Covid-19, Tian et al.

(2020) argue that the Wuhan lockdown and suspending public transport delayed the spread across

China, Fang et al. (2020) show that the lockdown reduced infection rates using real-time movement

data, Kissler et al. (2020) show that commuting correlates with cases within New York, and Hsiang

et al. (2020) and Flaxman et al. (2020) show that interventions like lockdown reduced the spread.

Spatial SIR models were first used to study influenza and measles (Rvachev and Longini Jr,

1985; Bolker and Grenfell, 1995). Germann et al. (2006), Eubank et al. (2004) and Drakopolous
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and Zheng (2017) study targeted policies in spatial or network models, and Rowthorn et al. (2009)

analyze their theoretical properties. For Covid-19, Azzimonti et al. (2020), Birge et al. (2020),

Chang et al. (2020), Chinazzi et al. (2020), and Giannone et al. (2020) simulate policies in spatial

and network SIR models, Argente et al. (2020) consider case information disclosure, and Antràs

et al. (2020) study pandemics in a trade model with human interactions.

Our contribution is three-fold. First, we implement optimal lockdown over both time and space

in a commuting network. Second, to evaluate the diffusion of economic costs through changes in

spending we integrate a general-equilibrium trade framework. Third, we use real-time commuting

and expenditure data to estimate and compare the actual commuting responses over space with

optimal lockdowns.

2 Model

We use a standard spatial epidemiology model similar to Arino and Van den Driessche (2003).

The general equilibrium corresponds to a standard quantitative gravity trade model (e.g., Anderson

and Van Wincoop 2003 and Eaton and Kortum 2002).

2.1 Spatial Diffusion

The economy consists of J locations in continuous time. Before the pandemic, in each location

i there are N0 (i) residents, of which a fraction λ (i, j) commutes to j. We let Λ be the matrix of

bilateral commuting flows such that [Λ]ij = λ (i, j).5

At each time t, the surviving residents of location i are either susceptible, exposed, infected, or

recovered in quantities S (i, t), E (i, t), I (i, t), and R (i, t), respectively. Susceptible agents become

exposed after interacting with infected agents; exposed agents are latent carriers who do not infect

others and become infected at rate γI . Infected agents die at rate γD or recover (and become

immune) at rate γR. The spatial distributions are collected in the (column) vectors S (t), E (t),

I (t), and R (t).

The government can control the fraction χ (i, j, t) of commuting flows from i to j by imposing

lockdown measures, providing incentives, or broadcasting information.6 Every agent is subject to

the policy regardless of infection status. Among those not infected and not physically commuting,

a fraction δ telecommutes. Among the infected, only the asymptomatic fraction ζ works. The

lockdown policies are collected in the J by J matrix χ (t).

The geographic spread of the disease depends on how much infected and susceptible people

interact in space. The infections could happen anywhere at commuting locations, such as in train

5These initial distributions could be the equilibrium of a spatial model as in Redding and Rossi-Hansberg (2017).
Given our timeframe we assume no job switches other than through lockdown.

6An implicit assumption is that policymakers can randomly test to obtain location-specific distributions of each
infection status, but cannot observe every individual’s status. Such random testing would also mitigate potential
errors in testing (e.g., Manski and Molinari 2020).
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stations, workplaces, or restaurants. In this benchmark the virus diffuses only through commuting.

In alternative specifications we also allow the virus to spread through shopping.

Let S̃ (j, t) ≡
∑

i′ χ (i′, j, t)λ (i′, j)S (i′, t) be the number of susceptible agents (from any origin)

exposed in j, and Ĩ (j, t) ≡ ζ
∑

i′ χ (i′, j, t)λ (i′, j) I (i′, t) be the number of infected asymptomatic

agents (from any origin) spreading the disease in j. In matrix form, S̃ (t) ≡ HS (t) S (t) and

Ĩ (t) ≡ HI (t) I (t), where HS (t) and HI (t) are spatial incidence matrices that depend on pre-

pandemic commuting flows and current lockdown policies:

Hu (χ (t)) = ζu (Λ · χ (t))′ , (1)

where ζI = ζ, ζS = 1, and · is the element-wise product. The (ji) element of HS (t) is the exposure

of the S (i, t) susceptible residents of location j to the Ĩ (j, t) infected commuters to j. Similarly,

the (ji) element of HI (t) is the exposure of the I (i, t) infected residents of location j to the S̃ (j, t)

susceptible commuters to j.

The flow of new infections in j is

Mj

(
Ĩ (j, t) , S̃ (j, t)

)
, (2)

where Mj (·) represents the matching process between infected and susceptible individuals in j. The

infections taking place in j are carried back by susceptible and infected agents to their residence.

Of these infections, a fraction HS (j, i, t)S (i, t) /S̃ (j, t) corresponds to residents of i. Therefore,

the flow of the new infections among location i’s residents is:

Ṡ (i, t) = −
∑
j

HS (j, i, t)S (i, t)

S̃ (j, t)
Mj

(
Ĩ (j, t) , S̃ (j, t)

)
. (3)

2.2 Real Income

The economic costs of lockdown enter through the distribution of real income,

U (i, t) =
Y (i, t)

P (i, t)
, (4)

where P (i, t) is the cost of living and Y (i, t) is the nominal income of location-i residents:

Y (i, t) =
∑

u=S,E,I,R

∑
j

Nu (i, j, t)w (j, t) , (5)

Here, w (j, t) is the wage per efficiency unit in j at time t and Nu (i, j, t) is the flow of efficiency

units of type-u commuters from i to j:

Nu (i, j, t) = ζu [χ (i, j, t) + (1− χ (i, j, t)) δ]λ (i, j)u (i, t) , (6)
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for u = S,E, I,R, where ζI = ζ is the fraction of asymptomatic infected and ζu = 1 for u 6= I.

