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A Multivariate Quantile Approach for Testing 

Asymmetric Price Transmission in a Joint 

Production Process 

Yao Yang and Berna Karali *

Output markets usually respond to input price changes asymmetrically, with prices 

rising faster than they fall, known as the rockets and feathers pattern.  This pattern 

has not been yet tested for a joint production process despite strong connections 

among markets.  We fill this gap by using a vector error correction quantile 

framework and apply our model to soybean meal and oil, jointly produced by 

crushing soybeans.  We find output prices respond more to input price increases 

when their own market is bullish but the other market is bearish, confirming the 

rockets and feathers pattern at the extremes of price distributions. 

Key words: asymmetric price response, rockets and feathers, quantile cointegration, 

soybean crush, vertical price transmission 

“Prices rise like rockets but fall like feathers.” —Mariano Tappata (Tappata 2009) 

Introduction 

Price is one of the mechanisms to transmit shocks among markets linked through the supply chain.  

A well-known empirical finding is that output prices do not symmetrically react to the changes in 

input prices, with output prices rising faster than they fall, termed as the “rockets and feathers” 

pattern (Bacon 1991).  For instance, retail gasoline prices rise quickly as crude oil prices increase, 

but pump prices remain high even as crude oil prices fall.1  While Peltzman (2000) finds the 

prevalence of price asymmetry in more than 250 product categories, other researchers have 

pointed out the challenges in econometric modeling for testing price asymmetry.2 
Previous theoretical and empirical studies consider the production process for a single 

output.3  But, many raw materials or products can be processed into more than one output.  While 
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Review coordinated by Dayton M. Lambert. 
1 An extensive literature explains price asymmetries by market power (e.g., McCorriston, Morgan, and 

Rayner 2001; Weldegebriel 2004; Antonova 2013; Bulutay et al. 2021), adjustment costs (e.g., Barro 1972; 

Buckle and Carlson 2000), search costs (e.g., Tappata 2009; Lewis 2011), government intervention (e.g., 

Kinnucan and Forker 1987), and inventory or stock management (e.g., Blinder 1982). 
2 For example, the presence of structural breaks leads to the over-rejection of the null hypothesis of price 

symmetry in Peltzman’s study (von Cramon-Taubadel and Meyer 2001), and the failure to account for the 

characteristics of price series can bias the results of asymmetry tests (Tifaoui and von Cramon-Taubadel 

2017). 
3 Although not in the context of vertical price transmission, two previous studies investigate the implications 

of joint production on price elasticities of demand.  Houck (1964) theoretically shows the price elasticity of 

a raw agricultural product as the harmonic average of the price elasticities of the jointly-produced end 
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extensive literature has examined asymmetric price transmission across farm, wholesale, and 

retail markets for various commodities, such as beef, pork, and salmon (e.g., Goodwin and Holt 

1999; Miller and Hayenga 2001; Bonnet and Villas-Boas 2016), the joint production feature of 

some of these agricultural commodities have been ignored.  von Cramon-Taubadel and Goodwin 

(2021) point out that price (or volatility) transmission from an input to one of its end products can 

be affected by the prices of other outputs because of strong connections among the markets; and 

therefore, the estimation equations for price asymmetry might be misspecified when one ignores 

the other output’s price levels.  As the authors state in their review of price transmission in 

agricultural markets, the issue of vertical price transmission in joint production has only been 

touched upon in the literature and the standard practice has been to associate the price of an 

upstream product with the price of only one of the downstream products by ignoring the 

interrelationships among the outputs (e.g., Kinnucan and Forker 1987; von Cramon-Taubadel 

1998; Serra and Goodwin 2003).4 

Our study fills this gap in the empirical literature and contributes to the asymmetric price 

transmission literature both contextually and methodologically.  To the best of our knowledge, 

our study is the first to test for asymmetric price transmission in a joint production process and to 

allow output price responses to vary with the prices of other end products.  While Borenstein, 

Cameron, and Gilbert (1997) consider the possible impact of heating oil prices in their study of 

gasoline price responses to crude oil price changes, they do not take into account the long-run 

relationships between these products.  On the theoretical side, Antonova (2013) derives elasticities 

of vertical price transmission in joint production and points out that the differences in the price 

transmission of jointly-produced products depend on the independent demands for those goods.  

Even though her study is the first attempt to investigate the theoretical aspects of price 

transmission for jointly-produced outputs, it falls short of providing an empirical application of 

the theoretical results and leaves it as a future work.  We take up this task and provide the first 

empirical test of price asymmetry in a joint production process.  We accomplish this through a 

multivariate quantile framework that provides flexibility in allowing output price responses in the 

short-run to depend on each other.5  Specifically, we investigate price responses for every possible 

pair of the quantile indices of output prices.  As a result, we test for price asymmetry in the end 

products of a joint production process across the entire distribution and provide a comprehensive 

picture of locations where asymmetry occurs. 

As an application, we choose the soybean complex (soybean, soybean meal, and soybean oil) 

because soybean crushing is a relatively well-defined joint production with fixed proportions.  We 

find evidence of rockets and feathers patterns (i.e., positive price asymmetry) in the soybean 

complex when the realizations of soybean end products are in the opposite extreme deciles of their 

price change distributions.  This finding suggests that a positive price asymmetry in jointly 

produced commodities might exist when one market is bullish whereas the other is bearish.  Thus, 

producers are more likely to pass extra production costs onto consumers when there is a high 

demand for one of the end products (bullish sentiment) and a low demand for the other end product 

(bearish sentiment).  This could happen when the end products have unrelated demand drivers.  

Because soybean meal and oil are consumed for different purposes (animal feed for soybean meal; 

cooking oil and biodiesel for soybean oil), their demands often change independently of each 

other (Dronne and Tavéra 1988; United Soybean Board 2019).  In fact, in recent years the demand 

 
products.  Piggott and Wohlgenant (2002) expand on Houck’s model and allow for the possibility of trade 

of both the raw product and its joint outputs. 
4 In addition to von Cramon-Taubadel and Goodwin (2021), Meyer and von Cramon-Taubadel (2004) and 

Frey and Manera (2007) also provide excellent reviews on the possible reasons for price asymmetry and 

econometric methods used in the literature to identify price asymmetry. 
5  In the case of a single production process, extensive literature empirically tests price asymmetry by 

threshold autoregressive models (e.g., Goodwin and Holt 1999; Richards, Gómez, and Lee 2014), error 

correction models (e.g., von Cramon-Taubadel 1998), and asymmetric multivariate generalized 

autoregressive conditional heteroskedasticity models (e.g., Abdelradi and Serra 2015). 
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for soybean oil, and hence its price, surged due to increased demand for biodiesel, the vegetable 

oil shortages out of Ukraine, and drought conditions in South America and Canada, leading to an 

oversupply of soybean meal and thereby reducing meal price (Ates and Bukowski 2022; Lusk 

2022).  Our study shows that asymmetric price transmission might emerge as a pricing strategy 

in such cases.  Thus, our study not only empirically tests price asymmetry in a joint production 

process for the first time, but also provides an econometric tool for a comprehensive analysis of 

price asymmetry that takes into account the dependence of output responses on each other. 

