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Accounting for the Upper Limit
in Returns to Conservation Investments
in Risk Diversification Strategies

Nawon Kang, Charles B. Sims, Paul R. Armsworth,
James C. Mingie, Gengping Zhu, and Seong-Hoon Cho

Applications for risk diversification strategies in addressing conservation problems commonly
ignore upper limits in returns, which may not reflect the fact that these economic returns are often
beyond the scope of what conservation assets can produce given constraints on species, sites,
or activities. This research identifies the consequences of failing to account for upper limits on
returns from conservation in a modern portfolio theory (MPT) framework. We find that the amount
of risk reduction conservation organizations can achieve with the same level of compromise in the
expected return on investment is higher when returns are constrained.

Key words: biodiversity, climate and market uncertainty, conservation assets, constrained returns,
modern portfolio theory

Introduction

Given the persistent uncertainty related to their effectiveness, the design and planning of
conservation investments based purely on historical data may yield misleading results (Cho et al.,
2018; Newbold, 2018; Snill et al., 2021). Modern portfolio theory (MPT), a quantified version
of the adage “Do not put all your eggs in one basket,” was developed by Markowitz (1952)
and published in the financial literature; this theory has been applied in recent years to help
diversify risk in conservation investments (Shipway, 2009). This tool accounts for heterogeneities
in climate and market uncertainty to minimize risk associated with investment portfolios that focus
on conservation-related assets such as species, sites, and activities (Ando and Mallory, 2012; Eaton
et al., 2019).

Despite the merits of MPT, applications to conservation investment have not accounted for upper
limits in returns that arise from physical limitations. In a species conservation context, return on
conservation investment is clearly bounded by the total amount of species habitat available (e.g., the
forested area that can be protected for a given site). A conservation organization will also face an
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Figure 1. Map of Counties Used for Naive and Constrained Modern Portfolio Therapy (MPT)

Notes: 53 counties are not considered for analysis since they are consolidated city-counties or counties with negative relative
opportunity costs that do not face urban development concerns.

upper limit in return to conservation if individual values for species conservation do not scale with
the number of species protected. For example, surrogate bidding in nonmarket valuation studies
may indicate that the willingness to pay to protect 100 animals is no different than the willingness
to pay to protect 1,000 animals (Kahneman and Knetsch, 1992). Economic returns generated from
ignoring such upper limits do not reflect what the conservation assets can actually produce given
constraints on species, sites, or activities and can lead conservation organizations to inefficiently
focus investment toward certain high-return assets. In other words, conservation organizations may
not be able to “put all their eggs in one basket” if the basket is not large enough to hold every egg.

This limitation of MPT comes from its original application to financial investments, where the
asset market is perfectly competitive and no single investor is capable of influencing the returns of
an asset and thus does not face an upper limit constraint. Early applications of MPT to conservation
problems did not consider potential constraints to each asset, and most subsequent studies continue
to overlook this issue (e.g., Figge, 2004; Ando and Mallory, 2012). None of the 26 species-habitat
MPT case studies summarized by Ando et al. (2018) considered an upper limit constraint in returns.

A limited number of recent studies have sought to improve conservation-related MPT
applications by indirectly limiting returns due to physical constraints (Jin, DePiper, and Hoagland,
2016; Runting et al., 2018). For example, Jin, DePiper, and Hoagland applied MPT to the
implementation of an ecosystem-based fishery management approach in different geographic
regions. The authors considered the limited stock of each fish species available to harvest in their
MPT application by constraining the maximum weight applied to each species’ harvest. Similarly,
Runting et al. (2018) reformulated an integer quadratic programming MPT approach with a binary
decision variable representing whether each site is selected for wetland protection. By using a
binary decision variable, the authors indirectly accounted for limited returns based on each site’s
limited availability, along with other physical considerations such as connectivity necessary for the
landward migration of wetlands. However, it remains unclear how the benefits of risk diversification
are impacted by physical constraints.

