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Abstract
Scope and purpose of work: This paper examines the impact of the number of gaps in data, 
the analytical form, and the model type selection criterion on the accuracy of interpolation and 
extrapolation forecasts for hourly data.
Materials and methods: Forecasts were developed on the basis of predictors that are based on: 
classical time series forecasting models and regression time series forecasting models, hybrid 
time series forecasting models and hybrid regression forecasting models for uncleared series, and 
exponential smoothing models for cleared series of two or three types of seasonal fluctuations, 
with minimum estimates of errors in interpolation or extrapolation forecasts.
Results: Adaptive and hybrid regression models have proved to have the most favorable predictive 
properties. Most hybrid time series models for systematic and non-systematic gaps and for both 
analytical forms are single models that generally describe fluctuations within a 24-hour cycle.
Conclusions: The lowest estimators of prediction errors involving interpolation were obtained 
for exponential smoothing models, followed by hybrid regression models. A reverse sequence was 
obtained for extrapolative forecasting.
Keywords: forecasting, missing data, time series, high frequency

Streszczenie
Przedmiot i cel pracy: Celem artykułu było zbadanie wpływu: liczby luk w danych, postaci ana-
litycznej, kryterium wyboru rodzaju modelu na dokładność prognoz interpolacyjnych i ekstrapo-
lacyjnych dla danych godzinnych.
Materiały i metody: Do budowy prognoz wykorzystano predyktory oparte na: klasycznych 
i regresyjnych modelach szeregu czasowego, modelach hybrydowych szeregu czasowego i hybry-
dowych modelach regresyjnych dla szeregów nieoczyszczonych oraz modelach wyrównywania 

Guest Editor Prof. Karol Kukuła, Ph.D., University of Applied Sciences in Tarnow
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Introduction

	 Companies that deal with the production or 
distribution of electricity compile three types of 
electricity forecasts: long-term, medium-term, and 
short-term. Short-term forecasts covering the time 
period of no more than an hour play the key role in 
this respect. Electricity production and consumption 
is a product of three types of seasonality: a daily 
pattern, a weekly pattern, and an annual pattern, 
and also involves other weather-related factors 
(temperature, precipitation, wind power), holidays 
etc. Short-term forecasts covering the time period 
of no more than an hour play the key role in this 
respect. There is an extensive body of research on 
short-term modeling and forecasting of electricity 
demand based on complete time series using various 
statistical methods and artificial neural networks. 
The following authors have researched this field: 
Dordonnat et al., 2008; Engle et al., 1986; Harvey, 
Koopman, 1993; Lichota, 2006; Misiorek and Weron, 
2004; Nowicka-Zagrajek, Weron, 2002; Rammanth 
et al., 1997; Szmuksta-Zawadzka, Zawadzki, 2011, 
Taylor et al., 2006; Taylor 2010; Tomaszewski, 2005; 
Weron, 2006; Witkowska et al., 2000. 
	 In contrast, there is scarcity of literature that 
explores energy demand for hourly series with data 
gaps.
	 The work of Weron (2006) is a notable exception. 
The author focuses on forecasting using time series 
models with gaps in data where the energy demand is 
measured at 5-minute intervals. This method involves 
making up for the missing data using average values 
from long-time observations, adjacent observations 
or, for example, from the previous week, followed by 
the elimination of outliers.
	 Szmuksta-Zawadzka and Zawadzki (2011, 2014, 
2015, 2016), and then Zawadzki (2018, 2020) also 
conducted long-standing research on the methods 
used for forecasting missing data in hourly time series 
with triple-complex seasonal fluctuations, for both 
systematic and non-systematic gaps. This research 
also explores the missing variants, and summarizes 
the obtained findings.

Wstęp

	 Firmy zajmujące się produkcją lub dystrybucją 
wyznaczają trzy rodzaje prognoz energii elektrycznej: 
długo-okresowe, średniookresowe oraz krótkookreso-
we. Podstawowe znaczenie w odgrywają w tym wzglę-
dzie prognozy krótkookresowe o okresie jednostko-
wym nie dłuższym niż godzina. Produkcja i zużycie 
energii elektrycznej jest wypadkową trzech rodza-
jów sezonowości o cyklach: dobowych, tygodniowym 
i rocznym oraz innych czynników związanych m.in. 
z pogodą (temperatura, opady, siła wiatru), występo-
wanie świąt itp. Podstawowe znaczenie odgrywają 
w tym względzie prognozy krótkookresowe o okresie 
jednostkowym nie dłuższym niż godzina. Literatura 
poświęcona krótkookresowemu modelowaniu i pro-
gnozowaniu zapotrzebowania na energię elektryczną 
na podstawie kompletnych szeregów czasowych z za-
stosowaniem różnych metod statystycznych i sztucz-
nych sieci neuronowych jest dość obszerna. Przykłado-
wo można tu wymienić prace następujących autorów: 
Dordonnat i inni, 2008; Engle i inni, 1986; Harvey, Ko-
opman, 1993; Lichota, 2006; Misiorek i Weron, 2004; 
Nowicka-Zagrajek, Weron, 2002; Rammanth i inni, 
1997; Szmuksta-Zawadzka, Zawadzki, 2011, Taylor 
i inni, 2006; Taylor 2010; Tomaszewski, 2005; Weron, 
2006; Witkowska i inni, 2000. 
	 Natomiast zupełnie do rzadkości należą prace 
dotyczące zapotrzebowania na energię dla szeregów 
godzinnych z lukami w danych.
	 Na uwagę w tym względzie zasługuje książka 
Werona (2006). Autor przywołanej pracy rozpatruje 
prognozowanie w szeregach z lukami, w których za-
potrzebowanie na energię jest mierzone w odstępach 
5-minutowych. Metoda polega na zastępowaniu bra-
kujących danych: średnimi z obserwacji z dłuższych 
odcinków czasu, z sąsiadujących obserwacji lub np. 
z poprzedniego tygodnia, po wcześniejszym wyelimi-
nowaniu obserwacji odstających.
	 Wieloletnie badania nad zastosowaniami metod 
prognozowania brakujących danych w godzinnych 
szeregach czasowych z potrójnie złożonymi waha-
niami sezonowymi, dla luk systematycznych i niesys-
tematycznych, były prowadzone do roku 2016 przez 
Szmuksta-Zawadzką i Zawadzkiego (2011, 2014, 2015, 
2016), a następnie przez Zawadzkiego (2018, 2020). 
Niniejsza praca uzupełniona o brakujące warianty, 
stanowi podsumowanie otrzymanych wyników.

wykładniczego dla szeregów oczyszczonych z dwóch albo trzech rodzajów wahań sezonowych, charakteryzujących się mini-
malnymi ocenami błędów prognoz interpolacyjnych lub ekstrapolacyjnych.
Wyniki: Najkorzystniejsze własności predyktywne posiadają modele adaptacyjne i hybrydowe modele regresyjne. Większość 
modeli hybrydowych szeregu czasowego dla luk systematycznych i niesystematycznych oraz obu postaci analitycznych, są to 
modele pojedyncze na ogół opisujące wahania o cyklu 24-godzinnym.
Wnioski: Najniższe oceny błędów prognoz interpolacyjnych otrzymano dla modeli wyrównywania wykładniczego a następnie 
hybrydowych modeli regresyjnych. Natomiast dla prognoz ekstrapolacyjnych kolejność była odwrotna.
Słowa kluczowe: prognozowanie, brakujące dane, szeregi czasowe, wysoka częstotliwość
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Theoretical introduction

	 Time series models with triple complex seasonal 
fluctuations can be used for modeling and forecasting 
variables for hourly data: classical models, hybrid 
models, and exponential smoothing models, as well 
as classical and hybrid regression models. This paper 
attempts to reflect on time series models since the 
classical and hybrid regression models are extended 
time series models with endogenous variable delayed 
by 24 hours and dummy variables that account 
for holidays and one day before holidays (Easter 
Saturday).
	 These fluctuations can overlap the trend either 
additively or multiplicatively. In classical models, 
each type of fluctuations is described using separate 
subsets of dummy variables. An example of an 
analytical notation of the time series model in the 
additive form with a linear trend is as follows (Kufel, 
2010; Szmuksta–Zawadzka, Zawadzki, 2011):
							       (1)

subject to the following conditions:

where:
Mit – months,
Djt – days of the week,
Gkt – hours in a daily cycle.

