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Overview

I Causal inference and machine learning
I Semiparametric neural nets

I What, why, and how

I Application 1: crop yield prediction and climate change impact
assessment in agriculture

I Application 2: the impact of climate change on the cost of the
Federal Crop Insurance Program



Causal Inference vs Machine Learning

Given outcomes y and data X,
I Causal inference: Estimate ∂y

∂x

I Goal is to understand marginal effects – what will happen if I
exogenously change x?

I Any bias is generally unacceptable

I Machine learning: Predict y∗

I Goal is not to understand how x affects y, but to predict new
values of the outcome y

I Usually willing to trade bias for variance



Hybrids
Heterogeneous treatment effects:
I Given outcomes y, a “treatment” D, and covariates X
I Estimate τ(X) = E

[
yD=1 − yD=0|X = x

]
I Promises to estimate Individualized treatment effects
I Papers:

I Causal Trees: Athey & Imbens (2015)
I Causal Forests: Wager & Athey (2016)

High-Dimensional Regression Adjustment:
I Given a model y = θD + g(Z) + ε

I Where θ is of interest and Z is confounding via E[ε|Z] 6= 0

I Use ML to estimate an orthagonalizing transformation V such
that V D ⊥ Z

I Papers: Chernozhukov et al. 2016 “Double Machine Learning”

Deep instrumental variables (Hartford et al. 2017)
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Neural networks

y = γ1 + V 1Γ1 + ε
V 1 = a

(
γ2 + V 2Γ2)

V 2 = a
(
γ3 + V 3Γ3)

...
V L = a

(
γL +ZΓL

)
I y – a (continuous) outcome
I ε – additive error
I Z – data
I V l – “nodes”: derived variables
I a() – the “activation function”. Maps the real line to some subset

of it. Modern nets use variants of the ReLU: a(x) = max(0, x)
I Dimension of Γ1:L controls number of nodes per layer



Semiparametric neural nets

I The top layer of a neural net is an OLS regression in derived
variables V

y = γ + V Γ + ε

I It is simple to add linear terms to the model, where a
linear-in-parameters relationship is known to be appropriate:

y = γ +Xβ + V Γ + ε

I Likewise, panel structure can be accounted-for by adding
unit-specific intercepts at the top level:

yit = αi +Xitβ + VitΓ + εit



Semiparametric and panel neural nets

X1 X2

1 Z1 Z2 Z3 Z4

1 V1
2 V2

2 V3
2

V1
1 V2

1 V3
1αi

y



Why might you want to do this?
I Statistical efficiency
I When the goal is to do prediction, but you’re working in a topic

area in which people have been doing inference and understand
the data-generating process somewhat

I When a purely nonparametric model has a hard time
representing specific kinds of structure:
I Longitudinal structure
I Secular trends
I Response heterogeneity

I (With caveats) for certain sorts of causal inference tasks
I Unbiased estimates of estimates of β from a model
y = Xβ + f(Z) + ε where f() unknown, Z high-dimensional, and
X 6⊥ f(Z)

I Examples: Instrumental variables models, high-dimensional
regression adjustment



Training: backpropagation
No closed form solution to the parameters in a neural net. Training
done by gradient descent. If the loss is

R = N−1
∑

(y − ŷ)2 + λ
∑

θ2

then the gradients are:
∂R
∂Γ1

= −2V T
1 ε̂+ 2λΓ1

∂R
∂Γ2

= V T
2 a′(V2Γ2)�−2ε̂ΓT1︸ ︷︷ ︸

stub1

+2λΓ2

∂R
∂Γ3

= V T
3 a′(V3Γ3)� stub1ΓT2︸ ︷︷ ︸

stub2

+2λΓ3

et cetera...

updates are thus

Γnew ← Γold + learning rate× ∂R

∂Γ

For a semiparametric net, the derivative WRT the linear slope coefs is
just −2XT ε̂



The “OLS trick”
Gradient descent is inexact, and it’s rare to train a neural net all the
way to convergence
I More common to stop early based on test set performance

But if the parametric terms really are important, gradient descent
might take a long time to figure this out.
I The nonparametric part of the net might start overfitting before

the parametric slope coefs reach their true values

BUT we can exploit the fact that the top of a neural net is a linear
regression, and use the closed-form solution:

B = (W TW + λI)−1W T y

where B are the weights at the top level, and W is the concatenaton
of the parametric design matrix and the top-level derived variables.

Specifying some entries of λ to be zero allows for that some terms to
be left unpenalized – useful if inference is desired.



Fixed and random effects
The model yit = αi +Xitβ + f(Zit) + εit has an intercept for every
cross-sectional unit.
I Estimating these by gradient descent is problematic for the

reasons described above
I Estimating them by OLS involves inverting a huge matrix

But because of the neural net’s structure, we can apply classical linear
regression machinery to remove/estimate α.
I For fixed effects:

(yit − ȳi) = αi − ᾱi +
(
Xit − X̄i

)
β +

(
Vit − V̄i

)
Γ + εit − ε̄it

I For random effects:(
yit − λ̃ȳi

)
= αi − λ̃αi +

(
Xit − λ̃X̄i

)
β +

(
Vit − λ̃V̄i

)
Γ + εit − λ̃ε̄it

where λ̃ ∈ [0, 1] controls the variance of the random effects and
corresponds to a L2 penalty between [0,∞]

Gradient descent can proceed on transformed terms, and α̂
recoverable with algebra



Application 1



The method
I It has been implemented in the R package panelNNET, and a

paper on the method has been published in Environmental
Research Letters

I It achieves state-of the art predictive skill in its domain,
outperforming fully-nonparametric neural nets as well as
parametric statistical models



Baseline parametric yield model

yit = αi +
∑
r

GDDritβr +Xitβ + εit

I GDD = “growing degree days” – proportion of the year spent
between specific temperature bands, e.g. 27-28◦C

I Pioneered by Schlenker & Roberts (2009)

→ small shifts in heat have severe impacts on yields



Semiparametric Specification

yit = αi +
∑
r

GDDritβr +Xitβ + VitΓ + εit Γ: 100 ×1

V 1
it = a

(
γ2 + V 2

itΓ2) Γ2: 100 ×100
...