The objective of this research is to identify the impacts of failing to account for upper limits
on returns from conservation investment in an MPT framework and to understand the implications
of accounting for these limits. To achieve this objective, we develop an MPT framework with and
without upper limit constraints (referred to as “constrained MPT” and “naive MPT,” respectively)
using county-level return on investments (ROIs) for conservation of forest biodiversity in the central
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and southern Appalachian region of the United States (see Figure 1). Then, we conceptually illustrate
the impacts of upper limits on MPT outcomes using two hypothetical counties with different
expected ROIs and associated risk levels. Next, we compare MPT outcomes between the two
approaches using two metrics measuring the effectiveness of risk diversification: the slope of the
efficient frontier representing risk-reward trade-offs and the vertical distance between the simple
diversification point and the efficient frontier representing the difference in potential expected ROIs
gained by the different MPT frameworks given the same risk level.

We choose to frame the models at the county level since counties (i) provide a relevant spatial
grain when deciding how to allocate conservation budgets, (ii) are a relevant administrative and
political unit for regional and local land-use planning in the United States, and (iii) are the level of
units for which our socioeconomic variables are available (Le Bouille, Fargione, and Armsworth,
2023).

Because of the covariance in returns between counties, reducing risk implies forgoing expected
return (i.e., spreading one’s bets on conservation). The extent of risk reduction that conservation
organizations can attain with the same level of compromise in expected return is hypothesized to
be different for the two MPT approaches. Restrictions on portfolio weights with constrained MPT
impose a degree of “bet spreading,” while naive MPT does not. Therefore, the constrained MPT
is useful for conservation investment when a regulatory cap on budget allocation for each site is
present. Many conservation partnership programs are limited by regulatory constraints imposed
by partnership funds. These kinds of regulatory constraints would imply that upper limits on
returns diminish the value added from using MPT. However, if the constraints force conservation
organizations to bet spread anyway, then it is wise to use MPT to allocate the bet spread in the best
way possible. Our constrained MPT approach is designed to serve this purpose.

Methods
Naive MPT Framework

Suppose a conservation organization wishes to allocate optimal portfolio weights across the
counties. By modifying the framework developed by Runting et al. (2018), where risk minimization
and expected return maximization are combined in a single framework, we develop a naive MPT
approach formatted as a quadratic programming problem without upper limit constraints as follows:

(1) Miny AWTEZW - WM,
subject to

2 o<w<I

and

3) wlr=1,

where A is a weight for risk minimization that represents relative emphasis on risk mitigation from
0 to infinity, WT ZW is the weighted sum of the variance of counties representing the portfolio’s
variance (or risk), where W7 is a vector transpose of W, an n x 1 vector of efficient portfolio weights
across n counties as the decision variable, and X is an n X n variance—covariance matrix of ROIs
across n counties. The variance—covariance matrix between county i and county j is calculated as
E[(ROI; — E[ROI;])(ROI; — E(ROI}))], where ROI; (or ROI;) is the ROI for county i (or j) under
s uncertainty scenarios. M is an n X 1 vector of expected ROIs, which are calculated as expected
values of ROIs for n counties: E[ROI;] =}, p X ROI;;, where p is the probability of uncertainty
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scenario s occurring, which is equal to 1/s by assuming a uniform probability distribution among
s scenarios, and ROl is the ROI for county i under specific uncertainty scenario s. WI M is the
expected ROI of the portfolio calculated by the weighted average of M with efficient portfolio
weight W.

The objective function in equation (1) maximizes expected ROI (i.e., WT M) or minimizes
the portfolio’s variance (i.e., WTEW) at a certain weight for risk minimization (1). Equation (2)
represents the minimum and maximum constraint on portfolio weights, and 0 and 1 are n X 1 vectors
whose elements are equal to 0 and 1, respectively. The sum of all portfolio weights is always equal
to 1 for any given risk level.