Methods 

To explore whether the occurrence of price asymmetry varies by the market conditions of the 

other jointly-produced output, we expand on the multivariate quantile autoregressive (VARQ) 

model of Montes-Rojas (2019) by incorporating quantile cointegrating relationships.  A similar 

extension of a standard quantile autoregressive model has been applied by Burns and Kane (2022) 

in the crude oil futures markets by taking the first differences and including an error correction 

term.  In this section, we first briefly discuss how we test for cointegration in the soybean complex 

and how we base our model on the weak exogeneity of soybean prices, and then we introduce a 

bivariate vector error correction quantile (VECQ) model for soybean end products: soybean meal 

and soybean oil. 

Cointegration tests 

Testing for cointegrating relationships among price series is necessary to avoid spurious 

correlations among non-stationary data.  Moreover, soybean meal and oil are jointly produced in 

a fixed proportion when crushing soybeans.  As a result, the price series of the soybean complex 

is expected not to drift too far apart in the long run.6 

We denote the 𝜏𝑖  quantile of log price of commodity i at time t, 𝑝𝑖,𝑡, as 𝑞𝑝𝑖,𝑡(𝜏𝑖), where i = M 

(soybean meal), O (soybean oil), and S (soybean).  The vector 𝐩−i,t = (… ,𝑝𝑖−1,𝑡 , 0, 𝑝𝑖+1,𝑡 , … )
′ 

includes all prices excluding commodity i and ∆𝐩−i,t = (… , ∆𝑝𝑖−1,𝑡 , 0, ∆𝑝𝑖+1,𝑡 , … )
′ is the 

corresponding first differences.  We use the augmented quantile regression (Xiao 2009) to 

investigate the cointegrating relationships at different conditional quantiles, 𝑞𝑝𝑖,𝑡(𝜏𝑖|𝐩−i,t), as 

follows: 

(1)  𝑞𝑝𝑖,𝑡(𝜏𝑖|𝐩−i,t) = 𝛼 + 𝛃
′𝐩−i,t + ∑ Δ𝐩−𝑖,𝑡−𝑗

′𝐽
𝑗=−𝐽 𝛑j + 𝐹𝜀

−1(𝜏𝑖), 

where 𝐹𝜀
−1(𝜏𝑖) is the inverse cumulative distribution function of the residuals for each commodity 

i.7  The cointegrating relationships can be tested based on the quantile regression residual as 

𝜀𝜏𝑖,𝑡 = 𝑝𝑖,𝑡 − 𝑞𝑝𝑖,𝑡(𝜏𝑖|𝐩−i,t).
8 

We follow the Engle-Granger two-step method to identify the existence of cointegrating 

relationships by examining whether the residuals from the conditional quantiles are stationary or 

not.  We select nine quantile indices evenly located in the price distribution of each commodity 

 
6 Dronne and Tavéra (1988) theoretically derive a cointegrating relationship among these three commodities 

by maximizing the long-run profit of soybean processors and provide empirical evidence for such a long-run 

equilibrium relationship using the two-step cointegration test of Engle and Granger (1987).  In addition, 

Simanjuntak et al. (2020) examine the international prices provided by the Food and Agriculture 

Organization and find evidence of cointegration in the soybean complex. 
7 Parameters 𝛼, 𝛃′, 𝛑𝐣 are functions of quantile index 𝜏𝑖, and each varies across different quantiles of 𝑝𝑖,𝑡 

distribution.  We omit the subscripts for the quantile index in the equation for a clear exposition. 
8 In our empirical analysis, the number of leads and lags, J, is two based on the Akaike information criterion. 
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from 0.1 to 0.9 and show that prices are cointegrated at these selected quantile indices, 

necessitating the inclusion of error correction terms in the VARQ model. 

Weak exogeneity tests 

Because our main focus is on the asymmetric responses in output prices following a change in the 

input price, we are solely interested in modeling the output price equations.  However, this 

requires the exogeneity of soybean prices.  In fact, Ericsson (1992) argues that the exogeneity 

assumption of the nuisance variables permits simpler modelling strategies and reduces 

computational complexities in a cointegrated system.  Therefore, we first demonstrate that 

soybean prices could be treated as weakly exogenous, allowing us to build a bivariate VECQ 

model with only soybean end products. We explain these tests in detail and present their results 

in appendix A.   

Testing for asymmetric price responses based on conditional quantiles 

Quantile regression, introduced by Koenker and Bassett (1978), expands the least squares 

estimation for conditional means to quantile estimation for conditional quantiles over the entire 

distribution of the dependent variable.  The application of univariate quantile regression to price 

series provides more flexible modeling options for risk management and asymmetric price 

dynamics (e.g., Engle and Manganelli, 2004; Laporta, Merlo, and Petrella, 2018).9 

Extending the univariate quantile framework to a multivariate one is complicated because the 

lack of a natural ordering of a multidimensional Euclidean space leads to a loose definition of 

multivariate quantiles (Serfling 2002).  Hallin, Paindaveine, and Šiman (2010) point out a close 

conceptional kinship between the quantile and depth, and bridge the gap between these two 

concepts to provide a hyperplane-based definition of multivariate quantiles and define 

multivariate quantiles of a random vector as directional objects.10,11  Montes-Rojas (2019) applies 

this definition of multivariate quantiles to generalize the univariate quantile autoregressive 

regression proposed by Koenker and Xiao (2006) to a multivariate framework and develops a 

VARQ model.  The VARQ model simultaneously solves a system of univariate quantile 

autoregressive models since the directional quantiles are univariate regression quantiles for a fixed 

orthonormal basis (Montes-Rojas 2017). 

More specifically, we first set up directional quantiles of each component in a vector at time 

t conditioning on its lags and exogenous variables, and then simultaneously solve a system of 

conditional directional quantile functions.  We further consider the cointegrating relationships 

among price series and augment the VARQ model with error correction terms to build a VECQ 

model.   

To capture the asymmetric responses of output prices to input price changes we segment 

∆𝑝𝑆,𝑡−𝑗  into increasing and decreasing parts, ∆𝑝𝑆,𝑡−𝑗
+ = 𝑚𝑎𝑥(∆𝑝𝑆,𝑡−𝑗 , 0 ) and ∆𝑝𝑆,𝑡−𝑗

− =

 
9 Univariate quantile methods are used in studies on the price dynamics in energy markets (Schweikert 2019), 

the impacts of public and private stocks on prices in corn and wheat markets (Chavas and Li 2020), the farm-

retail price relationship in the presence of the pork cycle (Chavas and Pan 2020; Chavas 2021), and the 

movements in futures and spot prices (Huang, Serra, and Garcia 2020). 
10 Another method for modeling multivariate quantiles, for instance, is to factorize the joint distribution in a 

recursive structure (Chavleishvili and Manganelli 2019) or to combine univariate quantile autoregressions 

via a copula function (Li and Chavas 2023).  
11 More specifically, Hallin, Paindaveine, and Šiman (2010) defines the multivariate quantiles of a random 

vector 𝐘 = (𝑦1, … , 𝑦𝑚)′  as directional objects: 𝑚 − 1  dimensional hyperplanes indexed by vectors 𝛕 

ranging over the open unit ball of ℝ𝑚.  The 𝛕 quantile of Y is defined as the 𝜏-quantile hyperplane of 

regressing 𝐮′Y on the marginals of 𝚪𝑢
′Y and a constant, where Γ𝑢  is an arbitrary 𝑚× (𝑚 − 1) matrix 

representing an orthonormal basis of the vector space orthogonal to u. 
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𝑚𝑖𝑛(∆𝑝𝑆,𝑡−𝑗 , 0).  After we identify cointegrating relationships, we denote 𝐗t = (∆𝐰t−1
′ , 𝐙t