The exponential model differs in that there is a natural 
logarithm instead of the variable .
	 Hybrid models consisting of classical and 
hierarchical parts are also used for modeling and 
forecasting triple complex seasonal fluctuations. The 
classical part refers to fluctuations with an odd cycle 
length (here: a weekly cycle), and is described using 
dummy variables as in model 1. 
	 Regular hierarchical models can be used to 
describe fluctuations for hourly data in even cycle 
lengths (here: annual and daily cycles). Models in 
which one type of fluctuations is described using 
a hierarchical model will be referred to as single 
hybrid models. If both types of fluctuations are 
described using a hierarchical model, these models 
will be described as dual hybrid models. As defined by 
Szmuksta-Zawadzka and Zawadzki (2002), a regular 
hierarchical model is a model with divisors pi of 
a periodic (seasonal) fluctuation cycle m, which is an 
even number, that meets two conditions at the same 
time: 

			   (2)

Wprowadzenie teoretyczne

	 W modelowaniu i prognozowaniu zmiennych dla 
danych godzinnych mogą być wykorzystywane mode-
le szeregu czasowego z potrójnie złożonymi wahania-
mi sezonowymi: klasyczne, modele hybrydowe i mo-
dele wyrównywania wykładniczego oraz klasyczne 
i hybrydowe modele regresyjne. Ograniczymy się do 
syntetycznego omówienia modeli szeregu czasowego, 
ponieważ klasyczne i hybrydowe modele regresyjne 
są rozszerzonymi modelami szeregu czasowego o: 
opóźnioną o 24 godziny zmienną endogeniczną oraz 
zmienne zerojedynkowe opisujące występowanie 
świąt i jednego dnia przedświątecznego (Wielkiej 
Soboty)
	 Wahania te mogą nakładać się na trend w spo-
sób addytywny lub multiplikatywny. W modelach 
klasycznych każdy rodzaj wahań opisywany jest za 
pomocą osobnych podzbiorów zmiennych zeroje-
dynkowych. Przykładowy zapis analityczny modelu 
szeregu czasowego w postaci addytywnej z trendem 
liniowym jest następujący (Kufel, 2010; Szmuksta–
Zawadzka, Zawadzki, 2011):
							       (1)

przy warunkach:

gdzie:
Mit – miesiące,
Djt – dni tygodnia,
Gkt - godziny w cyklu dobowym.

Model wykładniczy rożni się tym, ze zamiast zmien-
nej występuje jej logarytm naturalny.
	 W modelowaniu i prognozowaniu dla potrójnie 
złożonych wahań sezonowych wykorzystywane są 
także modele hybrydowe, składające się z dwóch czę-
ści: klasycznej i hierarchicznej. Część klasyczna odno-
si się do wahań o nieparzystej długości cyklu, w na-
szym przypadku tygodniowym, i jest opisywana za 
pomocą zmiennych zerojedynkowych jak w modelu 1. 
	 Do opisu wahań o parzystej długości cykli dla 
danych godzinnych (w naszym przypadku o cyklu: 
rocznym i dobowym) mogą być wykorzystywane 
regularne modele hierarchiczne. Modele, w których 
jeden rodzaj wahań opisywany jest za pomocą mo-
delu hierarchicznego nazywać będziemy pojedyn-
czymi modelami hybrydowymi. Jeżeli za ich pomocą 
opisywane będą obydwa rodzaje wahań to będą to 
podwójne modele hybrydowe. W myśl definicji za-
mieszczonej w pracy (Szmuksta–Zawadzka i Zawadz-
ki, 2002) regularnym modelem hierarchicznym jest 
model o podzielnikach pi cyklu wahań okresowych 
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(sezonowych) m, będącego liczbą parzystą, spełniają-
cy jednocześnie dwa warunki: 

			   (2)

	 Modele hierarchiczne dla wahań o cyklu 12 mie-
sięcznym i 24 godzinnym oznaczane będą odpowied-
nio jako: HM i HG. Liczby występujące po tych symbo-
lach oznaczać będą kolejne podzielniki długości cyklu 
wahań. 
	 Liczba regularnych modeli hierarchicznych dla 
danego cyklu wahań m jest równa liczbie permutacji 
oraz permutacji z powtórzeniami podzielników pi. 
	 W pracy (Szmuksta-Zawadzka, Zawadzki, 2014) 
wymienione zostały modele hierarchiczne dla po-
szczególnych długości cykli i podane zostały ich zapi-
sy analityczne.
	 Dla danych miesięcznych o cyklu rocznym 
(m=12) liczba modeli hierarchicznych wynosi 7, 
w tym:
•	 4 dwustopniowe (HM26, HM34, HM43, HM62) 

oraz 
•	 3 trójstopniowe (HM223, HM232, HM322).

Dla danych o cyklu dobowym (m=24) ich liczba wy-
nosi 19, w tym:
•	 6 dwustopniowych (HG2_12, HG38, HG46, HG83, 

HG12_2),
•	 9 trzystopniowych (HG226, HG234, HG243, 

HG324, HG342, HG423, HG432, HG226, HG262),
•	 4 czterostopniowe (HG2223, HG2232, HG2322, 

HG3222).

	 Natomiast liczba szacowanych podwójnych mo-
deli hybrydowych równa jest iloczynowi liczb modeli 
pojedynczych i wynosi . Zatem dla jednej postaci ana-
litycznej szacowanych jest łącznie modeli hybrydo-
wych. Do tego należy doliczyć jeden model klasyczny 
(z trzema zespołami zmiennych zerojedynkowych) 
dany równaniem (1). Będzie on punktem odniesienia 
dla modeli hybrydowych. 
	 Poniżej podano zapis analityczny czterostopnio-
wego liniowego modelu hierarchicznego z trendem 
liniowym (Szmuksta-Zawadzka i Zawadzki, 2014):
							       (3)

przy warunkach:

	 Hierarchical models for fluctuations within 
a 12-month and 24-hour cycle will be referred to 
respectively as: HM and HG. The numbers noted after 
these symbols shall mean successive divisors of the 
length of the fluctuation cycle. 
	 The number of regular hierarchical models for 
a given fluctuation cycle m is equal to the number of 
permutations and permutations with repetitions of 
divisors pi. 
	 Szmuksta-Zawadzka, Zawadzki (2014) list 
hierarchical models for individual cycle lengths and 
provide their analytical notations.
	 There are 7 hierarchical models for monthly data 
within an annual cycle (m=12), including 4 two-stage 
models (HM26, HM34, HM43, HM62), and 3 three-
stage models (HM223, HM232, HM322).

There are 19 models for data within a daily cycle 
(m=24), including 6 two-stage models (HG2_12, HG38, 
HG46, HG83, HG12_2), 9 three-stage models (HG226, 
HG234, HG243, HG324, HG342, HG423, HG432, HG226, 
HG262), and 4 four-stage models (HG2223, HG2232, 
HG2322, HG3222).

	 The number of estimated dual hybrid models is 
equal to the product of the numbers of single models. 
Hence, a total of hybrid models are estimated for 
a single analytical form. One classical model (with 
three sets of dummy variables) as per equation (1) 
should be added as the benchmark for hybrid models. 
	 An analytical notation of a four-stage linear 
hierarchical model with a linear trend is as follows 
(Szmuksta-Zawadzka and Zawadzki, 2014):
							       (3)

subject to the following conditions:

The two-stage model consists of the first two 
components and the three-stage model will feature 
the first three components. The form of variables 
Q depends on the number of hierarchy levels, the 
number and sequence of divisors in the model, and 
the fluctuation cycle length. The dummy variables 
Q in the formula provided above for a 24-hour cycle 
refer to 19 two-, three- and four-stage models. The 
number of variables at each level of the hierarchy is 
1 lower than the value of the divisors p1, p2, p3 or 
p4 as the parameters must add up to 0. For example, 
there are 11 and 1 variables, respectively, in the 
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HG12_2 two-stage model. The dummy variables 
Qst (s = 1, 2, …, 11) take values equal to 1 for each two-
hour period: Q1t = 1 for hour 1 and 2, and 0 for the 
remaining hours of the daily cycle, Q2t for 3 and 4, …., 
Q11t for 21 and 22. There is only one variable Qsrt (r = 
1, 2) since p2 – 1 = 1. The variable Qs1t takes the value 
of 1 for the first (odd) hour of each two-hour period. 
In seven two- and three-stage hierarchical models 
describing fluctuations within an annual cycle, the 
variables Q take different values. For example, the 
divisors in the HM43 model are p1 = 4 and p2 = 3. The 
number of Q variables is lower by 1. The dummy 
variables Qst(M) (s = 1, 2, 3) take the value of 1 in the 
s-th quarter and 0 in the remaining quarters, and the 
variables Qsrt(M) (r = 1, 2) take the value of 1 in the r-th 
months of each quarter. All of the discussed models 
have complex seasonality: the classical time series 
models, regression models, and hierarchical (hybrid) 
models are single-equation models.
	 As for exponential smoothing models, data 
cleared of two (Yt**) or three types of seasonality 
(Yt***) are the basis for modelling and then for 
creating the output forecasts. The forecasts will 
be built on predictors based on three-parameter 
Holt-Winters models and single-parameter Brown’s 
models or two-equation Holt’s models, respectively. 
	 The analytical notations of these models and the 
resulting predictors were described by Szmuksta-
Zawadzka, Zawadzki (2015). The smoothing constants 
take values on a scale of 0 to 1. Final forecasts are 
obtained in additive models by adding components, 
and in multiplicative models – by multiplying by 
seasonality indices.
In the first case, the forecasts are built on predictors 
based on Holt-Winters models with three equations 
and three smoothing constants ( ). In this 
model, the seasonal effects within a 24-hour cycle 
are described by the third equation. Equations and 
predictors of the additive Holt-Winters model:

		 (4)

	 (5)

		  (6)

		  (7)

			   (8)
	 If the three-parameter Holt-Winters models are 
used, there is a numerical problem, specifically if the 
parameters  change from 0.01 to 0.99, every 
0.01, then 993 = 970299 versions should be estimated. 
	 Choosing the “optimal” values of the smoothing 
constants without having to estimate close to a million 
versions is one of the biggest challenges. Earlier 
research revealed that, if the variable is highly inert, 