The efficiency units flowing from i to j include those physically commuting, χ (i, j, t), and those

not commuting scaled by the fraction of telecommuters, (1− χ (i, j, t)) δ.

The jobs at j produce goods or services with productivity z (j). Consumers have a constant

elasticity of substitution σ across goods from different locations. Residents of j face costs τ (i, j, t) ≡
τ (i, j,χ (t)) > 1 when shopping in i. The lockdown restrictions increase this shopping cost.

In equilibrium, markets clear at all t:

w (i, t)
∑

u=S,E,I,R

∑
j

Nu (j, i, t) =
∑
j

s (i, j, t)Y (j, t) for all i; (7)

i.e., the total income of workers employed in i equals the aggregate expenditures in goods from i,

where

s (i, j, t) ≡
(
p (i, j, t)

P (j, t)

)1−σ
(8)

is the expenditure share of goods from i in location j given the price p (i, j, t) = τ (i, j, t) w(i,t)
z(i) , and

P (j, t) =

(∑
i

p (i, j, t)1−σ

) 1
1−σ

(9)

is the price index in j. In equilibrium, {w (j, t) , P (j, t)} are such that (7) and (9) hold.

2.3 Planning Problem

A social planner chooses the lockdown matrix to maximize the present discounted value of

real income net of loss of lives. The aggregate real income of location j depends on the spatial

distributions of lockdown and residents by infection status:

U (j, t) ≡ U (j; S (t) ,E (t) , I (t) ,R (t) ,χ (t)) . (10)

A vaccine and a cure become freely available with probability ν in every time period. If the cure oc-

curs at time t, location j generates the real income Ū (j, t) ≡ U (j; 0, 0, 0,S (t) + E (t) + I (t) + R (t) ,1J×J)

forever. The planning problem is:7

W = max
χ(t)

∫ ∞
0

e−(r+ν)t
∑
j

[
U (j, t) +

ν

r
Ū (j, t)− ωγDI (j, t)

]
dt (11)

7The flow value for the planner’s utility from location j is:

W0 (j, t) = (U (j, t)− ωγDI (j, t)) dt+ νdte−rdt
Ū (j, t)

r
+ e−rdt (1− νdt)W0 (j, t+ dt) .

This value includes the payoff U (j, t) − ωγDI (j, t), the probability νdt of transitioning to a vaccine and its value
Ū(j,t)
r

, and the continuation value. Solving for the present discounted value for location j and adding up across
locations yields (11).
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subject to

Ṡ (t) = −S (t) ·
[
HS (χ (t))′

(
M
(
S̃ (t) , Ĩ (t)

)
· /S̃ (t)

)]
, (12)

Ė (t) = −Ṡ (t)− γIE (t) , (13)

İ (t) = γIE (t)− (γR + γD) I (t) , (14)

Ṙ (t) = γRI (t) , (15)

where M (·) is a vector with the new matches, and where S̃ (t) = HS (χ (t)) S (t) and Ĩ (t) =

HI (χ (t)) I (t) are the susceptible and infected agents.8 The matrix χ (t) impacts aggregate real

income and the spatial incidence matrix through (1) and (10).

Following standard SEIR models, we impose a multiplicative matching function,

Mj

(
Ĩ , S̃

)
= βj ĨS̃, (16)

where βj is a location-specific diffusion rate. For intuition about the planner’s incentives, fix the

wage distribution and consider a case where lockdowns do not impact shopping costs. Then the

interior solution of the FOC with respect to χ (i, j, t) is:

(1− δ)w (j) = ∆ (i, t)
S (i, t)

N (i, t)
βj
∑
i′

ζI
(
i′, t
)
λ
(
i′, j
)
χ
(
i′, j, t

)
+
ζI (i, t)

N (i, t)
βj
∑
k

∆ (k, t)S (k, t)λ (k, j)χ (k, j, t) ,

where N (i, t) is the surviving population of i at time t and ∆ (i, t) ≡ µS (i, t) − µE (i, t), the

difference between the co-states of (12) and (13), represents the value of avoiding exposure.

On the left, the economic costs of lockdown equal the wage losses of workers who telecommute.

On the right, the first line captures the benefits of deterring susceptible agents in i from commuting

and therefore be exposed to infected agents at destination. Similarly, the second line captures that

the lockdown deters infected agents from i from transmitting the disease in j. The condition

highlights the critical tradeoff for the planner: central locations are likely to have higher wages

and be hubs for transmission. So, whether they should endure stricter lockdowns depends on the

relative importance of economic and health costs.

3 Data and Parametrization

The parametrization uses case data and real-time commuting flows to estimate the virus trans-

mission rate. The optimization is implemented starting at the lockdown announcement date using

pre-pandemic data on commuting flows, wages, population, and spending. Our units of analysis

are the 25 districts in Seoul and 8 districts in Daegu. We define NYM to be 20 counties: 5 NYC

8The notation ·/ stands for element-wise ratio.
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boroughs, 5 counties in NY (Putnam, Rockland, Westchester, Nassau, Suffolk), 8 counties in New

Jersey (Bergen, Essex, Hudson, Middlesex, Morris, Passaic, Somerset, Union), and 2 counties in

Connecticut (Fairfield, New Haven).

3.1 Data

Covid-19 Data

The Seoul Metropolitan government released patient-level case data. We filed an Official Infor-

mation Disclosure Act request to obtain patient-level data from the Daegu Metropolitan govern-

ment. We build a daily panel dataset with total confirmed cases in the Seoul and Daegu districts.

County-level NYM cases come from Johns Hopkins University and the NY State Department of

Health. The Korean data allow us to exclude cases arriving from overseas travels that were stopped

at the border.