Constrained MPT Framework

For constrained MPT, we consider two layers of constraints—physical limitations and total budget
constraints—under the assumption that a conservation organization wishes to allocate optimal
portfolio weights across the counties. To account for both constraints, we replace the decision
variable of efficient portfolio weights shown in equation (1) with a decision variable for efficient
budget allocation across counties X shown in equation (4):

4) Miny AXT2X - XTMm,
subject to

Q) 0<X<C

and

(6) XxTr1 =8B,

where X7 is a vector transpose of X, an n x 1 vector of efficient budget allocation in dollars across
n counties as the decision variable, C is an n X 1 vector of county-level physical constraints whose
elements are specified as the product of the size of eligible forestland (i.e., unprotected private
forestland) as a physical constraint and unit opportunity cost for conservation as a cost constraint
across n counties, and B is a hypothetical total budget amount for the entire region.

Precise knowledge of C in the future by the conservation organization is not possible because
the size of eligible forestland and unit opportunity cost vary under s uncertainty scenarios. Given
the unknown probability distribution of uncertainty scenarios, we use its average value across the
scenarios for each county for the model. By doing so, we implicitly assume that C is normally
distributed; thus, its mean value is a meaningful representation of C. For the sensitivity analysis, we
estimate the model using the upper limits on both (high and low) ends of the 95% confidence interval
of their probability density distributions since upper limits at the mean may not encompass the
entire spectrum of potential outcomes of constrained MPT. By performing the sensitivity analysis,
we partially encompass infrequent occurrences that can exert significant influence on the size of
eligible forestland and unit opportunity cost.

The objective function in equation (4) maximizes the weighted sum of expected ROIs XTM)
and minimizes the portfolio’s variance (i.e., XT£X). Equation (5) specifies the county’s physical
constraint, C, across n counties, and equation (6) constrains the hypothetical total budget, B. The
physical constraints are fixed for counties by uncertainty scenario, while hypothetical total budget
constraints may change depending on the budget available for the entire region. The physical and
budget constraints are specified by equations (5) and (6), respectively, as the total budget is spread
from one county to another after meeting each county’s physical constraint C' as each county’s
expected ROI goes to 0 (represented as a step function) until exhausting total budget B.

We calculate efficient portfolio weight W for constrained MPT by dividing efficient budget
allocation X by total budget B to derive the efficient portfolio’s expected ROI and corresponding
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variance as the weighted sum of expected ROIs (WTM) and the variance of counties (W ZW)
for the risk measure. In doing so, we derive efficient frontiers for naive and constrained MPT
under various levels of risk minimization weight A by connecting points of expected ROIs and
corresponding standard deviations for both MPT approaches. Because the ideal funding amount
for forest conservation for biodiversity in the study area is unknown, we compare outcomes of the
hypothesis found in the conceptual framework related to the impact of hypothetical total budget
amounts on the degree of deviation between the naive and constrained MPT. Specifically, we
compare outcomes based on the two approaches under three hypothetical total budget constraints:
low, moderate, and high total budget (i.e., $3 million, $50 million, and $1 billion, respectively).

Given the various ranges of expected ROIs and standard deviation for each approach that are
reflected in the various lengths of the frontiers, we normalize the risk level as the percentage
above minimum risk (referred to as “risk tolerance level”) to compare outcomes based on naive
and constrained MPT at the same degree of risk that conservation organizations can tolerate. If the
feasible risk levels were different between the approaches, our comparisons would be limited. For
example, if the minimum risk levels were 0 and 3 for naive and constrained MPT, respectively,
we could not compare the efficient portfolios at a risk level of 3, which is not the minimum risk
level associated with naive MPT. By drawing the efficient frontiers where the x-axis represents
risk tolerance level normalized as stated above, efficient frontiers are comparable at every risk
tolerance level and show expected ROIs attainable at any risk tolerance level across different MPT
specifications.