′)′ , 

where 𝐰t = (𝑝𝑀,𝑡 , 𝑝𝑂,𝑡)′, 𝐙t = (𝐸�̂�𝑡−1, ∑ ∆𝑝𝑆,𝑡−𝑗
+𝐽

𝑗=0 , ∑ ∆𝑝𝑆,𝑡−𝑗
−𝐽

𝑗=0  )′, and 𝐸�̂�𝑡−1 are the estimated 

quantile cointegrating relationships defined in equation (1) among the price series at different 

multivariate quantiles 𝛎 = (𝜏𝑀 , 𝜏𝑂)
′  with 𝜏𝑀  and 𝜏𝑂  representing quantile indices of soybean 

meal and oil, respectively.12  We then write the directional quantiles as follows: 

(2) {𝜸(𝜏𝑖 , 𝐝, 𝚪d)′, 𝛉(𝜏𝑖 , 𝐝, 𝚪d)
′, 𝛼(𝜏𝑖 , 𝐝)}

′ ≡ argmin E{𝜌𝜏𝑖(𝐝
′∆𝐰t −𝛋

′𝚪𝐝
′∆𝐰t − 𝛉

′𝐗t − 𝛼)}, 

where d is a directional vector of any one of the soybean end products and 𝚪𝒅 is a directional 

vector of the other product.  𝜌𝜏𝑖(𝜀) = 𝜀(𝜏𝑖 − 𝐼(𝜀 < 0)), ∀ ε ∈ ℝ, is the loss function, where 𝐼(∙) 

is an indicator that is equal to one if the statement in the parenthesis is correct and zero otherwise, 

and 𝛼 represents a constant.  With a fixed orthonormal basis (𝐝,𝚪𝑑), and a given multivariate 

quantile 𝛎, the system of two conditional quantile functions can be written as, 

(3)  𝑞𝑀(𝛎|𝐗t) = 𝜅𝑀(𝜏𝑀)𝑞𝑂(𝛎|𝐗t) + ∑ 𝐚Mℓ(𝜏𝑀)
′∆𝐰t−ℓ

ℒ
ℓ=1 + ∑ 𝑏𝑀𝑗

+ (𝜏𝑀)∆𝑝𝑆,𝑡−𝑗
+𝐽

𝑗=0   

+∑ 𝑏𝑀𝑗
− (𝜏𝑀)

𝐽
𝑗=0 ∆𝑝𝑆,𝑡−𝑗

− + 𝑐𝑀(𝜏𝑀)𝐸�̂�𝑡−1 + 𝜇𝑀(𝜏𝑀) + 𝜀𝑀,𝑡(𝜏𝑀), 

      𝑞𝑂(𝛎|𝐗t) = 𝜅𝑂(𝜏𝑂)𝑞𝑀(𝛎|𝐗t) + ∑ 𝐚Oℓ(𝜏𝑂)
′∆𝐰t−ℓ

ℒ
ℓ=1 +

 ∑ 𝑏𝑂𝑗
+ (𝜏𝑂)

𝐽
𝑗=0 ∆𝑝

𝑆,𝑡−𝑗
+  

+∑ 𝑏𝑂𝑗
− (𝜏𝑂)

𝐽
𝑗=0 ∆𝑝𝑆,𝑡−𝑗

− + 𝑐𝑂(𝜏𝑂)𝐸�̂�𝑡−1+ 𝜇𝑂(𝜏𝑂)+ 𝜀𝑂,𝑡(𝜏𝑂). 

Note that our model allows for asymmetry only in the short-run output price responses to soybean 

price shocks while the long-run relationship and short-run output price effects are symmetric. 

To simultaneously solve the equations in the above system, we rewrite the coefficients in 

vectors and matrices as follows: 

(4)  𝐪∆𝐰𝒕(𝛎|𝐗t) = (𝑞𝑀(𝛎|𝐗t), 𝑞𝑂(𝛎|𝐗t))
′, 

  𝛋(𝛎) = (𝜅𝑀(𝜏𝑀), 𝜅𝑂(𝜏𝑂))
′,  a(𝛎)=[

a𝑀1(𝜏𝑀) ⋯ a𝑀ℒ(𝜏𝑂)

a𝑂1(𝜏𝑂) ⋯ a𝑂ℒ(𝜏𝑂)
], 

 𝐛+(𝛎)=[
𝑏𝑀0
+ (𝜏𝑀) ⋯ 𝑏𝑀𝐽

+ (𝜏𝑀)

𝑏𝑂0
+ (𝜏𝑂) ⋯ 𝑏𝑂𝐽

+ (𝜏𝑂)
], 𝐛−(𝛎) = [

𝑏𝑀0
− (𝜏𝑀) ⋯ 𝑏𝑀𝐽

− (𝜏𝑀)

𝑏𝑂0
− (𝜏𝑂) ⋯ 𝑏𝑂𝐽

− (𝜏𝑂)
], 

 𝐜(𝛎) = [
𝑐𝑀(𝜏𝑀)
𝑐𝑂(𝜏𝑂)

], 𝛍(𝛎) = [
𝜇𝑀(𝜏𝑀)
𝜇𝑂(𝜏𝑂)

], and 𝛆t(𝛎) = [
𝜀𝑀,𝑡(𝜏𝑀)

𝜀𝑂,𝑡(𝜏𝑂)
]. 

Following Montes-Rojas (2019), the reduced-form VECQ model is defined as: 

(5) 𝐪∆𝐰𝒕(𝛎|𝐗t) = {𝐈2 − 𝛋(𝛎)}
−1

{
 
 

 
 
𝐚(𝛎) [

∆𝐰′
𝐭−𝟏

⋮
∆𝐰′

𝐭−𝓛

] + 𝐛+(𝛎) [

∆𝑝𝑆,𝑡
+

⋮
∆𝑝𝑆,𝑡−𝐽

+
] + 𝐛−(𝛎) [

∆𝑝𝑆,𝑡
−

⋮
∆𝑝𝑆,𝑡−𝐽

−
]

           +𝐜(𝛎)𝐸𝐶′̂ 𝑡−1 + 𝛍(𝛎) + 𝛆𝐭(𝛎) }
 
 

 
 

, 

 
12 In our empirical application, following Balke and Fomby (1997), we test for structural breaks in the 

equilibrium error.  Any such break would imply a discontinuity in the adjustment process to the long-run 

equilibrium.  We find no statistical evidence for a structural break, suggesting that a linear cointegration 

model rather than threshold cointegration is appropriate. 
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where 𝐈𝟐 is a 2 ×2 identity matrix.  Therefore, the price responses of soybean end products to 

soybean price increases are 

(6) 𝐁+(𝛎):= {𝐈2 − 𝛋(𝛎)}
−1𝐛+(𝛎) = [

𝐵𝑀0
+ (𝝂) … 𝐵𝑀𝐽

+ (𝝂)

𝐵𝑂0
+ (𝝂) … 𝐵𝑂𝐽

+ (𝝂)
], 

and the price responses to soybean price decreases are  

(7)  𝐁−(𝛎):= {𝐈2 − 𝛋(𝛎)}
−𝟏𝐛−(𝛎) = [

𝐵𝑀0
− (𝝂) … 𝐵𝑀𝐽

− (𝝂)

𝐵𝑂0
− (𝝂) … 𝐵𝑂𝐽

− (𝝂)
]. 