There are limitations to using data on Covid-19 infections due to bias of the tested population

and sensitivity of the tests. These limitations are more severe at the onset of the pandemic when

testing intensity was low. Our estimation of the virus transmission rate uses data from the later

periods when reporting and testing improved. Additionally, in Korea, testing intensity has been

high since the onset.

Daily Commuter Data

For Seoul, we use district-to-district commute flows on the public transit system (subway and

bus) through confidential individual trip-level data housed at the Seoul Big Data Campus. Passen-

gers enter and exit public transit using a card with a unique identifier, from which we obtain the

time, origin, and destination of each commute. We retain weekdays from 4am to 12pm (12pm to

8pm on weekends, since commutes start later) to capture the first commute leg. We aggregate over

individual trips to bilateral daily commute flows from January 2018 to April 2020. Pre-pandemic

commute flows are the 2018/2019 averages.

For Daegu, we measure daily commuting using subway turnstile data from January 2018 to April

2020, made available by Daegu Metro Transit Corporation. We retain entries and exits using the

same commute window as in Seoul. Stations’ total entries (exits) plausibly capture the density of

residents (jobs) if commuters enter (exit) the subway station closest to their residence (workplace).

We aggregate the station-level data to the district level. Pre-pandemic commute flows come from

the 2015 Korean Population Census which records where people live and work (Kim, 2020).

For NYM, we measure county-to-county daily movements using cellphone data from SafeGraph

(real-time turnstile data within NYC is not available for suburban commuter rails). The data cover

the period from January 1, 2020 to April 30, and are constructed from anonymized smartphone

movement data collected daily at the Census block group level. We aggregate these data to the

NYM counties. Pre-pandemic commute flows for NYM are the averages from January 1-20.
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Appendix Table A.1 summarizes the commuter data and dates of key events described in the

next subsection.

Wages and Population

Population and wage data for the Korean districts come from the 2019 resident registration

database and the 2019 Statistical Yearbook of National Tax. NYM county wages are constructed

from the 2017 LEHD Origin-Destination Employment Statistics, which reports the number of

workers by wage bin and Census block.9 NYM county population in 2019 are from the U.S.

Census Bureau.

Credit Card Spending

We access data on the universe of transactions at brick-and-mortar shops within Seoul using

credit and debit cards from Shinhan, one of Korea’s top 3 banks. We observe the addresses

of cardholders and business, and the purchase values. We construct a daily district-to-district

spending matrix from January 2018 to April 2020 among the 25 districts of Seoul, restricting the

data to spending by Seoul residents. With this data we estimate elasticities of spending to distance

and to post-lockdown commuting flows.

3.2 Commuting Responses

The first three panels in Figure 1 plot time fixed effects for commuting flows relative to pre-

pandemic averages since January 2020 in each city. For Seoul and NYM, where we observe bilateral

flows, we estimate
Nijt

N̄ij,τ(t)
= πt+εijt. The dependent variable are flows at t relative to pre-pandemic

flows and τ(t) is a day-of-week and month dummy. For Daegu the figure reports Eit
Ēi,τ(t)

= πt + εit,

where the dependent variable is daily turnstile entries. The figure reports πt for each city.

In each figure the first vertical line denotes the first confirmed case in the country, the middle

line denotes the first case in the city, and the last line is the date of the lockdown announcement.

We overlay the daily counts of new Covid-19 scaled by city population.10

The first confirmed case within Korea occurred on January 26, and ridership in both cities

dropped and remained down roughly 10%. After the first confirmed case within Daegu on February

17, the virus spread quickly and commuting declined steeply. Within Seoul, there was no further

change after the first confirmed case on January 30. The right axes show that the spread was much

larger in Daegu than in Seoul, which may explain the different commuting responses.

After the virus spread throughout Korea during February, a national task force laid out guide-

lines that included social distancing, working from home, canceling non-essential gatherings, and

postponing the start date for schools and universities. Following the announcement on February

24, ridership fell in both cities for roughly two weeks before slowly trending back upwards. Overall,

9Bins are defined as lower than $1250, between $1250 and $3333, and above $3333 per month.
10Following Fang et al. (2020), we find a positive correlation between lags of commuting and new daily infections

after controlling for location and date fixed effects. See Appendix B.
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ridership fell 60.2% and 34.9% in Daegu and Seoul, respectively, between the announcement date

and April 30. The standard errors suggest similar responses across districts.

In contrast, in NYM we do not observe declines in commuting before the first confirmed within-

city case on March 3. New York State issued a lockdown order on March 22 that closed non-essential

businesses.11 At that time, commuting was already trending downward and continued to fall until

mid-April to 67.3% below the pre-pandemic flows.

3.3 Model Parameters

We bring the model to the data using daily frequency. Table 1 summarizes the parameters and

Appendix A describes the numerical resolution method.

Disease Dynamics

Following Ferguson et al. (2020) we set γI consistent with an incubation period of 5.1 days and

as robustness also consider 4.2 days (Sanche et al., 2020). Following Wang et al. (2020) we set

γR consistent with a recovery time of 18 days and also show results assuming 10 days. Ferguson

et al. (2020) obtain an infection fatality ratio of 0.9%, which we use as benchmark, and we also

use a lower bound of 0.3% across studies (Hall et al., 2020). Alamian et al. (2019) estimate that

36% of cases infections are asymptomatic. We use this number as benchmark and half that rate as

robustness. For δu, Dingel and Neiman (2020) report that 46% of jobs in the U.S. could be done

from home. A survey by Job Korea says that 60% of workers can telecommute.12 The probability

of finding a vaccine corresponds to an expected arrival time of 18 months.

The benchmark value of life ω assumes an expected lifetime of 14.5 years for Covid-19 victims

times an annual value of USD 185,000 calculated by Hall et al. (2020) minus the discounted value

of wages (already accounted for by the planner in the economic costs). To trace a Pareto frontier

we also vary ω over a range of values between 1/100 and 100 times the benchmark. ρ matches an

annual interest rate of 4%.