V 10
it = a

(
γ10 +ZitΓ10) Γ10: 1800 ×100

I Identical to parametric model, with addition of 100-node neural
network layer

I 10 layers, 100 nodes each. 270042 parameters (!!!)
Regularization is extremely important.

I Activation is the “leaky ReLU” a(x) = x if x > 0 else x/100



Hyperparameter optimization
Many hyperparameters:
I λ, dropout probability, minibatch size, gradient step size, etc.
I Grid-search cross-validation is expensive, and doesn’t avail itself

of benefits of model averaging

Instead, for each of B bootstrap samples of unique years, define
bootstrap sample data Dis and out-of-bag Doob. If hyperparameters
are η, fit

argmin
η

‖yoob − y∗oob‖2

where
y∗oob =Mη

(
Doob, θ̂

)
and model M is fit by

argmin
θ

‖yis −Mη (Dis, θ)‖2

Final prediction is average of each of B models – e.g.: bootstrap
aggregation or “bagging.”



Data

I Maize yield data from states comprising the US corn belt, from
NASS, 1979 - 2016

I Historical weather data from METDATA (Abatzoglou 2013)
I Daily observations of min/max temperature, min/max relative

humidity, precipitation, wind speed, insolation
I 4km resolution
I Aggregated to counties and weighted by agricultural area

I Climate scenario data from Multivariate Adaptive Climate
Analogs (MACA) dataset (Abatzoglou 2012)
I Statistical downscaling of CMIP5 climate model runs, for RCP4.5

and 8.5
I Same variables, resolution, processing

I Other variables: soil, time, lat/lon, proportion irrigated



Results: Predictive Skill

Model Bagged M̂SEoob

Parametric no 367.9
Semiparametric neural net no 292.8

Parametric yes 334.4
Fully-nonparametric neural net yes 638.6

Semiparametric neural net yes 251.5

I Semiparametric neural nets outperform parametric model and
regular neural net

I Improved skill derives both from semiparametric structure and
from bagging



Model fit – Corn
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Variable Importance
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Projections by GCM
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Application 2





Research Question

I How might climate change affect the cost of the Federal Crop
Insurance Program?
I And US Agricultural risk management programs more broadly

(not just FCIP)

I What aspects of climate change impacts on agriculture are most
important for the cost of the FCIP?
I Price levels? Yield risk? Price risk?
I Important to focus on drivers, given that the structure of the

program could change over time.

I How might farmer adaptation change the government's fiscal
exposure?



Cost of FCIP increasing over time

I FCIP premiums are
actuarially-fair, but subsidized
to increase participation

I Costs to government consist
of subsidies plus indemnities,
minus premiums

I Costs have averaged ∼$7B/yr
over the past 10 years

I Costs increase with acreage
insured and spike with
adverse weather
I 2011-2013
I 2008
I Possibly this year (TBD)



Model approach



Inter-model variability in severity and pattern of warming
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Inter-model variability in changes to precip
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Scenarios: Large negative yield response, especially 
in dryland production, compared to today’s climate



Changes in yield risk (proxied by CV) also large and
substantial



In the scenarios, effects on yields drives acreage out of 
dryland and into irrigated production



Scenarios: Climate change’s effect on yield concentrates 
production into core of corn belt, and into irrigable areas



In the scenarios, climate change will reduce total 
production compared to a future with today’s climate
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Scenarios: Impact of climate change on production will 
increase prices
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Scenarios: Climate change impact on price risk varies 
by crop

RCP8.5

Corn

RCP8.5

Soybeans

RCP8.5

Wheat

RCP4.5

Corn

RCP4.5

Soybeans

RCP4.5

Wheat

CanESM CCSM GISS HadGEM MIROC CanESM CCSM GISS HadGEM MIROC CanESM CCSM GISS HadGEM MIROC

0

100

0

100

Model

P
er

ce
nt

ag
e 

di
ffe

re
nc

e 
in

 p
ric

e 
ris

k 
fr

om
 b

as
el

in
e

Acreage

No Adaptation

Adaptive acreage



Higher prices, more yield risk, and changed price risk
increase fiscal exposure under most scenarios
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Drivers of Change

I Scenarios are imperfect – Not possible to model everything
I Important to understand the mechanisms underlying our result

I Corn and soybean prices projected to increase
I Corn and soybean yield risk projected to increase
I Mixed signals on price risk
I Less impact on wheat



Conclusions of the Machine Learning Application 

I Many factors that are not in our models could change with the
climate
I Examples include pests, disease, seeds

I Cost of agricultural risk management likely to increase with
severity of climate change in the scenarios

I The principle driver likely to be average prices
I Yield volatility also important

I Price risk is an important driver of cost, but its direction of
change is uncertain

I Adaptation to climate change through changes to planted acreage
will reduce cost increases, but not completely


	cover slide with disclaimer.pdf
	Slide Number 1