In addition, the adjustment speeds, 𝐂(𝛎):= {𝐈2 − 𝛋(𝛎)}
−𝟏𝐜(𝛎), measure how quickly the prices 

adjust when they depart from the long-run equilibrium. 

We focus on the coefficients on soybean price changes from (6)-(7) to test price asymmetry 

for short-run responses of soybean end products.  The cumulative price response of output i, i = 

M, O, to an increase in the soybean price at different multivariate quantiles 𝛎 is 

(8) 𝜆𝑖
+(𝛎) = ∑ 𝐵𝑖𝑗

+(𝛎)𝐽
𝑗=0 , 

and the cumulative response to a decrease in the soybean price is 

(9) 𝜆𝑖
−(𝛎) = ∑ 𝐵𝑖𝑗

−(𝛎)𝐽
𝑗=0 . 

The difference between these responses, 𝜆𝑖 = 𝜆𝑖
+(𝛎) − 𝜆𝑖

−(𝛎), can be used for testing asymmetric 

price transmission. 13   If the difference is statistically different from zero, this will suggest 

existence of asymmetric price responses and its magnitude will show the degree of the price 

asymmetry.  If the sign of this difference is positive, there is a positive price asymmetry, where 

output prices respond more fully to a positive shock in soybean prices, an indication of the rockets 

and feathers pattern.  Similarly, a negative sign indicates negative price asymmetry, where output 

prices respond more to a negative shock in soybean prices. 

Data 

We use monthly cash prices from January 1984 to January 2020 obtained from Barchart (formerly, 

Commodity Research Bureau Trader) representing input (soybean—#1 yellow, Central Illinois,) 

and output (soybean meal—48% protein, Decatur, Illinois— and soybean oil—crude, Decatur, 

Illinois) prices.14  Typically, one bushel of soybeans is about 60 pounds, which yields 48 pounds 

of soybean meal (with 44% protein content), 11 pounds of soybean oil, and one pound of waste.15  

When soybean meal and oil prices are converted to dollars per bushel, they account for the 

difference in yield from one bushel of soybeans and represent their crush value (Irwin 2017).  As 

shown in Figure 1(a), soybean meal is more highly valued end product of soybeans on a per bushel 

basis.  In contrast, when the difference in the yield is not taken into account, soybean oil is the 

more valued product on a per pound basis (Irwin 2017).  Figure 1(b) displays the combined crush 

value of soybean meal and oil along with soybean prices.  It is evident that the gap between the 

crush gross revenue and the input cost is wider at times, especially during the latter part of the 

sample.  

 
13 In our empirical analysis, the number of lags, J, is one based on the Akaike information criterion. 
14 Illinois has been the largest soybean-producing state in the last five years.  According to the National 

Agricultural Statistics Service, Illinois produced 672.64 million bushels of soybeans in 2021, followed by 

Iowa with 621.86 million bushels and Minnesota with 356.26 million bushels.  Therefore, Illinois prices can 

be regarded as representative of the U.S. soybean crushing industry. 
15 These conversion factors are published by the U.S. Soybean Export, available at 

https://ussec.org/resources/ conversion-table/. 
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(a) Crush value of soybean meal and oil 

 
 

(b) Soybean prices and combined crush value of soybean meal and oil 

 

Figure 1. Prices of the Soybean Complex 
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Table 1. Summary Statistics of Log Prices and Their First Differences in the Soybean 

Complex 

 𝒑𝒊,𝒕 = 𝒍𝒏(𝑷𝒊.𝒕)  ∆𝒑𝒊,𝒕 = 𝒍𝒏(𝑷𝒊,𝒕) − 𝒍𝒏(𝑷𝒊,𝒕−𝟏)  

 M O S  M O S  

Mean 1.70 1.03 1.98  0.00 0.00 0.00  

Std. dev. 0.37 0.35 0.35  0.09 0.07 0.07  

Min 0.96 0.27 1.41  -0.48 -0.31 -0.40  

Max 2.65 1.95 2.88  0.30 0.25 0.20  

Skewness 0.45 0.27 0.55  -0.59 -0.21 -1.04  

Kurtosis  2.24 2.78 2.35  7.05 4.72 6.82  

Observations 433  433 433  433 433 433  

ADF test -2.16 -2.31 -2.12  -15.22*** -9.79*** -9.71***  

Normality 25.14*** 6.11*** 29.34***  321.60*** 56.67*** 341.00***  

Ljung-Box 807.17*** 1895.08*** 1562.78*** 
 

8.99*** 9.00* 12.89***  

Notes: The variables 𝑝𝑖,𝑡 and ∆𝑝𝑖,𝑡 represent the natural logarithm of cash prices and their first differences 

for each commodity i, where i =M (soybean meal), O (soybean oil), and S (soybean).  ADF test is the 

augmented Dickey-Fuller stationarity test with the null hypothesis of a unit root.  Normality represents the 

Jarque-Bera test with the null hypothesis of normally distributed series.  Ljung-Box is the autocorrelation 

test with the null hypothesis of independently distributed series.  The ADF and the Ljung-Box tests are 

conducted based on the optimal lag for each series chosen by the Akaike information criterion (two for 

soybean meal, five for soybean oil, and four for soybeans).  The asterisks *, **, and *** indicate statistical 

significance at the 10%, 5%, and 1% level, respectively. 

Table 1 reports summary statistics of log prices and their first differences.16  All log price 

series have platykurtic distributions with positive skewness, indicating the right sides of price 

distributions are fatter.  Soybean log prices are more skewed to the right than the other two 

commodities.  On the other hand, the first-differenced log prices (i.e., returns) are negatively 

skewed and have leptokurtic distributions, indicating log price series are heavy tailed compared 

to normal distribution.  Moreover, Jarque-Bera tests reject the normality of both log prices and 

their first differences, suggesting asymmetry in these distributions.  Augmented Dickey-Fuller 

tests show that stationarity in log prices is achieved through first differencing, and Ljung-Box 

tests reject the null hypothesis of no autocorrelation in all series.  In addition, based on the 

supremum Wald test we find no structural breaks during our sample period.17 

Empirical Results 

Quantile cointegration test results are presented in Table 2.  We report the augmented Dickey-

Fuller (ADF) test statistics for a unit root in the estimated residuals of three log price series based 

on equation (1).  We reject the null hypothesis of a unit root at the 5% level or lower for each 

commodity, indicating that log prices are cointegrated at these selected quantile indices.  

Therefore, we augment the VARQ model of Montes-Rojas (2019) by including error correction 

terms to capture the adjustment speed when log prices depart from the long-run equilibrium and  
 

 
16 The first-differenced log prices also represent returns.  We use returns, first-differenced log prices, and log 

price changes interchangeably throughout the article. 
17 The supremum Wald statistic is 12.81 with a p-value of 0.27 for soybeans, 15.15 with a p-value of 0.14 

for soybean meal, and 6.67 with a p-value of 0.90 for soybean oil. 
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Table 2. Tests for Cointegrating Relations at Selected Quantile Indices 
 

𝝉𝒊 

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9 

𝑝𝑀,𝑡 -4.26  -4.53  -3.79  -3.88  -3.87  -3.47  -3.30  -3.52  -4.38 

𝑝𝑂,𝑡 -4.72  -6.22  -5.94  -5.53  -5.85  -5.36  -4.67  -4.18  -5.67 

𝑝𝑆,𝑡  -4.72  -4.33  -4.00  -3.87  -3.63  -4.56  -4.26  -4.62  -5.04 

Notes: Cointegration is tested via the augmented Dickey-Fuller (ADF) stationarity tests of the estimated 

residuals from equation (1) for a given quantile index 𝜏𝑖, where i =M (soybean meal), O (soybean oil), and 

S (soybean).  The ADF statistics shown in regular (bold) font are statistically significant at the 1% (5%) 

level.  

estimate our VECQ model.  Moreover, as shown in appendix A, the weak exogeneity assumption 

of soybean prices (in log form) is satisfied across selected multivariate quantiles and therefore we 

treat soybean as exogenous and use the bivariate VECQ model in equation (5) to test for 

asymmetric output price responses. 