Matching Function and Transmission rate

We assume that, given the number of individuals interacting in a location, contagion is more

prevalent in denser districts:13

βj =
β

areaj
. (17)

11New Jersey and Connecticut locked down a few days earlier but we assign the NY’s lockdown date.
12See http://www.jobkorea.co.kr/GoodJob/Tip/View?News_No=16696, published May 4 2020.
13This adjustment ensures that the aggregate infections are invariant to spatial aggregation. With S susceptible

and I infected individuals equally divided among J locations, assuming away spatial interactions the aggregate
number of infections is SI

J
, so that slicing a territory reduces infections. Normalizing by area yields instead SI, which

is invariant to J .
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We set β to match the model-based infection dynamics to Covid-19 case data. Using (3) and (16),

the change in the number of susceptible agents is:

∆S (i, t) = −βζ

∑
j

1

areaj
χ (i, j, t)λ (i, j)

∑
i′

χ
(
i′, j, t

)
λ
(
i′, j
)
I
(
i′, t
)S (i, t) + ε (i, t) , (18)

where λ (i, j) is the pre-pandemic fraction of residents from i commuting to j at time t, χ (i, j, t)

is the commuting from i to j at time t relative to pre-pandemic flows, and ε (i, t) accounts for

measurement error and other forces driving infections. We observe λ (i, j, t)χ (i, j, t) for Seoul

and NYM, and for Daegu we apply the changes in entries and exits to the pre-pandemic flows

to construct its bilateral flows. S (i, t) and I (i, t) are recovered from data on new infections, the

calibrated transition rates, and the laws of motion (12) to (14). Given the asymptomatic rate ζ,

we set β to minimize the sum of square errors
∑

i

∑
t ε (i, t)2.

To mitigate concerns that the new cases data is imprecise and driven by testing, we start the

estimation 10 days after the peak in new cases in each city. This approach is consistent with the

assumptions that the data on new cases became more precise in the latest periods. The results are

very similar if we start the estimation at the peak.

Appendix Figure A.2 shows that the model replicates well the average number of new cases

after the peak in the data, and implies a fair amount of dispersion in the dynamics across locations.

For the first week after patient zero, the estimation implies a city-level reproduction number (the

number of new infections per infected individual) of 1.32 in Seoul, 1.32 in Daegu, and 2.94 in NYM.

These numbers are in line with existing estimates; e.g., Shim et al. (2020) estimate 1.5 in Korea

and Fernández-Villaverde and Jones (2020) estimate 2.5 in New York.14

Trade Model Parameters

The bottom-right panel of Figure 1 plots s (i, i, t), the share of within-district expenditures,

relative to the pre-pandemic levels. Same-district spending shares increase at the time of the

lockdown, suggesting that shopping costs increased.

This evidence motivates a specification of trade costs as a function of geographic frictions and

lockdown:

τ (i, j, t) = κ0distance (i, j)κ1 χ (i, j, t)−ε . (19)

From (8), adding a time subscript and an error term ε we obtain a gravity equation:

lnX (i, j, t) = ψ (j) + η (i)− (σ − 1)κ1 ln (distance (i, j)) + (σ − 1) ε ln (χ (i, j, t)) + ε (i, j, t) (20)

where X (i, j, t) are district j’s expenditures in goods and services from i at time t, and ψ (j) and

η (i) are destination and origin fixed effects.15

14The reproduction number is the largest eigenvalue of the matrix diag(S (t))H′Sdiag (β)HI/(γD + γR) (Diekmann
et al., 1990). Table 1 reports the estimates of β.

15Appendix Figure A.1 reports positive correlations between commuting and expenditures relative to the pre-
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Using the credit-card spending data from Seoul we estimate (σ − 1)κ1 =1.53 (se 0.066) and

(σ − 1) ε =0.45 (se 0.067).16 We set σ = 5 (Ramondo et al., 2016) to recover κ1 and ε. For each

city, we set z (i) and the scale parameter κ0 to match the pre-pandemic data on wages w (j) and

the fraction of same-district expenditures in total expenditures, respectively. The latter is 55% in

the Seoul credit-card data, and assumed to be the same across cities.

4 Optimal Spatial Lockdowns

4.1 Centrality and Optimal Lockdown

We implement the model in each city using the case distribution at the lockdown date as initial

condition. The left panel of Figure 2 shows eigenvector centrality by location, which captures the

potential by location to diffuse Covid-19 under no lockdown.17 The right panel shows the fraction

of commuting inflows that is optimally shut down.

We find similar qualitative patterns in NYM and Daegu. The most central locations first

experience a strong lockdown, of up to 60% in New York and 70% in Daegu. In these locations

the lockdown is only partially relaxed over 3 to 6 months. In NYM, other locations also exhibit an

early lockdown but only Manhattan remains closed for a long time. In Daegu, all central locations

exhibit strict lockdown for a long time.

These patterns contrast with Seoul, where despite the limited spread the planner imposes a long-

lasting lockdown to restrain the disease. The planner first locks down a few peripheral locations,

but maintains economic activity. After the disease has spread, the lockdown intensifies across more

central locations.

The results demonstrate that the optimal strategies over time and space depend on the full

geography of commute patterns and real income, and the initial viral spread. When the spread is

sufficiently large, the planner first places more weight on shutting down locations that are perceived

as transmission hubs, even if they are the main sources of real income. When it is not, those

locations are first spared. In either case, the policy maintains a considerable steady-state lockdown

to avoid a re-emergence of the disease.18

4.2 Pareto Frontier: Uniform versus Spatially Optimal Lockdown

We compute a “Pareto” frontier describing the tradeoff between cases and economic costs. We

solve the optimal lockdown for values of life ω ranging between 1/100 and 100 times the benchmark.