Model dwustopniowy zawierać będzie dwie pierwsze 
składowe a model trójstopniowy trzy. Postać zmien-
nych Q zależy od: liczby stopni hierarchii, liczby 
i kolejności podzielników modelu oraz długości cyklu 
wahań. Występujące w powyższym wzorze zmienne 
zero-jedynkowe Q dla cyklu 24-godzinnego odnoszą 
się do 19 modeli dwu-, trzy- i czterostopniowych. Licz-
ba zmiennych na każdym stopniu hierarchii, z uwagi 
na warunek sumowalności parametrów do 0, jest 
o 1 mniejsza od wartości podzielników p1, p2, p3 lub 
p4. Przykładowo w modelu dwustopniowym HG12_2 
ich liczba wynosi odpowiednio 11 i 1. Zmienne zero-
-jedynkowe Qst (s = 1, 2, …, 11) przyjmują wartości 
równe 1, dla każdego okresu dwugodzinnego: Q1t = 1 
dla godziny 1 i 2 oraz 0 dla pozostałych godzin cyklu 
dobowego, Q2t dla 3 i 4, …., Q11t dla 21 i 22. Natomiast 
zmienna Qsrt (r = 1, 2) jest tylko jedna, ponieważ p2 – 1 
= 1. Zmienna Qs1t przyjmuje wartość 1 dla pierwszej 
(nieparzystej) godziny każdego okresu dwugodzin-
nego. W siedmiu dwu- i trzystopniowych modelach 
hierarchicznych opisujących wahania o cyklu rocz-
nym zmienne Q przyjmują inne wartości. Przykłado-
wo dla modelu HM43 podzielniki wynoszą: p1 = 4 i p2 
= 3. Liczby zmiennych Q są o 1 mniejsze. Zmienne ze-
ro-jedynkowe Qst(M) (s = 1, 2, 3) przyjmują wartości 1 
w s-tym kwartale i 0 w pozostałych, a zmienne Qsrt(M) 
(r = 1, 2) – wartości 1 w r-tych miesiącach każdego 
kwartału. Wszystkie omawiane w pracy modele wy-
kazujące złożoną sezonowość: klasyczne szeregu cza-
sowego, regresyjne oraz hierarchiczne (hybrydowe) 
są modelami jednorównaniowymi.
	 W przypadku modeli wyrównywania wykład-
niczego podstawa modelowania a następnie budowy 
prognoz wyjściowych są dane oczyszczone z dwóch 
(Yt

**) lub trzech rodzajów sezonowości (Yt***). Pod-
stawą budowy prognoz będą predyktory oparte od-
powiednio na: trzy parametrowych modelach Hol-
ta-Wintersa oraz jednoparametrowych modelach 
Browna lub dwu-równaniowych modelach Holta. 
	 Zapisy analityczne tych modeli i opartych na 
nich predyktorów można znaleźć w pracy (Szmuk-
sta-Zawadzka, Zawadzki, 2015). Stałe wygładzania 
przyjmują wartości z przedziału (0,1). Prognozy koń-
cowe otrzymuje się w modelach addytywnych przez 
dodanie składników, a modelach multiplikatywnych 
przez przemnożenie przez wskaźniki sezonowości.
W pierwszym przypadku podstawą budowy prognoz 
są predyktory oparte na modelach Holta-Wintersa 
o trzech równaniach i z trzema stałymi wyrównywa-
nia ( ). W modelu tym równanie trzecie opisuje 
efekty sezonowe o cyklu 24 godzinnym. Równania 
i predyktory addytywnego modelu Holta-Wintersa 
przyjmują postać:

		 (4)

	 (5)
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i.e. the latest observations have a relatively weaker 
impact, it is enough to assume that the smoothing 
constants in the Holt-Winters models vary from 0.01 
to 0.25. This translates into a significant reduction in 
the number of versions to be estimated. 
The equation and predictors based on the Brown’s 
model are as follows:

			   (9)

					     (10)

		  (11)

Equations and predictors of the linear Holt’s model:

	 (12)

 (13)

				    (14)

In the Holt’s model, changes in parameters varying 
from 0.01 to 0.25 are considered sufficient.

Subject and scope of empirical research

	 The demand for electricity in hourly cycles 
in agglomeration A was modelled and forecasted. 
Statistical data on trends in power demand (in MW) 
originated from the Data Bank of the Department of 
Applications of Mathematics in Economics at the West 
Pomeranian University of Technology in Szczecin. 
The baseline series (without gaps in data) covered 
the period of two years and 17,520 observations. 
The forecasts were empirically verified during the 
third year of analysis. The evolution of the variable 
in the period of estimation is presented graphically in 
Figure 1.

		  (6)

		  (7)

			   (8)
	 Wykorzystanie trójparametrycznych modeli 
Holta-Wintersa. związane jest z problemem natury 
numerycznej, zwłaszcza w przypadku, jeżeli para-
metry  zmieniają się od 0,01 do 0,99, co 0,01, 
należy szacować wówczas 993 = 970299 wersji. 
	 Jednym z trudniejszych zagadnień, jest wybór 
„optymalnych” wartości stałych wygładzania bez ko-
nieczności szacowania blisko miliona wersji. Z prze-
prowadzonych wcześniej badań wynika, że jeżeli 
zmienna charakteryzuje znacznym stopniem inercji 
tzn. stosunkowo słabszym wpływem najnowszych 
obserwacji, to wystarczającym jest przyjęcie założe-
nia o tym, że w modelach Holta-Wintersa stałe wy-
gładzania zmieniają się od 0,01 do 0,25. Oznacza to 
znaczne zmniejszenie liczby szacowanych wersji. 
Równanie i predyktory oparte na modelu Browna są 
następujące:

			   (9)

					     (10)

		  (11)

Równania i predyktory liniowego modelu Holta 
przyjmują postać:

	 (12)

  (13)

				    (14)

W modelu Holta, także wystarczającym jest 
przyjęcie założenia o zmianach parametrów 
z przedziału (0,01-0,25).

Przedmiot i zakres badań empirycznych

	 Modelowaniu a następnie prognozowaniu 
poddano zapotrzebowanie na energię elektryczną 
w okresach godzinnych w aglomeracji A. Dane sta-
tystyczne o kształtowaniu się zapotrzebowania na 
moc (w MW) pochodzą z Banku Danych Katedry Za-
stosowań Matematyki w Ekonomii ZUT w Szczecinie. 
Szereg wyjściowy (bez luk) obejmował okres dwóch 
lat, tj. 17520 obserwacji. Trzeci rok był okresem em-
pirycznej weryfikacji prognoz. Kształtowanie się 
zmiennej w okresie estymacyjnym zostało przedsta-
wione w sposób graficzny na Rysunku 1.
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	 The best predictors based on classical and hybrid 
time series models as well as classical and hybrid 
regression models were used to create forecasts for 
incomplete data.
	 Forecasting based on predictors from 
exponential smoothing models was done for series 
cleared of two or three types of seasonal fluctuations 
of the variable.
	 Two types of data gaps were considered: non-
systematic (NS) and systematic (S). Non-systematic 
gaps occurred in selected hours, days of the week 
and months, in the period from July 1 of the first 
year to June 30 of the second year of analysis, while 
systematic gaps were reported in the same time 
units throughout the sampled period. Two options 
were considered for each type of gaps: G and GDM. In 
the first variant, the gaps occurred within 8 hourly 
periods (2, 6, 8, 10, 14, 16, 18 and 22): NS_G and S_G, 
respectively. In the second variant, gaps also occurred 
on two days of the week (Tuesday and Thursday) and 
in two months (August and October), NS_GDM and 
S_GDM, respectively, apart from the specified hours. 
	 Two analytical forms were analyzed for all 
classes of models: linear and exponential for the 
classical and regressive time series models, as well as 
additive and multiplicative for exponential smoothing 
models.
	 Two types of forecasts were determined on the 
basis of the estimated equations: interpolation (I) 
and extrapolation (E). Interpolation forecasts were 
calculated for periods within the sample time range, 

	 Do budowy prognoz dla niepełnych danych wy-
korzystano najlepsze predyktory oparte na: modelach 
klasycznych i hybrydowych szeregu czasowego oraz 
klasycznych i hybrydowych modelach regresyjnych.
	 Prognozowanie na podstawie predyktorów 
opartych na modelach wyrównywania wykładnicze-
go prowadzono dla szeregów oczyszczonych z dwóch 
albo trzech rodzajów wahań sezonowych zmiennej.
	 Rozpatrywane były dwa rodzaje luk w danych: 
niesystematyczne (NS) i systematyczne (S). Luki 
niesystematyczne występowały w wybranych: go-
dzinach, dniach tygodnia i miesiącach w okresie od 1 
lipca pierwszego roku do 30 czerwca drugiego roku, 
a luki systematyczne w tych samych jednostkach 
czasowych w całym przedziale czasowym próby. 
W ramach każdego rodzaju luk rozpatrywano dwa 
warianty: G i GDM. W wariancie pierwszym luki wy-
stępowały w 8 okresach godzinnych (2, 6, 8, 10, 14, 
16, 18 i 22) - oznaczono je odpowiednio: NS_G i S_G. 
Natomiast w wariancie drugim, obok wymienionych 
godzin, także w dwóch dniach tygodnia (wtorek 
i czwartek) oraz dwóch miesiącach (sierpień i paź-
dziernik) – zostały one oznaczone przez: NS_GDM 
oraz S_GDM. 
	 Dla wszystkich klas modeli rozpatrywane były 
dwie postaci analityczne: liniowa i wykładnicza dla 
klasycznych i regresyjnych modeli szeregu czasowe-
go oraz addytywna i multiplikatywna dla modeli wy-
równywania wykładniczego.
	 Na podstawie oszacowanych równań wy-
znaczano dwa rodzaje prognoz: interpolacyjne (I) 
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Figure 1. Power demand (MW)
Rysunek 1. Zapotrzebowanie na moc energetyczną (MW)
Source: Data Bank of the Department of Applications of Mathematics in Economics at the West Pomeranian University of Technology in Szczecin
Źródło: Bank Danych Katedry Zastosowań Matematyki ZUT w Szczecinie.
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i.e. those in which gaps occurred, while extrapolation 
forecasts were calculated for periods beyond this 
range. 
	 16,349 versions were estimated for each variant, 
type of gaps, model classes and analytical forms, 
which makes a total of versions.
	 Table 1 presents interpolation forecasts in 
absolute numbers and percentages for each type of 
gap and variant.