All coefficients in (5) vary across different quantiles of both soybean meal and oil return 

distributions and using multivariate quantile 𝛎 = (𝜏𝑀 ∈ (0.1, … , 0.9), 𝜏𝑂 ∈ (0.1, … , 0.9))
′ leads 

to 81 estimates for each coefficient.  This makes presenting and interpreting the results 

challenging as the pattern of price movements could be affected from two different directions, 

either its own quantiles or quantiles of the other product.  For example, a 1% soybean price 

increase leads to a 1.04% contemporaneous increase in the soybean meal price when its own 

quantile index, 𝜏𝑀 , and the quantile of soybean oil, 𝜏𝑂 , are both 0.1.  The same input price 

increase, on the other hand, leads to a 1.26% contemporaneous increase in the soybean meal price 

when 𝜏𝑀 increases to 0.9 and 𝜏𝑂 stays at 0.1, and to a 0.90% increase when 𝜏𝑀 stays at 0.1 and 

𝜏𝑂 increases to 0.9.  For brevity, we present the results from the VECQ model at only 0.1, 0.5, 
and 0.9 quantiles of both soybean meal and oil to represent extremely low, median, and extremely 

high levels, respectively, in Tables 3 and 4.18  Since our main objective is to test for asymmetric 

output price responses to input price changes in the short run to infer existence of the rockets and 

feathers pattern, we only provide coefficient estimates on the soybean log price change variables 

in the tables.19  Soybean prices have both contemporaneous and lagged effects on the prices of its 

end products.  Therefore, the cumulative price response of the end products to soybean price 

changes are the sum of the coefficients on the current and lagged changes in the soybean log price.  

We report those cumulative price responses and the test results for price asymmetry (the difference 

between cumulative responses to positive and negative input price changes) in Tables 3 and 4.20  

For a comparison, we also provide the associated estimates from a standard vector error correction 

(VEC) model, which focuses on conditional means, in the last columns of both tables.21 

The contemporaneous effects in VECQ are statistically significant at the 1% level for both 

soybean meal (Table 3) and soybean oil (Table 4) except for the soybean oil response to a negative 

change in the soybean log price at the high quantile.  While the lagged effects are only statistically 

significant in the soybean meal market when its return is at the median quantile, they are  
 

 
18 Full results with fixed quantiles from 0.1 to 0.9 are available from the authors upon request. 
19 We do not discuss price adjustment speeds towards the long-run equilibrium in our study but report the 

estimated coefficients on the error correction term in equation (5) at each quantile from 0.1 to 0.9 in appendix 

Tables B.1 and B.2 for soybean meal and oil, respectively. 
20 While for brevity we present the results at only 0.1, 0.5, and 0.9 quantiles of soybean meal and oil, we 

provide the full results for the cumulative price responses and the test results for price asymmetry with fixed 

quantiles from 0.1 to 0.9 in appendix Tables C.1 and C.2. 
21 The corresponding tests of weak exogeneity and cointegration, and the full estimation results for the 

standard VEC model are available from the authors upon request.  For comparison purposes, the selected 

estimation results for the VEC model are provided in Tables 3 and 4 and in the notes to Tables B.1 and B.2. 
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Table 3. VECQ Results for Soybean Meal Responses 

 VECQ          
    

0.1 
 

0.5 
 

0.9  VEC  

∆𝑝𝑆,𝑡
+  0.918 *** 0.952 *** 1.130 *** 1.015 ***  

(0.199) 
 

(0.098) 
 

(0.205)  (0.067)  

∆𝑝𝑆,𝑡
−  1.063 *** 0.949 *** 0.843 *** 0.951 ***  

(0.147) 
 

(0.074) 
 

(0.163)  (0.052)  

∆𝑝𝑆,𝑡−1
+  0.381 

 
0.333 * 0.109  0.214 *  

(0.267) 
 

(0.196) 
 

(0.264)  (0.112)  

∆𝑝𝑆,𝑡−1
−  0.673 *** 0.379 ** -0.313  0.169   

(0.198) 
 

(0.180) 
 

(0.253)  (0.098)  

Cumulative price response: 

𝜆𝑀
+  1.299 *** 1.285 *** 1.240 *** 1.229 ***  

(0.285) 
 

(0.221) 
 

(0.332)  (0.155)  

𝜆𝑀
−  1.736 *** 1.328 *** 0.530 * 1.120 ***  

(0.259) 
 

(0.178) 
 

(0.297)  (0.140)  

𝜆𝑀 -0.436 
 

-0.043 
 

0.710 * 0.109  

  [0.120] 
 

[0.831] 
 

[0.065]  [0.386]  
Notes: The estimated coefficients on soybean price changes are presented for soybean meal from the 

VECQ model, in which the soybean oil quantile 𝜏𝑂 is fixed at 0.5 and soybean meal quantile 𝜏𝑀 is varied 

between 0.1, 0.5, and 0.9.  Standard errors are given in parentheses and p-values are in brackets.  Δ𝑝𝑆,𝑡−𝑗
+  

and  Δ𝑝𝑆,𝑡−𝑗
−  denote, respectively, a positive and negative change in the soybean price, where j = 0, 1.  𝜆𝑀

+  

and 𝜆𝑀
−  represent the cumulative price response of soybean meal to soybean price increases and decreases, 

respectively.  𝜆𝑀 measures the difference between these two cumulative responses, 𝜆𝑀 = 𝜆𝑀
+ − 𝜆𝑀

− .  The 

null hypothesis of symmetry in output price responses is 𝜆𝑀 = 0.  For a comparison, corresponding results 

from the standard VEC model are presented in the last column.  The asterisks *, **, and *** indicate 

statistical significance at the 10%, 5%, and 1% level, respectively. 

significant in the soybean oil market when its log price changes are at the 0.9 quantile.  For 

soybean meal, the cumulative price response to soybean price changes is statistically significant 

at each selected quantile (Table 3).  Even though the cumulative price response to a 1% increase 

in soybean prices is smaller compared to a 1% decrease at the low and median quantiles (1.30% 

vs 1.74% at the 0.1 quantile and 1.29% vs 1.33% at the 0.5 quantile), their differences are not 

statistically different from zero (p-values of 0.120 and 0.831 for 𝜆𝑀).  However, there is a positive 

price asymmetry at the extremely high quantile, statistically significant at the 10% level, with 

soybean meal prices reacting more fully (1.24%) to soybean price increases than they do to 

soybean price decreases (0.53%).  Further, Table C.1 shows that the equality of cumulative price 

responses of soybean meal to soybean price changes is rejected 18 times out of 81 cases at the 

10% level or lower (shaded cells).  It is also worth mentioning that once the soybean oil quantile 

exceeds 0.5, price asymmetry in soybean meal becomes evident at its lower quantiles.  The 

standard VEC model, on the other hand, finds statistically equivalent cumulative price responses 

to both positive (1.23%) and negative (1.12%) changes in soybean prices (a p-value of 0.39 for 

their difference, 𝜆𝑀). 