To demonstrate the importance of spatially targeted policies, we also implement optimal uniform

pandemic levels, confirming a negative impact of lockdown on shopping.
16The results are similar if same-district expenditures are excluded. Monte et al. (2018) estimate a distance

elasticity of 1.29 across Commodity Flow Survey regions.
17This is the eigenvector associated with the largest eigenvalue of the matrix diag(S (0))H′SHI , weighted by the

location-specific transmission rate βj .
18The optimal lockdowns are further visualized in Appendix Figure A.3. The figure shows the lockdown every 30

days. The initial lockdown pattern radiates from geographically central locations and weakens over time.
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lockdown paths, restricted to be constant over space, or optimal lockdowns that vary only by origin

and destination. Figure 3 plots cumulative Covid-19 cases against the economic loss since the pre-

pandemic period at the last period of our data (April 30) across these values of ω, along with the

actual economic costs and cases in the estimated model.

We find large gains from implementing optimal spatial lockdown. Compared to uniform opti-

mization, given the actual number of cases, spatially targeted lockdown leads to 20%, 32%, and

58% lower economic costs in Daegu, Seoul, and NYM, respectively. In NYM and Daegu, the gap

in economic cost between uniform and optimal policies grows for higher values of life.

The actual economic costs and cumulative cases were far from the optimal but close to the space-

blind optimal policy. Under spatial targeting, the same number of cumulative cases could have

been reached at 19%, 27%, and 37% lower economic costs in Daegu, Seoul, and NYM, respectively.

The gains from optimal lockdowns by destination are larger than by origin and very close to the

benchmark, suggesting that business lockdowns may be enough to reap the benefits of spatial

targeting.

4.3 Optimal and Observed Commuting Reductions

We now compare observed reductions in commuting with the model’s optimal flows. The left

panel of Figure 4 shows aggregate commuting relative to pre-pandemic values in the data and under

optimal lockdown. Since the optimal policies are implemented at the time of lockdown, they are

shown as a flat line until that time. The right panel shows inflows for high and low centrality

locations. In Daegu and NYM, the actual city-level reductions in commuting were not very far

from the optimal benchmark. In New York, a 40% drop took place during the time leading up

to the lockdown. In the model, the optimal lockdown in that period is about 20%. We find an

even closer pattern in Daegu, where the optimal lockdown is weakly relaxed over time, as in the

data. However, the most central (peripheral) locations of both NYM and Daegu exhibited a weaker

(stronger) reduction in commuting than the optimal. In Seoul, the actual reductions were much

stronger than at the optimal in all locations. These differences explain why the estimated economic

costs from actual commuting responses were larger than the spatially optimal ones, as in Figure 3.

4.4 Alternative Specifications

Appendix Figure A.5 shows that spatial lockdown patterns are robust to the alternative parametriza-

tions described in the previous section. Figure A.6 shows that for a large shock affecting 1% of

the population, or for a value of life equal to 100 times the benchmark, the qualitative patterns in

Seoul resemble those in Daegu and NYM.

We also implement a case where the virus diffuses through shopping. Agents from i now interact

with other agents in location j at rate χ (i, j, t)λ (i, j) + β̃q (i, j, t,χ (t)), where q (i, j, ..) is their

per-capita consumption of goods from j and β̃ is the intensity of diffusion through shopping relative

to commuting. Table 1 shows the parameter estimates and appendix figures A.7 to A.9 replicate

the lockdown policies and Pareto frontier in this case. Compared to the benchmark, the lockdown

12



is weaker in Daegu and Seoul due to the smaller estimate of β. However, the qualitative spatial

patterns of lockdown and the magnitude of the gains from targeted spatial lockdown implied by

the Pareto frontier are similar.

5 Conclusion

Our framework could be applied to other spatial scales such as across cities, states, or countries,

and to study the optimal spatial deployment of a vaccine in limited supply. Future work could also

relax the assumption that worker-job matches are kept constant by allowing for potentially sluggish

job reallocations as lockdowns unwind.
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Figure 1: Commute and Spending Responses and Disease Spread
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Note: Figure reports the average daily changes in commute flows relative to the pre-pandemic levels, corresponding
to the time fixed effects from the equation in Section 3.2 (left axis). The time fixed effects are normalized to 0 on
January 8, 2020 for Daegu and Seoul (January 22, 2020 for NYM). Weekdays (weekends/holidays) are denoted in
darker (lighter) circles. The regression sample size is 968 for Daegu, 75,625 for Seoul, and 48,383 for NYM. Each
observation is a district by date pair for Daegu and a district/county-pair by date tuple for Seoul and NYM from
January 1, 2020 to April 30. The first vertical line in each graph denotes the date of the first case in the country.
The middle and last vertical lines denote the date of the first case and the lockdown announcement in each city,
respectively. Wild bootstrap standard errors are clustered by district for Daegu, and two way-clustered by origin and
destination for Seoul and NYM (Cameron et al., 2008). Error bars show 95% confidence intervals. The right axis
reports the daily new Covid-19 cases in Daegu (top left), NYM (top right), and Seoul (bottom left). The right axis
in the bottom-right panel reports the average daily changes in the share of each district’s expenditures spent in the
same district relative to the pre-pandemic levels, denoted in squares (the commuting response in the bottom right
panel is replicated from the bottom left panel).
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Figure 2: Centrality of Commuting Locations and Optimal Policies

(a) Daegu

(b) Seoul

(c) NYC Metro

Note: The left panel denotes the (log) centrality of a location (see footnote 17), normalized so that the most central location

is 1. The right panel plots the optimal policies over time for each location in the network. The color of the line represents the

centrality of the location in the network. The three most central locations in the network are indicated in the legend.