i ekstrapolacyjne (E). Prognozy interpolacyjne obli-
cza się dla okresów, należących do przedziału czaso-
wego próby, tj. tych w których wystąpiły luki, a pro-
gnozy ekstrapolacyjne dla okresów wybiegających 
poza ten przedział. 
	 Dla każdego wariantu, rodzaju luk, klas modelu 
i postaci analitycznej szacowano po 16349 wersji, co 
czyni łącznie wersji.
	 W Tabeli 1 zestawione zostały prognozy inter-
polacyjne w liczbach bezwzględnych i odsetkach dla 
każdego rodzaju luk i wariantu.

Table 1. Number of gaps (interpolation forecasts) by gap types and variants
Tabela 1. Liczby luk (prognoz interpolacyjnych) według rodzajów luk i wariantów

Type of gaps / Variant /
Rodzaj luk / Wariant

G GDM
in absolute  
numbers /
w liczbach 

bezwzględnych

in percentage  
values /

w odsetkach

in absolute  
numbers /
w liczbach 

bezwzględnych

in percentage 
 values /

w odsetkach

Non-systematic (NS) /
Niesystematyczne (NS) 2920 16.67% 5272 30.09%

Systematic (S) /
Systematyczne (S) 5840 33.33% 10544 60.18%

Source: Own study.
Źródło: Opracowanie własne.

	 The gaps were obtained by clearing the 
corresponding numbers of observations from the 
overall series for the sample time interval of 17520. 
The parameters of the models were estimated on 
the basis of the number of observations added to the 
17,520 numbers provided in Table 1.
	 The number of ex post extrapolation forecasts 
for the third year (empirical verification) was always 
8,760 (365 days x 24 hours).
	 This paper draws on and supplements the 
previous research on systematic gaps in exponential 
smoothing models (GDM variant) and in regression 
models (both variants). It covers all classes of models, 
analytical forms, variants and types of gaps.
	 The findings will be analyzed to examine the 
impact of the number of gaps, the analytical form, the 
selection criterion, and the type and class of the model 
on the accuracy of inter- and extrapolation forecasts 
in forecasting a microeconomic variable.
	 The research conducted by Szmuksta-Zawadzka 
and Zawadzki (2014, 2016) and Zawadzki (2018) 
revealed that forecasting models should be selected 
according to predictors with minimal estimates of 
relative errors of interpolation forecasts (MAPEI) 
or extrapolation forecasts (MAPEE). Accordingly, 
for each of these criteria, the authors listed above 
calculated type II error of forecasts as auxiliary 
values: MAPEI_E and MAPEE_I, respectively.
	 The modeling and forecasting results are 
presented in Tables 1-4. Their analysis was carried out 
in two cross-sections. The first cross-section involved 
comparing the accuracy of inter- and extrapolation 

	 Luki otrzymano przez wymazanie odpowiednich 
liczb obserwacji z szeregu pełnego liczącego dla prze-
działu czasowego próby 17520. Parametry modeli sza-
cowane były na podstawie liczb obserwacji będących 
dopełnieniem do 17520 liczb podanych w Tabeli 1.
	 Liczba prognoz ekstrapolacyjnych ex post, odno-
sząca się do trzeciego roku (okresu ich empirycznej 
weryfikacji) każdorazowo wynosiła 8760 (365 dni x 
24 godziny).
	 Praca, jest rozszerzeniem dotychczasowych ba-
dań na przypadek występowania luk systematycz-
nych w modelach: wyrównywania wykładniczego 
(wariant GDM) oraz w modelach regresyjnych (oby-
dwa warianty) i stanowi swoiste domknięcie, obej-
mujące wszystkie klasy modeli, ich postacie anali-
tyczne, warianty i rodzaje luk.
	 Analiza wyników pozwoli na zbadanie wpływu: 
liczby luk, postaci analitycznej, kryterium wyboru 
,rodzaju i klasy modelu na dokładność prognoz in-
ter- i ekstrapolacyjnych w prognozowaniu zmiennej 
mikroekonomicznej.
	 Z badań przeprowadzonych w pracach: Szmuk-
sta-Zawadzka i Zawadzki (2014, 2016 oraz Zawadz-
ki (2018) wynika, że kryterium wyboru modeli dla 
celów prognozowania powinny być predyktory cha-
rakteryzujące się minimalnymi ocenami względnych 
błędów prognoz interpolacyjnych (MAPEI) bądź pro-
gnoz ekstrapolacyjnych (MAPEE). W przywołanych 
pracach dla każdego z tych kryteriów obliczono , jako 
wielkości pomocnicze, błędy drugiego rodzaju pro-
gnoz, oznaczonych odpowiednio jako: MAPEI_E oraz 
MAPEE_I.
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forecasts, separately for non-systematic (Table 2) and 
systematic (Table 3) gaps, for variants G and GDM, 
obtained on the basis of time series models: hybrid, 
exponential smoothing and classical ones, as well as 
hybrid and classical regression models. 
	 In the second cross-section (Tables 4 and 5), the 
structure, random variation coefficients and forecast 
errors for were compared for the same classes and 
variants of models for non-systematic (NS) and 
systematic (S) gaps, separately for interpolation 
forecasts (Table 4) and extrapolation forecasts (Table 
5). The impact of doubling the number of gaps on the 
accuracy of the forecasts was examined.
	 Tables 2 and 3 for variants G and GDM list the 
following: the model structure and components, the 
characteristics of model estimates, and errors in 
inter- and extrapolation forecasts for non-systematic 
gaps or systematic gaps, respectively.
	 The first column in each table lists alpha-
numeric acronyms denoting: type of gaps (NS – 
non-systematic, S – systematic), analytical form 
(L – linear, W – exponential in classical and hybrid 
models, and a – additive and m – multiplicative in 
exponential smoothing models), types of forecasts 
(I – interpolation, E – extrapolation), gap occurrence 
variants (G, GDM), and the model class and 
components. Columns 2 to 4 for time series models 
and regression models present: assessments of the 
following coefficients: determination coefficient 
(R2), standard deviations of random components 
(Se), and coefficients of random variation (VSe). As 
for exponential smoothing models, estimates of the 
average errors of the adjusted values are provided 
(MAPEWW) instead of the coefficients of random 
variation (VSe). The last two columns contain the 
estimates of interpolation (MAPEi) or extrapolation 
errors (MAPEE). For regression predictors, the letter 
denoting the analytic form is preceded by the letter P. 
	 The information in column one reveals that all 
hybrid models for both types of forecasts are single 
models, predominantly with a hierarchical structure 
describing fluctuations within a 24-hour cycle. This 
structure was identified for the fluctuations within 
a 12-month cycle only in the extrapolation forecasts 
for the GDM variant. Modeling and forecasting results 
for non-systematic gaps, for variants G and GDM, are 
presented in Table 2. According to the data contained 
in columns 2-4, the estimated values of the coefficients 
of determination (R2) for regression models were 
higher than for time series models. At the same time, 
standard deviations of random components and 
coefficients of variation were lower. This proves that 
they have a higher predictive value.