Conceptual Illustration

Suppose a conservation organization wishes to allocate optimal portfolio weights between counties
A and B based on naive and constrained MPT. County A has a higher expected ROI with higher risk
than county B (ROI4 > ROIg). The positively sloping diagonal line in Figure 2a shows the allocation
of efficient portfolio weights between the two counties at different risk levels based on naive and
constrained MPT. The lines indicated by w™ and 1 — wM™’ represent the upper limits on weights
assigned to counties A and B, as the total weight between the two cannot exceed the full capacity
of available resources. Figure 2b illustrates different areas portrayed by changes in expected ROI,
wROI 4 + (1 — w)ROIp, corresponding to portfolio weights between the two counties based on naive
and constrained MPT shown in Figure 2a.

Based on the naive MPT outcome, a conservation organization with maximum risk level ry
protects all conservation assets in county A (w =1 in Figure 2a), with the corresponding expected
ROI being area afho in Figure 2b. By comparison, consider the case where the constraint is binding in
county A. Constrained MPT allocates weight w™ to county A with the remaining weight, 1 — w™,
distributed to county B at the maximum risk level of r,, corresponding to w = wM . The resulting
expected ROI is shown by area af’h’o for county A and area g’ghh’ for county B. These results
suggest that constrained MPT mitigates maximum risk relative to naive MPT by r| — r; but corrects
expected ROI by area f'fgg’ compared to naive MPT.

Conservation investment would be divided between the two counties at lower risk than risk
level r; based on naive MPT. With weight assignments of wg and 1 —wg for counties A and B,
respectively, the minimum risk level of 0 is reached. As a result, the expected ROI at the minimum
risk level for naive MPT is shown as the sum of area aceo for county A and area dghe for county
B. In comparison, consider the case in which the constraint is binding in county B, where w™” and
1 — wM’ represent upper limits on weights assigned to counties A and B, respectively. Constrained
MPT would allocate weight, 1 —w™”, to county B and the remaining weight, w™’, would be
distributed to county A at the minimum risk level of r3. Expected ROIs are shown by area ac’e’o for
county A and area d’ghe’ for county B. These results suggest that constrained MPT sacrifices the
minimum risk level by r3 but increases expected ROI by area cc’d’d relative to naive MPT because
of the added weight to the higher ROI county (i.e., county A) based on constrained MPT. Other
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Figure 2. Consequences of Failing to Account for an Upper Limit Constraint in Modern
Portfolio Theory (MPT)

Notes: Figure 2a shows allocations of efficient portfolio weights between two counties (w™ and 1 — w™ ’ represent upper
limits on weights for counties A and B, and w2 and 1 — w< represent weights at the minimum risk level for counties A and
B) at different risk levels (0 and r; for minimum and maximum risk level based on naive MPT and 7, and r3 for minimum
and maximum risk levels based on constrained MPT) based on MPTs. Figure 2b illustrates changes in expected ROI (ROI 4 is
expected ROI for county A and ROIg is expected ROI for county B), corresponding to efficient portfolio weights between the
two counties (W™ "and1-wM’ represent weights assigned to counties A and B for the case where the constraint is binding
in county B at minimum risk level, and w™ and 1 — wM represent weights for counties A and B where the constraint is
binding in county A at maximum risk) based on naive and constrained MPT shown in Figure 2a.
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cases could include a situation where county B provides both lower expected ROI and higher risk.
In this case, budget constraints on county A could both lower the expected ROI and increase the risk
of investing.

At the maximum risk level, naive MPT maximizes risk and expected ROI by allocating a weight
above the feasibility of county A (w=1 in Figure 2a); at the minimum risk level, naive MPT
minimizes risk by allocating a weight above the feasibility of county B (w =wgp in Figure 2a).
However, constrained MPT prevents the overallocation of weights to counties A and B at maximum
and minimum risk levels, respectively. By doing so, the optimal portfolio based on constrained
MPT suggests high risk but high expected ROI at the minimum risk level, whereas it compromises
expected ROI at the low risk level in comparison with the optimal portfolio generated based on naive
MPT.