19



Figure 3: Pareto Frontiers

(a) Daegu

(b) Seoul

(c) NYC Metro

Note: The figures plot the cumulative number of new cases (y-axis, log scale) and the average real income lost per day between

the date of the first confirmed case (see Appendix Table A.1) and April 30 2020 for parametrizations of the value of life (ω)

ranging from 1/100 to 100 times the benchmark, in both the optimal lockdown with space and time variation (“Bilateral”), in

the spatially uniform optimal solution with time variation only (“Uniform”, the same lockdown across all locations), and in the

optimal solution where only origin or destination can be closed (“by Origin” and “by Destination”, respectively). The green

triangle shows the case count and real income lost implied by the estimated model on April 30 2020.
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Figure 4: Changes in Commuting Flows: Optimal and Observed

(a) Daegu

(b) Seoul

(c) NYC Metro

Note: In the left panel, the dashed black line shows the aggregate commuting flows in each city starting from the date of the

first confirmed case in each city. The solid and circled blue lines show the aggregate commuting flows implied by the optimal

spatial policy. In the right panel, optimal and observed commuting responses are divided by top-3 centrality locations (darker

shade) and the other locations.
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Optimal Lockdown in a Commuting Network

Online Appendix

Pablo D. Fajgelbaum, Amit Khandelwal, Wookun Kim, Cristiano Mantovani, Edouard Schaal

A Numerical Implementation

This section describes how the optimal planning problem is numerically implemented.

A.1 Optimal control problem

Assuming that the matching function is Mj

(
Ĩ , S̃

)
= βj ĨS̃, the optimal control problem (11) simplifies to

W = max
χ(t)

∫ ∞
0

e−(r+ν)t
∑
j

[
U (j, t) +

ν

r
U (j, t)− ωγDI (j, t)

]
dt

subject to

Ṡ (t) = −S (t) ·
[
HS (t)′ diag (β)HI (t) I (t)

]
(A.1)

Ė (t) = −Ṡ (t)− γIE (t) (A.2)

İ (t) = γIE (t)− (γR + γD) I (t) (A.3)

Ṙ (t) = γRI (t) (A.4)

and

U (j, t) = U (j;S (t) ,E (t) , I (t) ,R (t) ,χ (t))

U (j, t) = U (j; 0, 0, 0,S (t) + E (t) + I (t) + R (t)) .

The present-value hamiltonian can be written

H (t) =
∑
j

[
U (j, t) +

ν

r
U (j, t)− ωγDI (j, t)

+ µS (j, t) Ṡ (j, t) + µE (j, t) Ė (j, t) + µI (j, t) İ (j, t) + µR (j, t) γRI (j, t)

]
,

where µu, u = S,E, I,R, are J × 1 vectors of costate variables associated to each sickness status.

The first-order conditions of the problem are

1



[S (t)]
(
DSU (t) +

ν

r
DRU (t)

)′
1J×1 + diag

(
HS (t)′ diag(β)HI (t) I (t)

)
(µE (t)− µS (t)) (A.5)

= −µ̇S (t) + (r + ν)µS (t)

[E (t)]
(
DEU (t) +

ν

r
DRU (t)

)′
1J×1 + γI (µI (t)− µE (t)) = −µ̇E (t) + (r + ν)µE (t) (A.6)

[I (t)]
(
DIU (t) +

ν

r
DRU (t)

)′
1J×1 − ωγD1J×1

+ HI (t)′ diag (β)HS (t) diag (S (t)) (µE (t)− µS (t))

− (γR + γD)µI (t) + γRµR (t) = −µ̇I (t) + (r + ν)µI (t) (A.7)

[R (t)]
(
DRU (t) +

ν

r
DRU (t)

)′
1J×1 = −µ̇R (t) + (r + ν)µR (t) (A.8)

[χt (j, k)]
∂H (t)

∂χt (j, k)
= 0 (A.9)

A.2 Algorithm

We solve the optimal control problem using the following steps. Set the terminal period T to be a large number.

Given some initial condition
{
S(n) (0) ,E(n) (0) , I(n) (0) ,R(n) (0) ,D(n) (0)

}
,

1. Initialize n := 1. Guess the policy χ(1) (t) for t = 0 . . . T at the first iteration.

2. Using χ(n) (t), solve the partial differential equations (A.1)-(A.4) forward using the Euler method to recover{
S(n) (t) ,E(n) (t) , I(n) (t) ,R(n) (t) ,D(n) (t)

}
for t = 1 . . . T . Solve for the economic allocation and the corre-

sponding Jacobian in each t as described in the subsection A.3.

3. Using χ(n) (t) and the disease states, solve the partial differential equations (A.5)-(A.8) of the costates

{µS (t) ,µE (t) ,µI (t) ,µR (t)}T−1
t=0 backward using the Euler method with terminal condition

{µS (T ) ,µE (T ) ,µI (T ) ,µR (T )} = 0.

4. Compute χ∗ (t) = argmaxχH
(n) (t;χ) using a numerical optimizer. This step uses the analytical gradient for

the trade model described in the next section.

5. Stop if
∥∥∥χ(n) − χ∗

∥∥∥ < ε. Otherwise, set χ(n+1) = λχ∗ + (1− λ)χ(n) where 0 < λ < 1, set n := n + 1 and

return to step (2).

Computing the maximizer χ∗ (t) for all t is the most computationally expensive step. Computation times can be

improved by sampling a smaller number of dates t1,t2...tN and interpolating the policy between those dates.

A.3 Solving the General Equilibrium Trade Model

We use two methods to compute the solution of the general equilibrium trade model at different stages of the

numerical optimization:

Exact Solution

When solving the SEIR model forward, we compute the exact general equilibrium solution of the trade model by

iterating over w (j, t) for each t on the goods market equilibrium equation given a distribution of the state variables.