	 Wyniki modelowania i prognozowania prezen-
towane będą w postaci tabelarycznej (Tabele 1-4). 
Ich analiza prowadzona będzie w dwóch przekro-
jach. Istota pierwszego przekroju polegać będzie na 
porównaniu, osobno dla luk niesystematycznych 
(Tabela 2) i systematycznych (Tabela 3), dokładności 
prognoz inter- i ekstrapolacyjnych, dla wariantów G 
i GDM, otrzymanych na podstawie modeli szeregu 
czasowego: hybrydowych, wyrównywania wykładni-
czego i modeli klasycznych oraz hybrydowych i kla-
sycznych modeli regresyjnych. 
	 Natomiast w ramach przekroju drugiego, obej-
mującego Tabele 4 i 5, przeprowadzone zostanie rów-
noczesne porównanie struktury, ocen współczyn-
ników zmienności losowej oraz błędów prognoz dla 
otrzymanych dla tych samych klas i wariantów mo-
deli dla luk niesystematycznych (NS) i systematycz-
nych (S) osobno dla prognoz interpolacyjnych (tabela 
4) i osobno dla prognoz ekstrapolacyjnych (Tabela 5). 
Pozwoli to na dokonanie oceny wpływu podwojenia 
liczby luk na dokładność prognoz.
	 W Tabelach 2 i 3 dla wariantów G i GDM zestawio-
ne zostały informacje dotyczące: struktury i składo-
wych modeli, charakterystyk oszacowań modeli, błę-
dów prognoz inter i ekstrapolacyjnych odpowiednio 
dla luk niesystematycznych lub luk systematycznych.
	 W kolumnie pierwszej każdej z tabel podane zo-
stały kolejno akronimy literowo-liczbowe odnoszące 
się do: rodzaju luk (NS – niesystematyczne, S – syste-
matyczne) postaci analitycznej (L – liniowa, W – wy-
kładnicza w modelach klasycznych i hybrydowych 
oraz a – addytywna i m – multiplikatywnej w mode-
lach wyrównywania wykładniczego), rodzajów pro-
gnoz (I – interpolacyjne, E – ekstrapolacyjne), warian-
tów występowania luk (G, GDM), klasy modelu i jego 
składowych. Następnie w kolumnach od 2 do 4 dla 
modeli szeregu czasowego i modeli regresyjnych po-
dano kolejno: oceny współczynników: determinacji 
(R2), odchyleń standardowych składników losowych 
(Se) oraz współczynników zmienności losowej (VSe). 
W przypadku modeli wyrównywania wykładniczego 
zamiast współczynników zmienności losowej (VSe) 
podane zostały oceny przeciętnych błędów wartości 
wyrównanych (MAPEWW). Dwie ostatnie kolumny za-
wierają oceny błędów prognoz interpolacyjnych (MA-
PEi) lub ekstrapolacyjnych (MAPEE). W przypadku 
predyktorów regresyjnych przed literą oznaczającą 
postać analityczną występuje litera P. 
	 Z informacji zawartych w kolumnie pierwszej 
wynika, że wszystkie modele hybrydowe dla obu ro-
dzajów prognoz są modelami pojedynczymi, w więk-
szości o strukturze hierarchicznej opisującej wahania 
o cyklu, 24 godzinnym. Jedynie w przypadku prognoz 
ekstrapolacyjnych dla wariantu GDM taką struktu-
rę posiadają wahania o cyklu 12-miesięcznym. Pre-
zentacja wyników modelowania i prognozowania 
dla luk niesystematycznych, dla wariantów G i GDM 
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Table 2. Evaluation of the parameters of stochastic structure and errors of inter- and extrapolation forecasts for selected models for non-
-systematic gaps
Tabela 2. Oceny parametrów struktury stochastycznej oraz błędów prognoz inter- i ekstrapolacyjnych dla wybranych modeli dla luk 
niesystematycznych

Model / 
Model R2 Se [MW] VSe [%] MAPEi [%] MAPEE [%]

NS_WI_G _HG432_0/1 0.7661 36.04 9.785 6.391 -
NS_WI_GDM_HG122_0/1 0.8106 32.49 8.823 6.584
NS_WE_G_ HG122_0/1 0.8106 32.44 8.808 - 8.775
NS_WE_GDM_0/1_HM43 0.753 37.11 10.075 - 9.257
NS_aI_G_B(0.95) - - 4,335* 4.323 -
NS_mI_GDM_H(0.20;0.01) - - 5,429* 5.302 -
NS_aE_G_HW(0.11;0.01;0.01) - - 6,181* - 7.081
NS_mE_GDM_B(0.66) - - 4,371* - 7.254
NS_W_G_0/1_0/1 0.8207 31.57 8.572 6.194 8.554
NS_W_GDM_0/1_0/1 0.8227 31.45 8.540 6.308 9.129
NS_PLI_G_HG432_0/1 0.8344 29.63 8.107 5.406 -
NS_PLI_GDM_HG122_0/1 0.8454 28.66 7.847 5.452 -
NS_PWE_G_HG432_0/1 0.8379 29.75 8.145 - 6.622
NS_PWE_GDM_ 0/1_HM43 0.8364 29.96 8.202 - 6.535
NS_PL_G_0/1_0/1 0.8485 28.36 7.760 5.374 6.906
NS_PW_GDM_0/1_0/1 0.8553 28.18 7.716 5.406 6.983

*MAPEWW

Source: Own study based on: Szmuksta-Zawadzka and Zawadzki (2014, 2015, 2016); Zawadzki, 2020, and own calculations.
Źródło: Opracowanie własne na podstawie: Szmuksta-Zawadzka i Zawadzki (2014, 2015, 2016); Zawadzki, 2020 oraz obliczenia własne.

przedstawiona została w Tabeli 2. Z analizy danych 
zawartych w kolumnach 2-4 wynika, że dla modeli re-
gresyjnych oceny współczynników determinacji (R2) 
przyjęły wyższe wartości niż dla modeli szeregu cza-
sowego. Jednocześnie oceny odchyleń standardowych 
składników losowych i współczynników zmienności 
były niższe. Świadczy to o ich lepszych własnościach 
predyktywnych.

	 Dla modeli wyrównywania wykładniczego oce-
ny współczynników MAPEWW zostały oznaczone (*). 
Z ich kształtowania się wynika, że przyjęły one war-
tości z przedziału od 4,335* do 6,181*% i były niższe 
od współczynników zmienności losowej pozostałych 
modeli o co najmniej 1,5 punktu procentowego (p.p.). 
Może to świadczyć o wyższych własnościach predyk-
tywnych modeli adaptacyjnych.
	 Z informacji zawartych w przedostatniej ko-
lumnie wynika, że najniższe oceny błędów prognoz 
interpolacyjnych otrzymano dla predyktorów ada-
ptacyjnych. Wyniosły one odpowiednio: 4,323% dla 
modelu wyrównywania wykładniczego Browna dla 
wariantu G oraz 5,302% dla modelu Holta – wariant 
GDM – różniły się jedynie o około jeden p.p.. Oceny 
wyższe ok. 1,1 p.p. otrzymano dla hybrydowego mo-
delu regresyjnego dla wariantu G i ok. 0,4 p.p dla wa-
riantu GDM. Dla hybrydowych modeli regresyjnych, 
otrzymano oceny bardzo zbliżone, różniące się o nie 
więcej niż o 0,046 p.p., przy czym były one nieznacz-
nie niższe dla modeli klasycznych.
	 Wyższe oceny, przekraczające 6 p.p., otrzyma-
no dla klasycznych i hybrydowych modelu szeregu 

	 For exponential smoothing models, the estimates 
of MAPEWW coefficients are marked with an asterisk 
(*). Their values ranged from 4.335* to 6.181*% and 
were lower than the coefficients of random variation 
of other models by at least 1.5 percentage points 
(p.p.). This may be indicative of a higher predictive 
value of adaptive models.
	 The data in the penultimate column indicate 
that the estimates of interpolation forecast errors 
were the lowest for adaptive predictors. They equaled 
4.323% for the Brown’s exponential smoothing 
model for variant G, and 5.302% for the Holt’s model 
for variant GDM. They differed only by about one 
percentage point. Estimates for the hybrid regression 
model for variant G were higher by approx. 1.1 p.p., 
and by approx. 0.4 p.p. for variant GDM. Similar 
values were obtained for hybrid regression models, 
with a difference of up to 0.046 p.p., and were slightly 
lower for the classical models.
	 Higher values of more than 6 p.p. were obtained 
for the classical and hybrid time series models. The 
error relationship was similar to that in the regression 
models.
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	 The variant GDM values for extrapolation 
forecast errors presented in the last column were 
generally higher than the values obtained for variant 
G. Hybrid regression models with the lowest error 
estimates of 6.622% and 6.535%, respectively, were 
the only exception. Error estimates for predictors 
based on exponential smoothing models exceeded 
7% by a narrow margin, and were higher by approx. 
0.4-0.5 p.p. The highest values ranging from 8.775 to 
9.257% were obtained for hybrid and classical time 
series models.
	 Table 3 lists model characteristics, parameters 
of the stochastic structure, and estimates of errors 
in inter- and extrapolation forecasts for systematic 
gaps, in the same arrangement. According to the first 
column, single models with hierarchical components 
within a 24-hour cycle were obtained for variant G, 
for two hybrid time series models and one regression 
model (S_PLI_G_HG432_0/1). Unlike the non-
systematic gaps, 4 dual hybrid models were obtained 
for the variant GDM: two for time series models and 
two for regression models. A dual model was also 
obtained for variant G for the regression predictor: 
S_PLE_G_HG2232_HM43. 

czasowego. Relacja błędów była podobna jak dla mo-
deli regresyjnych.
	 W przypadku zamieszczonych w ostatniej ko-
lumnie błędów prognoz ekstrapolacyjnych ich oceny 
dla wariantu GDM były generalnie wyższe od ocen 
otrzymanych dla wariantu G. Jedyny wyjątek dotyczy 
hybrydowych modeli regresyjnych – otrzymano dla 
nich najniższe oceny błędów wynoszące odpowied-
nio: 6,622% i 6,535%. Oceny błędów dla predyktorów 
opartych na modelach wyrównywania wykładnicze-
go nieznacznie przekraczały 7%, a więc były wyższe 
o ok. 0,4-0,5 p.p. Najwyższe oceny, kształtujące się 
w granicach 8,775 – 9,257% otrzymano dla hybrydo-
wych i klasycznych modeli szeregu czasowego.
	 W Tabeli 3 zamieszczono, w takim samym ukła-
dzie jak poprzednio: charakterystyki modeli, oceny 
parametrów struktury stochastycznej oraz oceny 
błędów prognoz inter- i ekstrapolacyjnych dla luk 
systematycznych. Z kolumny pierwszej wynika, że 
dla wariantu G dla dwóch modeli hybrydowych sze-
regu czasowego i jednego modelu regresyjnego (S_
PLI_G_HG432_0/1) otrzymano modele pojedyncze 
z hierarchicznymi składowymi dotyczącymi cyklu 24 
godzinnego. Dla wariantu GDM, w odróżnieniu od luk 
niesystematycznych otrzymano 4 podwójne modele 
hybrydowe, po dwa dla modeli szeregu czasowego 
i modeli regresyjnych. Model podwójny otrzymano 
także dla wariantu G dla predyktora regresyjnego: 
S_PLE_G_HG2232_HM43. 