Other cases are also possible. For example, in a situation where county B provides both lower
expected ROI and higher risk, any upper limit constraint on the weight that can be assigned to county
A will both lower the expected ROI and increase the associated risk. More generally, we can then
see that adding upper limit constraints on how much investment can be directed to each asset is
ambiguous in terms of whether it will increase or decrease expected ROI and associated risk.

The overall budget to be invested in conservation also matters. If the overall budget is small
relative to the level of investment each asset can receive, accounting for upper limits on how much
investment is possible for each asset is irrelevant. In contrast, when the overall program budget is
large enough that the constraints may be binding, accounting for this in the optimization approach
becomes more important. Risk and expected ROI corrections made by constrained MPT, relative
to naive MPT, intensify with a greater hypothetical total budget because the share of the budget
assigned to each county, constrained by its upper limit, decreases with a higher hypothetical total
budget. Thus, we hypothesize that the total budget available to a conservation organization influences
the degree of deviation of risk level and corresponding expected ROI between the two approaches.

Before developing a fuller empirical application, we first consider a simple two-county case as
an example to illustrate the effects of risk level and expected ROI on naive and constrained MPT.
While these comparisons are sufficient to build intuition for changes in return and risk, the notion of
upper limits on return is grounded in the assumption of a linear relationship between risk and return,
implying a clear and consistent trade-off between the two. However, real-world dynamics render
the risk-return relationship more intricate, subject to fluctuations over time and diverse scenarios.
Notably, factors like the physical constraints for conservation could also be influenced by climate
and market uncertainties. In addition, we do not consider richer patterns of covariance. Accounting
for covariance structure differences is where the strength of MPT reveals itself, and we next examine
this with our empirical application. Furthermore, we assume that the two counties are not perfectly
correlated with each other; thus, the risk diversification strategy used has a feasible solution for both
MPT approaches.

Ilustrative Example: Forest Conservation in Central and Southern Appalachia

To illustrate our framework, we apply MPT to forest conservation in a biodiversity hotspot—
central and southern Appalachia, which provides critical habitat and a corridor for biodiversity
(Zhu et al., 2021). The region is expected to experience further climate change impacts and urban
development pressure (Rogers et al., 2016). For both MPT approaches, we use expected ROIs
for biodiversity conservation in 2050, which is far enough in the future to observe the impact of
climate and market uncertainty on benefits and costs. The benefit component for expected ROI is
calculated by estimating future species ranges using species distribution models. The conservation
cost component for expected ROI is proxied as urban return minus forestland return (referred to as
“relative opportunity cost’’) under the assumption that urban development is the dominant competing
land use for forestland. This assumption is based on evidence that urbanization is the main driver of
forest loss in the study region (Wear and Greis, 2013; Keyser et al., 2014).



Kang et al. Upper Limits on Conservation Investment 339

Estimating Scenario-Specific ROI

Scenario-specific expected ROIs are structured by combining predicted future benefit scenarios and
relative opportunity cost scenarios at the county level for 193 of the 246 counties in our study area.
Fifty-three counties are not considered in our analysis since they are either consolidated city-counties
or counties where urbanization is not a primary concern (see Figure 1). Scenarios for predicting
future biodiversity benefits are related only to climate change, and multiple climate scenarios are
considered. In comparison, relative opportunity costs are projected under various climate and market
scenarios associated with different climate, land use, and market conditions.

Multiple sources of uncertainty associated with benefits and costs derived from climate
and market scenarios may have (i) different forms of variability and covariance structures, (ii)
different patterns of covariance structure across counties within each type of uncertainty, and (iii)
different patterns of covariance structure between each type of benefit and cost uncertainty. Due to
these covariance structure differences, efforts to diversify market-induced risk may undermine or
complement efforts to diversify climate-induced risk.