Specifically, combining (4) and (7) we obtain:

w (j, t) =

∑
k Y (k, t)

(
τ(j,k,t)
P (k,t)

w(j,t)
z(j)

)1−σ∑
u=S,E,I,R

∑
kNu (k, j, t)

. (A.10)
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Further using (5) and (9) we obtain a system for wages at time t of the form

w (j, t) = Hj (w (1, t) , .., w (J, t) , t) (A.11)

where the operator Hj (w1, .., wJ) takes the form

Hj (w1, .., wJ) =

 1∑
u=S,E,I,R

∑
k′ Nu (k′, j, t)

∑
k

(
τ(j,k,t)
z(j)

)1−σ

∑
i

(
τ(i,k,t)
z(i)

wi
)1−σ

∑
u=S,E,I,R

∑
i′

Nu
(
k, i′, t

)
wk


1
σ

(A.12)

where Nu (i, j, t) is given by (6).

Gradients

When evaluating the Jacobians DuU (t) and DuU (t) for u = S,E, I,R or when maximizing the Hamiltonian, we

linearize the trade model around a nonlinear solution (the equilibrium under the current χ to evaluate the Jacobian

and the current equilibrium with χ = 1 for the Hamiltonian maximization).

Solving for the linearized equilibrium solely requires inverting a matrix for which we have an analytical expression.

Specifically, totally differentiating the equilibrium conditions given shocks to the bilateral flows d lnNu (j, i) of type-u

workers or changes in trade costs d ln τ , and dropping the time subscript to save notation, we obtain the following

linear system

d lnY =
∑
u

(sR (u) · d lnNu) 1J1 +
∑
u

sR (u) d lnw

d lnw = sXd lnY − (sX · d ln sM ) 1J1 −
∑
u

(sW (u) · d lnNu)′ 1J1

d lnP = s′Md lnw + (sM · d ln τ) 1J1

d ln sM = (1− σ) d lnw × 11J − (1− σ) 1J1d lnP ′ + (1− σ) d ln τ

where the first line is the total differential of (5), the second line corresponds to (7), the third line differentiates the

price index (9) and the last line is the changes in the expenditure share, and where we are using vector notation

such that [d lnNu]i,j = Nu (i, j), [d lnY ]j = d lnY (j), [d lnP ]j = d lnP (j), [d lnw]j = d lnw (j), and [sM ]ij = s (i, j)

is the expenditure share. In these expressions, we have also defined [sX ]ij = sX (i, j), [sW (u)]ij = sW (u, i, j)

and [sR (u)]ij = sR (u, i, j) such that sX (i, j) ≡ Y (j)s(i,j)
w(i)

∑
u=S,E,I,R

∑
j Nu(j,i)

is location j share in i’s sales, sW (u, i, j) =

Nu(i,j)∑
u=S,E,I,R

∑
k Nu(k,j)

is the fraction of j’s efficiency units corresponding to type u commuters from i, and sR (u, i, j) =

Nu(j,i)w(i)
Y (j)

is the fraction of resident of j’s income corresponding to commuters to i in type u.

We can summarize the expressions as a solution for wages as a function of expenditure shares and labor flows

shares:

d lnw = Ω−1
w

[∑
u

sX (sR (u) · d lnNu) 1J1 − (1− σ) sX (sM · d ln τ)′ 1J1

+ (1− σ) (sX · d ln τ) 1J1 −
∑
u

(sW (u) · d lnNu)′ 1J1

]
(A.13)

where

Ωw = IJ −
∑
u

sXsR (u)− (1− σ) diag (sX1J1) + (1− σ) sXs
′
M . (A.14)

The gradients with respect to χ, S, E, I and R then follow using the definition of Nu (i, j) in (6).
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B Relationship between Commuting and Infections

We follow Fang et al. (2020) to assess the relationship between new daily infections and 21-day lags of commuting

in a reduced form specification:

ln(1 + new casesit) = αi + γcity(i),t +

21∑
k=0

βk ln(flowi,t−k) + εit (A.15)

where αi is a district fixed effect and γcity(i),t is a fixed effect that varies by city and date t. This specification flexibly

controls for city-level trends due to forces other than commuting. It identifies the impact of flows from cross-sectional

variation by exploiting a district’s flows above or below its average. The variable flowit is either the total number of

people who leave from district i (outflows) or arrive into district i (inflows). The specification pools over the three

cities since number of districts in each city is small, but we weight the regression so that each city contributes equally.

Standard errors are clustered by i using the block bootstrap to account for a small number of clusters (Cameron

et al., 2008).

We do not have an instrument for commuting that varies across space, so the coefficients must be interpreted

with caution. For example, changes in commuting may be correlated with behavioral changes. Figure A.4 reports

the coefficients. It shows an inverted-U shape peaking between 8-15 days when looking at inflows. The p-value of the

joint test βk = 0 for k = {0, ..., 7} is 0.040, for k = {8, ...15} is 0.001, and for k = {16, ..., 21} is 0.159. The results for

outflows are noisier and we do not target these moments in the structural estimation, but they seem consistent with

an incubation period after which people showing symptoms get tested or come to the hospital.