For soybean oil, the cumulative price responses are statistically significant at the extremely 

low quantile but their difference is statistically different from zero (at the 10% level) at the median 

and high quantile (see Table 4).  Once again, the standard VEC model (Table 4) fails to reject the 

equality of price responses in soybean oil responses to soybean price changes with a p-value of 

0.37.  Thus, no price asymmetry can be found in either market based on the VEC model 

estimation, which focuses only on the conditional mean of price distributions.  Table C.2 further 

demonstrates that in 30 out of 81 cases (shaded cells), there is statistical evidence of price 
 

𝜏𝑀 
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Table 4. VECQ Results for Soybean Oil Responses 

  VECQ           
     

0.1 
 

0.5 
 

0.9  VEC  

∆𝑝𝑆,𝑡
+  

 
0.756 *** 0.996 *** 1.029 *** 0.841 ***   

(0.182) 
 

(0.146) 
 

(0.158)  (0.083 )  

∆𝑝𝑆,𝑡
−  

 
0.833 *** 0.556 *** 0.311  0.581 ***   

(0.127) 
 

(0.097) 
 

(0.197)  (0.082)  

∆𝑝𝑆,𝑡−1
+  

 
-0.058 

 
-0.345 

 
-0.623 ** -0.273 *   

(0.298) 
 

(0.231) 
 

(0.286)  (0.154)  

∆𝑝𝑆,𝑡−1
−  

 
0.098 

 
-0.320 * -0.746 *** -0.136    

(0.380) 
 

(0.190) 
 

(0.261)  (0.144)  

Cumulative price response:  

𝜆𝑂
+ 

 
0.698 ** 0.651 *** 0.406  0.568 ***   

(0.334) 
 

(0.245) 
 

(0.342)  (0.165)  

𝜆𝑂
− 

 
0.931 ** 0.236 

 
-0.434  0.445 **   

(0.389) 
 

(0.205) 
 

(0.316)  (0.177)  

𝜆𝑂 
 

-0.233 
 

0.415 * 0.841 * 0.123  

    [0.512] 
 

[0.088] 
 

[0.055]  [0.373]  

Notes: The estimated coefficients on soybean price changes are presented for soybean oil from the VECQ 

model, in which the soybean meal quantile 𝜏𝑀 is fixed at 0.5 and soybean oil quantile 𝜏𝑂 is varied between 

0.1, 0.5, and 0.9.  Standard errors are given in parentheses and p-values are in brackets.  Δ𝑝𝑆,𝑡−𝑗
+  and  

Δ𝑝𝑆,𝑡−𝑗
−  denote, respectively, a positive and negative change in the soybean price, where j = 0, 1.  𝜆𝑂

+ and 

𝜆𝑂
− represent the cumulative price response of soybean oil to soybean price increases and decreases, 

respectively.  𝜆𝑂 measures the difference between these two cumulative responses, 𝜆𝑂 = 𝜆𝑂
+ − 𝜆𝑂

−.  The 

null hypothesis of symmetry in output price responses is 𝜆𝑂 = 0.  For a comparison, corresponding results 

from the standard VEC model are presented in the last column.  The asterisks *, **, and *** indicate 

statistical significance at the 10%, 5%, and 1% level, respectively. 

asymmetry in the soybean oil responses, with the majority appearing at the lower quantiles of 

soybean meal.  These results provide support to our argument that asymmetric price response in 

joint production might depend on market conditions of all outputs. 

To further demonstrate this, we plot the results in Tables C.1 and C.2 for selected quantiles 

of the other end product.  Specifically, we plot the cumulative price responses of one end product 

at its own quantile from 0.1 to 0.9 when the other end product’s quantile is fixed at 0.1, 0.5, and 

0.9 to represent extremely low, median, and extremely high levels, respectively.  We present these 

cumulative price response patterns in Figure 2.  The left panel in Figure 2 shows the cumulative 

price responses to soybean price increases estimated by (8), and the right panel shows the 

cumulative responses to soybean price decreases given by (9).  We calculate the standard errors 

of the parameter estimates by bootstrapping (with resampling 500 times).  In the figures, 

coefficient estimates that are statistically significant at the 10% level or lower are plotted with a 

filled marker symbol, while insignificant estimates are indicated with an open marker.  In addition, 

for a comparison, the estimates of the cumulative coefficients, 𝜆𝑖
+ and 𝜆𝑖

− from the standard VEC 

model are shown by horizontal lines. 

In Figure 2(a), all soybean meal cumulative price responses are positive and statistically 

significant at the 5% level or lower, except for soybean price decreases at 𝜏𝑀 = 0.9 and 𝜏𝑂 = 0.1.  

In the case of soybean price increases, regardless of the soybean oil quantile 𝜏𝑂, the smallest price 

response always occurs at the 0.4 quantile while the largest one occurs at the 0.8 quantile of 
 

 

𝜏𝑂 
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(a) Soybean meal 

   
(b) Soybean oil 

 

Figure 2. Output Price Responses to Soybean Price Changes 
Notes: Cumulative price responses to soybean price increases and decreases are calculated as in equations 

(8) and (9), respectively.  Coefficient estimates that are statistically significant at the 10% or lower level 

are plotted with a filled marker symbol, while insignificant estimates are indicated with an open marker.  

The horizontal lines represent the corresponding estimate from the standard VEC model. 

soybean meal.  Specifically, when the soybean oil return is in the highest decile of its distribution, 

the cumulative price response of soybean meal is 1.43% at 𝜏𝑀 = 0.1, dips to 1.22% at 𝜏𝑀 = 0.4, 

then reaches its peak of 1.63% at 𝜏𝑀 = 0.8, and finally falls back to 1.36% at 𝜏𝑀 = 0.9.  This 

pattern also holds at the low and median quantiles of soybean oil.  Compared to the VEC model 

estimate of 1.23%, which represents the cumulative price response of soybean meal to soybean 

price increases at the mean of price change distributions, all estimates in Figure 2(a) are larger 

when the soybean oil quantile is at 0.9, except for 𝜏𝑀 = 0.4,.  In addition, for a given soybean 

meal quantile 𝜏𝑀, the meal price response is the largest when the soybean oil price is at its highest 

decile, while at the same time the responses are almost the same at the lowest and median quantiles 

of oil.  Considering the case of soybean price decreases, the largest cumulative price response of 

soybean meal occurs at 𝜏𝑀 = 0.1, followed by a slightly downward trend as its own quantile 

increases, regardless of the soybean oil quantile.  Again, the soybean meal price responses are 

larger in magnitude when the other end product, soybean oil, is at a high quantile.  Comparing to 

the VEC model estimate of 𝜆𝑀
− , given by the horizontal line, price responses estimated by the 