The benefit component for biodiversity ROI was taken from Zhu et al. (2021), who estimated
species distributions for 258 forest-dependent vertebrates of policy concern as determined by the
US Fish & Wildlife Service (1973) and Landscape Conservation Cooperative Network (2020).
Future species distributions in 2050 were specified as the benefit component for biodiversity since
they are direct representations of areas where species can be found and protected (Fuentes-Castillo
et al., 2019). The species distribution model (SDM) Maxent was used to forecast future species
distributions under future climate scenarios for two representative concentration pathways (RCPs;
RCP4.5 and RCP 8.5) and six general circulation models (GCMs; ACCESS1-0, CanESM2, CCSM4,
CNRM-CMS, CSIRO-Mk3, and INM-CM4) (Phillips, 1956; Intergovernmental Panel on Climate
Change, 2014) using the ClimateNA database (Wang et al., 2016).

Maxent was used to estimate the probabilities of climatic suitability for species at the 1-km? pixel
level under 12 future climate scenarios (i.e., 6 GCMs, each associated with RCP 4.5 and 8.5). Then,
probabilities were converted into binary variables using a 10% training presence threshold, which
allows the top 90% of predicted probabilities to be considered suitable habitat and the remaining
10% to be considered unsuitable habitat (Peterson et al., 2011). Next, pixel areas from the suitability
binary variables are aggregated for all 258 species at the county level, and these estimates were
specified as the benefit component of species distributions for all species under 12 future climate
scenarios. See Zhu et al. (2021) for more details related to the methodology used to project future
species distributions.

For the future urban return needed to estimate relative opportunity cost, annualized median
assessed land value was determined by broadly emulating Lubowski, Plantinga, and Stavins (2006):
First, land value ratios per hectare were estimated by dividing assessed land value per hectare by total
assessed value at the parcel level for sample counties for which data were available. Second, land
value ratios at the parcel level were converted to the census block group (CBG) level by regressing
land value ratio per hectare against socioeconomic and location variables at the CBG level (see Liu
et al., 2019, for more details). Third, median housing price in 2050 under three real estate market
conditions (upturn, moderate, downturn) was projected based on recent real estate growth cycles
to account for the effect of real estate market uncertainty on urban return. Finally, median assessed
land value per hectare was estimated by multiplying median housing price under the three real estate
market conditions by land value ratio per hectare, which was then annualized (see Mingie and Cho,
2020, for details).

The effect of climate and market uncertainty on forestland return was considered by projecting
future harvest volume and timber price to estimate future annualized forest return using the soil
expectation value (SEV). County-level harvest volume projections were created for three special
report on emission scenarios (SRES; A1B, A2, and B2). State-level timber prices were estimated
based on a stochastic modeling approach using regional stumpage price datasets from TimberMart-
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South (2015) and other timber price reports. Three timber price scenarios were estimated: high
(2050 mean plus standard deviation), moderate (2050 mean), and low (2050 mean minus standard
deviation).

Scenarios have been represented slightly differently across climate change assessment reports,
and our study draws on products that span different reports. The A1B and A2 scenarios in the SRES
correspond better with the RCP8.5 scenario. Meanwhile, the B2 scenario in the SRES corresponds
better with RCP4.5. The full set of scenarios we consider in our analyses are generated by cross-
factoring an emissions scenario with a GCM for making climate predictions and an assumption about
timber volume, timber price, and the real estate market. Under the more intensive emissions situation
(RCP 8.5), we include 324 possible futures (2 SRES x 6 GCMs x 3 timber volume scenarios X 3
timber price scenarios X 3 real estate market scenarios). In addition, under an assumption of more
moderate future emissions (RCP4.5), we include a further 162 possible futures (1 SRES x 6 GCMs
X 3 timber volume projections X 3 timber price scenarios X 3 real estate market scenarios).

A shared-based land use model was applied at the county level using historical land use data from
the National Land Cover Database (US Geological Survey, 2016) and historical relative opportunity
cost data. We forecasted forestland area in each county under diverse scenarios in 2050 using the
parameters from the land use model and the forecasts of the relative opportunity costs under different
scenarios. While the land use change model predicts the forest area that will remain in the county
in 2050 with or without investment, it does not forecast where exactly this forest area will be
located within the county. The improvements in the persistence probabilities for species resulting
from protecting forestland in different counties do not consider counties’ proximity to one another.