Table 3. Evaluation of the parameters of stochastic structure and errors of inter- and extrapolation forecasts for selected models and syste-
matic gaps
Tabela 3. Oceny parametrów struktury stochastycznej oraz błędów prognoz inter- i ekstrapolacyjnych dla wybranych modeli i luk 
systematycznych

Models / Modele R2 Se [MW] VSe [%] MAPEi [%] MAPEE [%]

S_WI_G_HG432_0/1 0.753 36.40 9.965 6.581 -
S_LI_GDM_HG122_HM62 0.772 35.15 9.579 7.798 -
S_WE_G_HG122_0/1 0.864 31.72 8.683 - 8.633
S_WE_GDM_HG122_HM62 0.789 34.35 9.361 - 9.786
S_mI_G_HW(0.15;0.01;0.15) - - 4,835* 4.051 -
S_mI_GDM_B(0.45) - - 5,364* 5.540 -
S_mE_G_B(0.57) - - 4,935* - 7.009
S_mE_GDM_B(0.57) - - 5,214* - 7.009
S_W_G_0/1_0/1 0.877 31.23 8.551 12.343 10.095
S_W_GDM_0/1_0/1 0.818 31.91 8.695 14.881 14.539
S_PLI_G_HG432_0/1 0.833 29.69 8.128 5.472 -
S_PLI_GDM_HG432_HM62 0.822 31.04 8.458 5.6557 -
S_PLE_G_HG2232_HM43 0.816 31.20 8.541 - 6.573
S_PLE_GDM_HG2232_HM34 0.804 32.55 8.870 - 6.678
S_PL_G_0/1_0/1 0.849 28.28 7.742 7.989 7.497
S_PL_GDM_0/1_0/1 0.842 29.24 7.969 9.613 9.886

*MAPEWW

Source: Own study based on: Szmuksta-Zawadzka and Zawadzki (2014, 2015, 2016); Zawadzki, 2020, and own calculations.
Źródło: Opracowanie własne na podstawie: Szmuksta-Zawadzka i Zawadzki (2014,2015 , 2016); Zawadzki, 2020 oraz obliczenia własne.
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	 Likewise, models with a different structure 
were obtained for pairs of predictors belonging to 
the same class, for both variants. The analytical 
form was at least one discriminating factor. This is 
most evident for the GDM variant for dual time series 
hybrid predictors – S_LI_GDM_HG122_HM62 and 
S_WE_GDM_HG122_HM62. These are either linear or 
exponential, respectively.
	 For variants G and GDM, the minimum estimates 
of interpolation forecast errors of 4.051* and 5.540*% 
were obtained for exponential smoothing models. The 
first one was the Holt-Winters model with smoothing 
constants: 0.15; 0.01 and 0.15; the Brown’s model 
with the equalization constant 0.45 was the second 
one. Hybrid regression models with error estimates 
of 5.472 and 5.656% were ranked second. By far 
the highest error estimates – 12.343% for variant 
G and 14.881% for variant GDM – were obtained for 
the classical time series models. For the classical 
regression models, they equaled 7.798% and 9.613%, 
respectively. This means that predictors based 
on both classical time series models and classical 
regression models, having the highest estimates of 
errors in interpolation forecasts, are not eligible to be 
used in the forecasting process.
	 In terms of extrapolation forecasts, the lowest 
error estimates for variants G and GDM of 6.573% and 
6.678%, respectively, were obtained in regression 
hybrid equations. Very small differences in the error 
estimates of 0.105 p.p. for regression models provide 
evidence that the accuracy of extrapolation forecasts 
was not affected by doubling the share of gaps 
from 30.08% to 60.16%. Only slightly higher error 
estimates of 7.009% for both variants were obtained 
for predictors based on the multiplicative Brown’s 
model with the same smoothing constant of 0.57.
	 The highest error estimates of 10.095% and 
14.539% were also obtained for the classical time 
series models. This unequivocally proves their poor 
forecasting value. These error estimates were higher 
by approx. 3.1 and 5.5 p.p., respectively, for the 
classical regression models.
	 With the data provided in Tables 2 and 3, the 
accuracy of inter- and extrapolation forecasts was 
compared, separately for non-systematic (Table 2) 
and systematic (Table 3) gaps, for variants G and 
GDM, obtained on the basis of time series models: 
hybrid, exponential smoothing and classical ones, as 
well as hybrid and classical regression models.
	 The accuracy for non-systematic and systematic 
gaps, estimated separately, for interpolation (Table 
4) and extrapolation (Table 5) forecasts will now be 
compared, obtained from predictors for the same 
classes of time series models, exponential smoothing 
models, and regression models for variants G and 
GDM. The gap percentage points for variants G and 
GDM are as follows: 16.67% and 33.33%, and 30.09% 

	 Ponadto, podobnie jak poprzednio, dla par pre-
dyktorów należących do tej samej klasy, dla obu wa-
riantów, otrzymano modele o różnej strukturze, róż-
niące się przynajmniej postacią analityczną. Najlepiej 
widoczne jest to w odniesieniu do wariantu GDM dla 
podwójnych predyktorów hybrydowych szeregu cza-
sowego – S_LI_GDM_HG122_HM62 oraz S_WE_GDM_
HG122_HM62. W pierwszym przypadku jest to postać 
liniowa a w drugim wykładnicza.
	 Dla wariantów G i GDM minimalne oceny błę-
dów prognoz interpolacyjnych, wynoszące 4,051* 
i 5,540*% otrzymano dla modeli wyrównywania 
wykładniczego. W pierwszym przypadku był to mo-
del Holta-Wintersa o stałych wygładzania: 0,15; 0,01 
i 0,15 a w drugim model Browna o stałej wyrówny-
wania 0,45. Drugimi w kolejności były hybrydowe 
modele regresyjne z ocenami błędów wynoszącymi: 
5,472 i 5,656%. Zdecydowanie najwyższe oceny błę-
dów otrzymano dla klasycznych modeli szeregu cza-
sowego. Kształtowały się one na poziomie 12,343% 
dla wariantu G i 14,881% dla wariantu GDM. Dla kla-
sycznych modeli regresyjnych przyjęły one wartości 
wynoszące odpowiednio: 7,798% i 9,613%. Oznacza 
to, że predyktory oparte, zarówno o klasyczne mode-
le szeregu czasowego jak i klasyczne modele regresyj-
ne, charakteryzujące się najwyższymi ocenami błę-
dów prognoz interpolacyjnych, nie będą mogły być 
wykorzystane w procesie prognozowania.
	 W przypadku prognoz ekstrapolacyjnych naj-
niższe oceny błędów dla wariantów G i GDM wyno-
szące odpowiednio: 6,573% i 6,678% otrzymano na 
podstawie regresyjnych równań hybrydowych. Bar-
dzo niewielkie różnice ocen błędów dla modeli regre-
syjnych , wynosząca 0,105 p.p., świadczy o tym, że po-
dwojenie udziału luk z 30,08% do 60,16% nie miało 
wpływu na dokładność prognoz ekstrapolacyjnych. 
Tylko nieznacznie wyższe oceny błędów, wynoszące 
7,009% dla obu wariantów, otrzymano dla predykto-
rów opartych na multiplikatywnym modelu Browna 
o tej samej stałej wygładzania, wynoszącej 0,57.
	 Najwyższe oceny błędów, wynoszące 10,095% 
i 14,539% otrzymano także dla klasycznych mode-
li szeregu czasowego. Jednoznacznie przesądza to 
o braku ich przydatności do budowy prognoz. Dla kla-
sycznych modeli regresyjnych oceny te były wyższe 
odpowiednio o ok. 3,1 i 5,5 p.p.
	 Informacje zawarte w Tabelach 2 i 3 pozwoliły 
na dokonane porównanie dokładności prognoz in-
ter- i ekstrapolacyjnych, osobno dla luk niesystema-
tycznych i systematycznych, dla wariantów G i GDM, 
otrzymanych na podstawie modeli szeregu czasowe-
go: hybrydowych, wyrównywania wykładniczego 
i modeli klasycznych oraz hybrydowych i klasycznych 
modeli regresyjnych.
	 Obecnie przechodzimy do porównania dokład-
ności dla luk niesystematycznych i systematycz-
nych osobno prognoz interpolacyjnych (Tabela 4) 
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i ekstrapolacyjnych (Tabela 5) otrzymanych na pod-
stawie predyktorów dla tych samych klas modelach 
szeregu czasowego, wyrównywania wykładnicze-
go i modelach regresyjnych dla wariantów G i GDM. 
Dla wariantu G odsetki luk wynoszą: 16,67 i 33,33% 
a dla wariantu GDM: 30,09% i 60,18%. W kolumnach 
pierwszej i piątej podane zostały akronimy literowo-
-liczbowe odnoszące się w poszczególnych wierszach 
do tych samych klas modeli i wariantów luk. Najniższe 
oceny spośród współczynników: zmienności i MA-
PEWW