VECQ model are far above at extremely low quantile of soybean meal, especially when the 

soybean oil quantile 𝜏𝑂  is high.  Specifically, at 𝜏𝑀 = 0.1 and 𝜏𝑂 = 0.9, the cumulative meal 

price response to a 1% decrease in soybean price is 2.07% compared to the VEC model estimate 

of 1.12%. 
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In Figure 2(b), regardless of the soybean meal quantile, all cumulative soybean oil price 

responses to increases in the soybean price are also positive, but the response is statistically 

insignificant at its 0.9 quantile.  For a given soybean meal quantile, the price movements across 

its quantile 𝜏𝑂 have a similar M shaped pattern, having two peaks at 𝜏𝑂 = 0.2 and 0.6.  The VECQ 

model estimates of 𝜆𝑂
+(𝛎) at 𝜏𝑂 = 0.4 are the closest to the VEC model estimate of 𝜆𝑂

+ for any 

fixed 𝜏𝑀 .  ooreover, the cumulative price responses are very close to each other at the low, 

median, and high quantiles of soybean meal.  This indicates that soybean meal returns do not 

affect the response of soybean oil to increasing input costs.  In the case of decreasing soybean 

prices, there is a downward trend as 𝜏𝑂 increases from 0.1 to 0.9 and the largest responses occur 

at 𝜏𝑂 = 0.1 regardless of the soybean meal quantile.  Although the sign of the cumulative oil 

response is mixed when 𝜏𝑀 is 0.1 or 0.5, the statistically significant estimates, except for 𝜏𝑂 =
0.9 and 𝜏𝑀 = 0.1, are all positive and the majority are above the VEC model estimate of 𝜆𝑂

−.  

When the quantiles of soybean oil and meal are at the extreme low and high, respectively, the 

cumulative oil price response is 1.49%, well above the VEC model estimate of 0.45%. 

Figure 3 plots the difference in cumulative responses of both soybean end products to positive 

and negative changes in the soybean log price.  When this difference is statistically different from 

zero, we can reject the null hypothesis of price symmetry and infer the existence of price 

asymmetry.  We again plot coefficient estimates that are statistically significant at the 10% level 

or lower with a filled marker symbol and insignificant estimates with an open marker.  For 

comparison, we show the VEC model estimates by a horizontal line even though they are not 

statistically different from zero (i.e., there is no price asymmetry).  In Figure 3(a), the meal 

response to increasing soybean price is larger than the response to decreasing input price when 

the meal log price change itself is at a high quantile of its distribution (𝜏𝑀 = 0.8 and 0.9) but the 

oil price change is at the extremely low quantile.  Similarly, in Figure 3(b), the soybean oil 

response exhibits the rockets and feathers pattern when it is above the median of its price change 

distribution and the meal return is at the lowest quantile.  As seen in the figure, the VECQ model 

reveals an otherwise-hidden confirmation of the rockets and feathers pattern in both output 

markets. 

In summary, we find evidence of price asymmetry when the two end products are at the 

opposite extremes of their price change distributions.  The largest asymmetry in soybean meal 

and oil prices is 1.06 and 1.07 percentage points, respectively.  Furthermore, the signs of price 

asymmetries found are all positive, indicating that the end products respond more fully to a 

positive shock in the input price. 

Conclusions 

This study contributes to the empirical literature of price asymmetry by testing for the first time 

the occurrence of rockets and feathers pattern in a joint production process and allowing output 

price responses to vary with the prices of other end products.  Our multivariate quantile regression 

framework not only helps us to search for asymmetry over the entire distribution rather than just 

at the conditional mean but also allows us to condition the price response of one output on the 

market conditions of the other output.  We show that price responses in any of the soybean end 

products are not only related to their own return levels but also to the other end product’s return.  

This finding supports the concern of von Cramon-Taubadel and Goodwin (2021) about the price 

transmission in the case of joint production stating “… the estimation equations may be 

misspecified because price transmission from an agricultural raw product to one of its outputs will 

likely depend on prices for the other outputs.” 

Our results further imply that the occurrence of price asymmetries is related to different 

market conditions.  The locality of quantiles reflects the characteristic of data clustering within a 

specific part of the distribution, which reflects the market conditions.  For example, high returns, 

located in the upper tail of a distribution, might encourage producers to expand their production 
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in the future, while low returns clustered in the lower tail might indicate excess supply signaling 

a reduction in future production.  Therefore, an estimation method based on conditional quantiles 

uncovers the heterogeneity in output responses to input price changes at different regions of their 

distributions and captures the magnitude of price asymmetries associated with a specific market 

condition.  Our findings confirm the rockets and feathers pattern in the soybean complex when 

the market conditions of the two end products are contrary to each other.  Specifically, a positive 

price asymmetry (i.e., larger response to input price increases) in any end product occurs when its 

own market is bullish but the other product’s market is bearish.  This finding indicates that 

producers are more likely to pass extra production costs onto consumers when one of the end 

products is facing a high demand (indicating optimistic market sentiment for the future production 

and higher prices) and the other end product has a lower price point resulting from either low 

demand or excess supply (indicating pessimistic market sentiment). 

Our multivariate quantile approach can supplement the analysis of factors affecting the 

magnitude of price asymmetry.  A prevalent method is to regress the degree of asymmetry on a 

list of variables proxying the possible causes (e.g., Peltzman 2000; Loy, Weiss, and Glauben 

2016).  Most previous empirical studies investigate potential causes based on the behavior of input 

prices, consumer search costs, and the market structure but ignore the heterogeneity in output 

price responses, which can be incorporated with our method. 

 

[First submitted July 2023; accepted for publication November 2023.] 
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Appendix A: Weak Exogeneity Test across Multivariate Quantiles 

Based on the exogeneity definition of Engle, Hendry, and Richard (1983), weak exogeneity tests 

of potentially endogenous variables are generally performed in partial models of a cointegrated 

system (Ericsson 1992; Boswijk 1995; Johansen 1992; Johansen and Juselius 1992; Urbain 1993; 

Boswijk and Urbain 1997).  An advantage of either error correction or autoregressive model is 

that one can form a partial system as a conditional model, in which equations with variables of 

interest can be regressed on weakly exogenous variables.  The partial model is efficient as long 

as it contains as much information as the full system about the short- and long-run parameters 

(Johansen 1992). 

Being able to treat soybean prices as weakly exogenous in the analysis of soybean meal and 

oil equations becomes much more important in the multivariate quantile framework due to 

computational challenges.  Our model is a system of three conditional directional quantile 

functions, and each conditional quantile is estimated with an arbitrary quantile index 𝜏 ∈ (0,1).  
Since we select nine quantile indices of each commodity’s price distribution, the multivariate 

quantile 𝛕∗ = (𝜏𝑀 , 𝜏𝑂 , 𝜏𝑆)
′ provides 729 combinations of quantile indices to be estimated in the 

VECQ model.  Treating soybean prices as weakly exogenous reduces the dimension of the 

multivariate quantile 𝛕∗ from three to two, largely reducing the computational complication (2-

dimensional multivariate quantile only has 81 combinations of quantile indices). 

To test weak exogeneity of soybean prices across multivariate quantiles, we follow Urbain 

(1993)’s method introduced in the preliminary analysis to decompose the trivariate VEC model 

into a structural VEC model for soybean end products and a marginal reduced-form model for 

soybeans.  Tests of weak exogeneity are carried out by estimating the marginal model for soybean 

prices based on quantile regression, where the coefficients are functions of multivariate quantile 

𝛕∗.  Then, the weak exogeneity of 𝑝𝑆,𝑡 can be tested by the joint null hypothesis: 

(A1) 𝐻0: 𝛾𝑆(𝛕
∗) = 0, 𝛉(𝛕∗) =  𝟎. 