C Robustness of Optimal Lockdown Patterns

We implemented robustness with respect to key parameters, as described in Section 3.3. We consider a lower

infection fatality ratio (0.03%); a faster recovery time (10 days); an estimation of the transmission rate starting at

the peak of new cases; an asymptomatic rate of half the benchmark; a large shock such that 1% of the population

is infected; twice the value of life of the benchmark; and a shorter incubation (4.1 days). Figure A.5 shows that the

qualitative patterns of optimal lockdown from the benchmark are similar across these specifications, except for Seoul

given a large shock, as previously mentioned. Doubling the value of life or introducing a large shock leads to stronger

initial lockdown, in particular for central locations, while a lower death rate weakens it.
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D Additional Tables and Figures

Table A.1: Commuter Data Summary Statistics

Daegu Seoul NYC Metro

Population 2,438,031 9,729,107 19,467,622

# Districts 8 25 20

Sample Period Jan 1, 2018–Apr 30, 2020 Jan 1, 2018–Apr 30, 2020 Jan 1, 2020–Apr 30, 2020

Data Source Subway ridership Subway/bus ridership Mobile phones

Flow Type Turnstile Bilateral Bilateral

First Case Feb 17, 2020 Jan 30, 2020 Mar 3, 2020

Lockdown Date Feb 24, 2020 Feb 24, 2020 Mar 22, 2020

# Cumulative Cases 6,778 354 389,603

Notes: Table reports summary statistics for the Daegu, Seoul, and NYC Metro data. Administrative units within

the two Korean cities are called districts with an average population of 368,701 and an average land area of 45 km2.

Administrative units within NYC Metro are counties with an average population of 1,232,768 and an average land

area of 690 km2. Cumulative Covid-19 cases are as of April 30 2020.
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Figure A.1: Bilateral Commute Flows and Expenditures
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Note: Figure reports district-to-district expenditures against commute flows for Seoul, both normalized by their pre-pandemic

levels. The top panel reports commute flows and expenditures for each of the 625 bilateral district pairs averaged over January

1 2020 to April 30 2020. The bottom panel reports commute flows and expenditures averaged across all 625 district pairs for

each of the 121 days during this time period.
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Figure A.2: New Cases per District: Data and Estimation

(a) Daegu (b) Seoul (c) NYC Metro

Note: The solid lines show the average number of new cases per district over time since the peak in new cases in the data. The

dashed lines are the number of new cases by district in the estimated model corresponding to equation (18), assuming that

commuting changed as observed in the data (the shade of the lines represent the share of commuter inflows, with darker shades

representing more inflows). The calibration is implemented using case data starting 10 days after the peak in new cases in each

city. The solid line with circle markers is the total case number per district in the estimated model.
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Figure A.3: Optimal Lockdown over Districts and Time

Daegu Seoul NYC Metro

Note: The figure plots the optimal policy in the commuting area at different points in time. Redder colors denote
more stringent lockdowns.
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Figure A.4: Commuting and New Daily Cases
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Note: The figure plots the coefficients from equation (A.15). The left panel reports results using inflows as the
independent variable. The right panel reports outflows as the independent variable. The regression pools over the
three cities and applies weights so that each city contributes equally. The regression uses data since January 22 2020.
Error bars show 90 percent (thick) and 95 percent (thin) confidence intervals. Standard errors are clustered by using
the block bootstrap to account for a small number of clusters.
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Figure A.5: Robustness

(a) Daegu

(b) Seoul

(c) NYC Metro

Note: Plotted optimal policies are defined as mean policy for high centrality vs other locations for each city. The
different cases correspond to the alternative parametrizations described in Section 3.3 and discussed in Section C.
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Figure A.6: Seoul: Optimal Lockdown in Baseline and Alternative Scenarios

(a) Baseline (b) Large Shock (c) High Value of Life

Note: The three panels show the results for Seoul under the baseline calibration (left panel), a large shock infecting 1% of the

population (middle panel) and a value of life that is 100 times the benchmark (right panel).
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Figure A.7: Centrality of Commuting Locations and Optimal Policies (Virus Diffusion through
Shopping)

(a) Daegu

(b) Seoul

(c) NYC Metro

Note: The left panel denotes the (log) centrality of a location (see footnote 17), normalized so that the most central location

is 1. The right panel plots the optimal policies over time for each location in the network. The color of the line represents the

centrality of the location in the network. The three most central locations in the network are indicated in the legend.
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Figure A.8: Pareto Frontiers (Virus Diffusion through Shopping)

(a) Daegu

(b) Seoul

(c) NYC Metro

Note: The figures plot the cumulative number of new cases (y-axis, log scale) and the average real income lost per day between

the date of the first confirmed case (see Appendix Table A.1) and April 30 2020 for parametrizations of the value of life (ω)

ranging from 1/100 to 100 times the benchmark, in both the optimal lockdown with space and time variation (“Spatial”) and

in the spatially uniform optimal solution with time variation only (“Uniform”, i.e., the same lockdown across all locations).

The green triangle shows the case count and real income lost implied by the estimated model on April 30 2020.
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Figure A.9: Changes in Commuting Flows: Optimal and Observed (Virus Diffusion through Shop-
ping)

(a) Daegu

(b) Seoul

(c) NYC Metro

Note: In the left panel, the dashed black line shows the aggregate commuting flows in each city starting from the date of the

first confirmed case in each city. The solid and circled blue lines show the aggregate commuting flows implied by the optimal

spatial policy. In the right panel, optimal and observed commuting responses are divided by top-3 centrality locations (darker

shade) and the other locations.

14


	Introduction
	Model
	Spatial Diffusion
	Real Income
	Planning Problem

	Data and Parametrization
	Data
	Commuting Responses
	Model Parameters
	Disease Dynamics
	Matching Function and Transmission rate
	Trade Model Parameters


	Optimal Spatial Lockdowns
	Centrality and Optimal Lockdown
	Pareto Frontier: Uniform versus Spatially Optimal Lockdown
	Optimal and Observed Commuting Reductions
	Alternative Specifications

	Conclusion
	Numerical Implementation
	Optimal control problem
	Algorithm
	Solving the General Equilibrium Trade Model
	Exact Solution
	Gradients


	Relationship between Commuting and Infections
	Robustness of Optimal Lockdown Patterns
	Additional Tables and Figures