We also needed to make an additional assumption to convert changes in forest within climatically
suitable areas for a species into a statement about region-wide species persistence in 2050. Following
Armsworth et al. (2020), the probability of persistence function was assumed to be a linear,
piecewise continuous, hockey-stick function, which allowed the persistence probability to equal
0 when no forest remained but increase linearly when forest area in the county increased until
a saturation threshold of 1 was reached. We also considered the difference in ecological quality
between protected forest and private forest, treated as intermediate usable habitat, and differentiated
the land use types by assigning two weights (i.e., 1 or 0.25) to protected and private forests,
respectively (see Armsworth et al., 2020, for more details).

Based on the probability of persistence function and average opportunity cost, we estimated the
marginal benefit-to-cost ratio in each county, which was optimized by both naive and constrained
MPT. Finally, expected marginal ROI under each scenario was defined as the change in species
richness (i.e., number of species) by aggregating relevant probabilities for 258 species, which was
optimized by both naive and constrained MPTs (Kang et al., 2022).

Empirical Results

Figure 3 shows four efficient frontiers indicating the expected ROI-risk tolerance relationship for
portfolios generated from naive MPT and constrained MPT with three hypothetical total budget
constraints with upper limits at the mean. The four efficient frontiers are upward sloping, implying
higher return (i.e., expected ROI) with higher risk. The four frontiers are also concave-shaped,
implying that risk diversification becomes more costly (i.e., more return is sacrificed) as portfolio
risk is reduced.

Figure 3 illustrates how constraints on returns impact the effectiveness of risk mitigation in two
ways. First, the constraints reduce how much expected ROI must be forgone to achieve the same
level of risk reduction (see Figure 3a). The slope of the frontier is smaller under constrained MPT
than under naive MPT especially at higher budget amounts where constraints are binding for more
counties. These findings imply that when a conservation organization will have to spread more
investment around due to a larger total budget, it can reduce risk with less loss in expected return
with constrained MPT than with naive MPT.
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Figure 3. Four Efficient Frontiers of the Expected ROI-Risk Tolerance Relationship

Notes: Frontiers are for portfolios from naive modern portfolio theory (MPT) and constrained MPT with three budgets ($3
million, $50 million, and $1 billion), with upper limits at the mean. (A) Constraints on asset returns lower the slope of the
frontier at many reasonable risk tolerance levels implying less expected ROI must be forfeited to reduce risk. (B) Constraints
on asset returns also reduce the increase in expected ROI that can be achieved through risk diversification. Points a, b, c,
and d are the points on the efficient frontiers for the naive MPT and constrained MPT with $3 million, $50 million, and $1
billion, respectively, with the same standard deviation as point X.

Figure 3b also shows how constraints on returns could force land managers in the Appalachian
region to spread their bets by spreading the budget to a greater number of counties. This bet-
spreading behavior yields an expected ROI closer to what would be achieved if the budget were
divided evenly among all counties (i.e., simple diversification; point marked as an X in Figure 3b).
Specifically, the difference in expected ROI at the same risk level between the constrained efficient
frontiers and the simple diversification point decreases as the budget increases.! Points a, b, ¢, and
d are points on the efficient frontier for naive MPT and constrained MPT with $3 million, $50
million, and $1 billion budgets, respectively, at the same standard deviation as point X. The vertical
distances from simple diversification portfolio X to points a, b, ¢, and d represent differences in
potential expected ROI gained by the different MPT frameworks, given the same risk level. The
longer vertical distance from X to a compared to distances from X to b, ¢, and d reinforces the
notion that MPT is less efficient with constrained MPT since constraints direct more investment to
counties with a smaller ROL

Table 1 shows optimal portfolio expected ROI for biodiversity conservation and risk, reflected
in its standard d