 otrzymano dla modeli wyrównywania wykład-
niczego – zawarte one były w przedziale (4,323*% 
– 5,421*%). Pozostałe oceny mieszczą się przedziale 
od 7,716% dla predyktora NS_PL_GDM_0/1_0/1 do 
9,785% dla predyktora NS_WI_G_HG432_0/1.
	 W przedostatniej kolumnie zamieszczono różni-
ce ocen błędów prognoz dla luk systematycznych (S) 
i niesystematycznych (NS)(p.p.=MAPE(S)-MAPE(NS)) 
Natomiast ze względów interpretacyjnych w ostat-
niej kolumnie zamieszczono wyrażone w % ilorazy 
[((MAPE(S)-MAPE(NS))/(MAPE(S))*100]. Z informa-
cji zawartych w kolumnie przedostatniej wynika, 
że oceny błędów prognoz interpolacyjnych dla luk 
systematycznych są generalnie wyższe – świadczą 
o tym dodatnie wartości różnic. Jedynym wyjątkiem 
jest wyższa ocen błędu dla modelu wyrównywa-
nia wykładniczego dla wariantu G dla luk niesyste-
matycznych NS_aI_G_B (0,95) wynosząca 4,335*% 
w porównaniu z modelem dla tego wariantu dla luk 
systematycznych (S_mI_G_HW (0,15; 0,01; 0,15) – 
4.051*%. Dla luk NS jest to addytywny (a) model 
Browna a dla luk S jest to model multiplikatywny (m) 
Holta-Wintersa.

and 60.18%, respectively. The first and fifth columns 
present alpha-numeric acronyms referring to the 
same classes of models and variants of gaps per row. 
The lowest estimates for variability coefficients and 
MAPEWW were obtained for exponential smoothing 
models (4.323*% – 5.421*%). The remaining estimates 
ranges from 7.716% for predictor NS_PL_GDM_0/1_0/1 
to 9.785% for predictor NS_WI_G_HG432_0/1.
	 The penultimate column lists differences in the 
estimates of forecasting errors for systematic (S) and 
non-systematic (NS) gaps (p.p.=MAPE(S)-MAPE(NS)). 
However, to facilitate interpretation, the last 
column contains quotients [((MAPE(S)-MAPE(NS))/
(MAPE(S))*100] expressed as percentage points. The 
data in the penultimate column demonstrate that 
the error estimates in interpolation forecasts for 
systematic gaps are generally higher, as evidenced by 
the positive values of differences. The only exception 
is the higher error estimate of 4.335*% for the 
exponential smoothing model for variant G for non-
systematic gaps NS_aI_G_B (0.95) compared to that 
for systematic gaps (S_mI_G_HW (0.15; 0.01; 0.15) of 
– 4.051*%. It is an additive (a) Brown’s model for NS 
gaps, and a multiplicative (m) Holt-Winters model for 
gaps S.

Table 4. Comparison of the accuracy of extrapolation forecasts for non-systematic and systematic gaps for variants G and GDM
Tabela 4. Porównanie dokładności prognoz ekstrapolacyjnych dla luk niesystematycznych i systematycznych dla wariantów G i GDM

Non-systematic gaps (NS) /
Luki niesystematyczne (NS)

Systematic gaps (NS) /
Luki systematyczne (S)

p.p. %
Models /
Modele VSe [%] MAPE

(NS)
Models /
Modele VSe [%] MAPE(S)

NS_WI_G_HG432_0/1 9.785 6.391 S_WI_G_HG432_0/1 9.965 6.581 0.190 2.89
NS_WI_GDM_HG122_0/1 8.823 6.584 S_LI_GDM_HG122_HM62 9.579 7.798 1.214 15.57
NS_aI_G_B(0.95) 4,335* 4.323 S_mI_G_HW(0.15;0.01;0.15) 4,835* 4.051 -0.272 -6.71
NS_mI_GDM_H(0.20;0.01) 5,421* 5.302 S_mI_GDM_B(0.45) 5,364* 5.540 0.238 4.30
NS_W_G_0/1_0/1 8.572 6.194 S_W_G_0/1_0/1 8.551 12.343 6.149 49.82
NS_W_GDM_0/1_0/1 8.54 6.308 S_W_GDM_0/1_0/1 8.695 14.881 8.573 57.61
NS_PLI_G_HG432_0/1 8.107 5.406 S_PLI_G_HG432_0/1 8.128 5.472 0.066 1.21
NS_PLI_GDM_HG122_0/1 7.847 5.452 S_PLI_GDM_HG432_HM62 8.458 5.6557 0.204 3.60
NS_PL_G_0/1_0/1 7.76 5.374 S_PL_G_0/1_0/1 7.742 7.989 2.615 32.73
NS_PL_GDM_0/1_0/1 7.716 5.406 S_PL_GDM_0/1_0/1 7.969 9.613 4.207 43.76

*MAPEWW

Source: Own calculations based on data in Tables 2 and 3. 
Źródło: Opracowanie własne na podstawie Tabel 2 i 3 i obliczenia własne.
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	 The highest estimates of differences in 
interpolation forecast errors of 6.149 and 8.572 p.p. 
(49.8 and 87.6%), respectively, were obtained for 
the classical time series models, and followed by the 
classical regression models: 2.615 and 4.207 p.p. (32.7 
and 43.8%), respectively. This difference exceeded 
1.214 p.p. (15.6%) only for variant GDM of the hybrid 
time series model (S_LI_GDM_HG122_HM62 and 
NS_WI_GDM_HG122_0/1). If the differences exceed 
the commonly recognized criterion of 8%, the 
classical time series models and classical regression 
models as well as the S_LI_GDM_HG122_HM62 model 
are unequivocally found ineligible for developing 
forecasts for systematic gaps for variants G and GDM. 
The lowest error estimates and the lowest difference 
of 0.066 p.p. were obtained for predictors: S_PLI_G_
HG432_0/1 and NS_PLI_G_HG432_0/1 among the 
hybrid models. The absolute differences for remaining 
models did not exceed 0.272 p.p. (6.7%). Accordingly, 
doubling the number of gaps has no significant impact 
on the accuracy of interpolation predictions.
	 The layout of information provided in Table 
5 and Table 4 is the same and serves as a basis for 
comparing the accuracy of extrapolation forecasts for 
non-systematic and systematic gaps.
	 The maximum values of errors in extrapolation 
forecasts are higher than the estimates of errors 
in interpolation forecasts. The estimates were the 
lowest for hybrid regression models. 

	 Najwyższe oceny wartości różnic błędów pro-
gnoz interpolacyjnych, wynoszące odpowiednio: 
6,149 i 8,572 p.p. (49,8 i 87,6%) otrzymano dla kla-
sycznych modeli szeregu czasowego a następnie dla 
klasycznych modeli regresyjnych: 2,615 i 4,207 p.p. 
(32,7 i 43,8%). Ponadto jedynie dla modeli hybrydo-
wych szeregu czasowego (S_LI_GDM_HG122_HM62 
i NS_WI_GDM_HG122_0/1), dla wariantu GDM róż-
nica ta przekroczyła 1,214 p.p (15,6%). Otrzymanie 
wartości różnic, przekraczających przyjęte umow-
nie kryterium 8%, przesądza jednoznacznie o tym, 
że dla wariantów G i GDM klasyczne modele szeregu 
czasowego i klasyczne modele regresyjne oraz model 
S_LI_GDM_HG122_HM62 nie mogą być wykorzysty-
wane do budowy prognoz dla luk systematycznych. 
Spośród modeli hybrydowych najniższe oceny błę-
dów i najniższą różnicę, wynoszącą 0,066 p.p., otrzy-
mano dla predyktorów: S_PLI_G_HG432_0/1 i NS_PLI-
_G_HG432_0/1. Dla pozostałych modeli wartości ich 
bezwzględnych różnic nie przekraczały 0,272 p.p. 
(6,7%). Oznacza to, że podwojenie liczby luk nie wpły-
wa istotnie na dokładność prognoz interpolacyjnych.
	 W Tabeli 5 zamieszczone zostały w takim samym 
układzie jak w Tabeli 4 informacje będące podstawą 
do porównania dokładności prognoz ekstrapolacyj-
nych dla luk niesystematycznych i systematycznych.
	 Wartości maksymalne błędów prognoz eks-
trapolacyjnych kształtują się na poziomie wyższym 
niż oceny błędów prognoz interpolacyjnych. Naj-
niższe oceny otrzymano dla hybrydowych modeli 
regresyjnych. 

Table 5. Comparison of the accuracy of extrapolation forecasts for non-systematic and systematic gaps for variants G and GDM
Tabela 5. Porównanie dokładności prognoz ekstrapolacyjnych dla luk niesystematycznych i systematycznych dla wariantów G i GDM

Non-systematic gaps (NS) /
Luki niesystematyczne (NS)

Systematic gaps (NS) /
Luki systematyczne (S)

p.p. %
Models /
Modele VSe [%] MAPE

(NS)
Models /
Modele VSe [%] MAPE

(S)
NS_WE_G_ HG122_0/1 8.808 8.775 S_WE_G_HG122_0/1 8.683 8.633 -0.142 -1.64
NS_WE_GDM_0/1_HM43 10.075 9.257 S_WE_GDM_HG122_HM62 9.361 9.786 0.529 5.41
NS_aE_G_HW(0.11;0.01;0.01) 6,181* 7.081 S_mE_G_B(0.57) 4,935* 7.009 -0.072 -1.03
NS_mE_GDM_B(0.66) 4,371* 7.254 S_mE_GDM_B(0.57) 5,214* 7.009 -0.245 -3.50
NS_W_G_0/1_0/1 8.572 8.554 S_W_G_0/1_0/1 8.551 10.095 1.541 15.26
NS_W_GDM_0/1_0/1 8.54 9.129 S_W_GDM_0/1_0/1 8.695 14.539 5.410 37.21
NS_PWE_G_HG432_0/1 8.145 6.622 S_PLE_G_HG2232_HM43 8.541 6.573 -0.049 -0.75
NS_PWE_GDM_ 0/1_HM43 8.202 6.535 S_PLE_GDM_HG2232_HM34 8.870 6.678 0.143 2.14
NS_PL_G_0/1_0/1 7.76 6.906 S_PL_G_0/1_0/1 7.742 7.497 0.591 7.88
NS_PW_GDM_0/1_0/1 8.54 9.129 S_W_GDM_0/1_0/1 8.695 9.886 0.757 7.66

*MAPEWW

Source: Own calculations based on data in Tables 2 and 3.
Źródło: Opracowanie własne na podstawie Tabel 2 i 3 i obliczenia własne.
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	 The highest estimates of 1.541 and 5.410 p.p. 
(15.3 and 37.2%) of the differences in extrapolation 
forecast errors for variants G and GDM, respectively, 
were obtained for the classical time series models. 
This means that these models are not eligible to be 
used for extrapolative forecasting with systematic 
gaps. As for classical regression models, these 
differences equaled 0.591 and 0.757 p.p. (7.88 and 
7.65%) and only narrowly missed the eight percent 
threshold of admissibility.
	 It is notable that five negative differences 
were identified between the forecasting errors for 
systematic and non-systematic gaps: four for variant 
G and one for variant GDM. This means that the errors 
of extrapolation forecasts obtained for models with 
systematic gaps were lower than the errors of models 
with non-systematic gaps. The maximum value of the 
error difference in question was 3.50%, and these 
differences should qualify as negligible.

Conclusions

The classical, hybrid and exponential smoothing 
time series models, as well as classical and hybrid 
regression models were used for modeling and 
forecasting of hourly series with complex seasonality 
for incomplete data. The following conclusions can be 
drawn from these analyzes:
1.	 Models should be selected based on criteria 

designed to minimize errors in interpolation 
(MAPEI) or extrapolation (MAPEE) forecasts.

2.	 The best models selected for inter- and 
extrapolation forecasting for non-systematic 
and systematic gaps in variants G and GDM, for 
individual classes, usually differ in structure, 
analytical form and predictive properties.

3.	 Adaptive and hybrid regression models have 
proved to have the most favorable predictive 
properties.

4.	 Most hybrid time series models for both types 
of gaps and both variants are single models that 
mainly describe fluctuations within a 24-hour 
cycle. As for regression models, these are dual 
models that also describe fluctuations within 
a 12-month cycle.

5.	 The estimates of extrapolation forecast errors 
for both types of gaps were higher than for 
interpolation forecasts, and lower for variant G 
than for variant GDM.

6.	 The lowest estimators of prediction errors 
involving interpolation were obtained for 
exponential smoothing models, followed by 
hybrid regression models. A reverse sequence 
was obtained for extrapolative forecasting. 

7.	 The highest error estimates for both types of 
forecasts were obtained for the classical time 

	 Najwyższe oceny wartości różnic błędów pro-
gnoz ekstrapolacyjnych, dla wariantów G i GDM wy-
noszące odpowiednio: 1,541 i 5,410 p.p. (15,3 i 37,2%) 
otrzymano dla klasycznych modeli szeregu czasowe-
go. Oznacza to, ze modele te nie mogą być wykorzy-
stywane do budowy prognoz ekstrapolacyjnych dla 
luk systematycznych. Dla klasycznych modeli regre-
syjnych różnice te wyniosły: 0,591 i 0,757 p.p. (7,88 
i 7,65%) i mieściły się na granicy ośmioprocentowego 
progu dopuszczalności.
	 Na wyraźne podkreślenie zasługuje fakt otrzy-
mania pięciu ujemnych różnic miedzy błędami pro-
gnoz dla luk systematycznych i niesystematycznych , 
w tym czterech dla wariantu G i jednej dla wariantu 
GDM. Świadczy to o tym, że błędy prognoz ekstra-
polacyjnych otrzymane dla modeli z lukami syste-
matycznymi były niższe od błędów modeli z lukami 
niesystematycznymi. Z uwagi na to, że maksymalna 
wartość omawianej różnicy błędów wyniosła 3,50%, 
różnice te należy uznać za nieistotne.

Wnioski

W modelowaniu i prognozowaniu dla szeregów go-
dzinnych ze złożoną sezonowością dla niekomplet-
nych danych wykorzystano modele szeregu cza-
sowego: klasyczne, hybrydowe i wyrównywania 
wykładniczego oraz klasyczne i hybrydowe modele 
regresyjne). Z analiz przeprowadzonych w pracy 
można wyprowadzić następujące wnioski:
1.	 Podstawą ich wyboru modeli być powinny być 

kryteria minimalizujące błędy prognoz interpola-
cyjnych (MAPEI) lub ekstrapolacyjnych (MAPEE).

2.	 Najlepsze modele wybrane dla celów prognozo-
wania inter- i ekstrapolacyjnego dla luk niesyste-
matycznych i systematycznych dla wariantów G 
i GDM dla poszczególnych klas zazwyczaj różnią 
się: strukturą, postacią analityczną i własnościa-
mi predyktywnymi.

3.	 Najkorzystniejsze własności predyktywne po-
siadają modele adaptacyjne i hybrydowe modele 
regresyjne.

4.	 Większość modeli hybrydowych szeregu czaso-
wego dla obu rodzajów luk i obu wariantów są 
to modele pojedyncze na ogół opisujące wahania 
o cyklu 24-godzinnym. Natomiast dla modeli re-
gresyjnych modele podwójne, opisujące także wa-
hania o cyklu 12 miesięcznym.

5.	 Dla obu rodzajów luk oceny błędów prognoz eks-
trapolacyjnych przyjmowały oceny wyższe niż 
dla prognoz interpolacyjnych, przy czym dla wa-
riantu G były one niższe niż dla wariantu GDM.

6.	 Najniższe oceny błędów prognoz interpolacyj-
nych otrzymano dla modeli wyrównywania wy-
kładniczego a następnie hybrydowych modeli 
regresyjnych. Natomiast dla prognoz ekstrapola-
cyjnych kolejność była odwrotna. 
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7.	 Najwyższe oceny błędów obu rodzajów prognoz 
otrzymano dla klasycznych modeli szeregu cza-
sowego, przy czym przyjmowały one wartości 
wyższe dla wariantu GDM. Przesądza to o nie-
możności wykorzystania tej klasy modeli.

8.	 Z analizy porównawczej błędów prognoz inter-
polacyjnych dla obu wariantów luk niesystema-
tycznych i luk systematycznych dla obu postaci 
analitycznych, że modele klasyczne szeregu cza-
sowego i klasyczne modele regresyjne nie mogą 
być wykorzystane w prognozowaniu.

9.	 W przypadku prognoz ekstrapolacyjnych dotyczy 
to jedynie modeli klasycznych szeregu czasowego. 
Natomiast dla klasycznych modeli regresyjnych 
względne różnice procentowe nie przekraczają 
założonego 8 procentowego kryterium dopusz-
czalności, co przy 100 procentowym wzroście 
liczby luk nie jest wielkością wygórowaną.

10.	 W pięciu przypadkach dla luk systematycznych 
otrzymano błędy względne niższe, nie więcej niż 
o 3,5%, niż dla modeli tej samej klasy dla luk nie-
systematycznych. Świadczy to o braku wpływu 
zwiększenia liczby luk na dokładność prognoz 
ekstrapolacyjnych.

series models, and were higher for variant GDM. 
This makes this class of models ineligible for 
forecasting.

8.	 The classical time series models and the classical 
regression models cannot be used in forecasting, 
as revealed by a comparative analysis of errors in 
interpolation forecasts for both variants of non-
systematic gaps and systematic gaps, for both 
analytical forms.

9.	 This is true only for the classical time series 
models of extrapolation forecasts. As for classical 
regression models, the relative percentage 
differences do not exceed the assumed 8% 
criterion of acceptability, which appears 
reasonable given the 100% increase in the 
number of gaps.

10.	 There were five cases where the relative errors 
were lower for systematic gaps, by no more than 
3.5%, than for models of the same class for non-
systematic gaps. This proves that the accuracy 
of extrapolation forecasts is not affected if the 
number of gaps increases.
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