Figure A.1 presents the histogram of the p-values, associated with 729 F-statistics for the 

joint hypothesis tests in equation (A.1), along with a vertical line at the p-value of 0.05.  All p-

values are greater than even 0.1, showing that both estimated residuals ( �̂�t ) and the error 

correction (𝐸�̂�𝑡−1) term are jointly no different than zero in the marginal model.  This indicates 

that weak exogeneity assumption of soybean prices is satisfied across selected multivariate 

quantiles. 

 

Figure A.1. Weak Exogeneity Tests for Soybean Log Prices across Multivariate Quantiles 
Notes: Tests of weak exogeneity of soybean log prices are carried out by estimating the marginal reduced-

form model for soybeans based on a quantile regression.  The histogram of the p-values for 729 null 

hypotheses given in equation (A.1) are plotted.  The vertical line indicates the p-value of 0.05.
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Appendix B. Adjustment Speed Parameter Estimates of Soybean End Products 

Table B.1. Adjustment Speed of Soybean Meal towards the Long-Run Equilibrium 

   
 

 
 

 
 

 
 

 𝜏𝑀  
    

 
 

0.1  0.2  0.3  0.4  0.5  0.6 0.7 0.8 0.9 

 0.1 -0.09 ** -0.08 * -0.08  -0.04  -0.01  0.00 0.00 0.03 -0.02 

 
 

(0.04)  (0.04)  (0.05)  (0.05)  (0.05)  (0.05) (0.05) (0.06) (0.07) 

 0.2 -0.11 *** -0.10 *** -0.10 ** -0.06  -0.02  -0.02 -0.02 0.01 -0.03 

 
 

(0.04)  (0.03)  (0.04)  (0.04)  (0.04)  (0.04) (0.05) (0.06) (0.06) 

 0.3 -0.11 *** -0.10 *** -0.10 ** -0.07  -0.03  -0.02 -0.02 0.01 -0.04 

 
 

(0.04)  (0.03)  (0.04)  (0.04)  (0.04)  (0.04) (0.04) (0.05) (0.06) 

 0.4 -0.13 *** -0.12 *** -0.13 *** -0.09 ** -0.05  -0.04 -0.04 -0.01 -0.06 

 
 

(0.04)  (0.03)  (0.04)  (0.04)  (0.04)  (0.04) (0.04) (0.05) (0.06) 

𝜏 𝑂
 

0.5 -0.14 *** -0.13 *** -0.13 *** -0.09 ** -0.06 * -0.05 -0.05 -0.02 -0.06 

 
 

(0.04)  (0.03)  (0.04)  (0.04)  (0.04)  (0.04) (0.04) (0.05) (0.06) 

 0.6 -0.14 *** -0.13 *** -0.14 *** -0.10 ** -0.07 * -0.06 -0.06 -0.03 -0.07 

 
 

(0.04)  (0.04)  (0.04)  (0.04)  (0.04)  (0.04) (0.04) (0.05) (0.05) 

 0.7 -0.13 *** -0.12 *** -0.13 *** -0.09 ** -0.06  -0.05 -0.05 -0.02 -0.06 

 
 

(0.04)  (0.04)  (0.04)  (0.04)  (0.04)  (0.04) (0.04) (0.05) (0.05) 

 0.8 -0.11 ** -0.10 ** -0.10 ** -0.07  -0.03  -0.02 -0.03 0.00 -0.04 

 
 

(0.05)  (0.05)  (0.05)  (0.05)  (0.04)  (0.04) (0.04) (0.05) (0.06) 

 0.9 -0.07  -0.06  -0.06  -0.03  0.01  0.01 0.01 0.04 0.00 

 
 

(0.06)  (0.05)  (0.06)  (0.06)  (0.05)  (0.05) (0.05) (0.06) (0.06) 
Notes: 𝜏𝑖 represents the quantile index of each commodity, where the subscript i=M, O represents soybean meal and soybean oil, respectively.  The results are rounded to 

two decimals.  Hypothesis testing is based on bootstrapped standard errors given in parentheses. The asterisks *, **, and *** indicate statistical significance at the 10%, 

5%, and 1% level, respectively.  For a comparison, the standard VEC result is -0.10 with a standard error of 0.02, statistically significant at the 1% level.  
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Table B.2. Adjustment Speed of Soybean Oil towards the Long-Run Equilibrium 

   
 

 
 

 
 

 
 

𝝉𝑶 
    

 

 
 

0.1  0.2  0.3  0.4 0.5 0.6 0.7 0.8 0.9  

 0.1 -0.06  -0.03  -0.02  0.02 0.02 0.04 0.02 -0.02 -0.10  

 
 

(0.07)  (0.04)  (0.04)  (0.04) (0.05) (0.05) (0.05) (0.08) (0.09)  

 0.2 -0.07  -0.04  -0.03  0.01 0.02 0.03 0.01 -0.03 -0.11  

 
 

(0.07)  (0.04)  (0.04)  (0.04) (0.04) (0.05) (0.05) (0.08) (0.08)  

 0.3 -0.07  -0.04  -0.03  0.01 0.02 0.03 0.01 -0.03 -0.11  

 
 

(0.07)  (0.05)  (0.04)  (0.04) (0.04) (0.05) (0.05) (0.07) (0.09)  

 0.4 -0.10  -0.06  -0.06  -0.01 0.00 0.01 -0.01 -0.05 -0.13  

 
 

(0.07)  (0.05)  (0.04)  (0.04) (0.04) (0.05) (0.05) (0.07) (0.09)  

𝜏 𝑀
 

0.5 -0.12 * -0.09 * -0.08 ** -0.04 -0.03 -0.01 -0.03 -0.08 -0.15 * 

 
 

(0.07)  (0.05)  (0.04)  (0.04) (0.04) (0.04) (0.04) (0.07) (0.08)  

 0.6 -0.13 * -0.10 ** -0.08 ** -0.05 -0.03 -0.02 -0.04 -0.08 -0.15 * 

 
 

(0.07)  (0.05)  (0.04)  (0.04) (0.04) (0.04) (0.04) (0.07) (0.08)  

 0.7 -0.13 * -0.10 * -0.09 ** -0.05 -0.03 -0.02 -0.04 -0.08 -0.15 * 

 
 

(0.07)  (0.05)  (0.04)  (0.04) (0.04) (0.05) (0.04) (0.06) (0.08)  

 0.8 -0.15 * -0.12 ** -0.11 ** -0.07 -0.05 -0.04 -0.06 -0.10 -0.17 ** 

 
 

(0.08)  (0.06)  (0.05)  (0.05) (0.05) (0.05) (0.05) (0.07) (0.08)  

 0.9 -0.12  -0.09  -0.08  -0.04 -0.02 -0.01 -0.03 -0.07 -0.14 * 

 
 

(0.08)  (0.06)  (0.05)  (0.05) (0.05) (0.05) (0.05) (0.07) (0.08)  

Notes: 𝜏𝑖 represents the quantile index of each commodity, where the subscript i=M, O represents soybean meal and soybean oil, respectively.  The results are rounded to 

two decimals.  Hypothesis testing is based on bootstrapped standard errors given in parentheses. The asterisks *, **, and *** indicate statistical significance at the 10%, 

5%, and 1% level, respectively. For a comparison, the standard VEC result is -0.01 with a standard error of 0.03, statistically insignificant at the conventional levels.  



Yang and Karali Price Transmission in Joint Production 21 

 

Appendix C: Cumulative Price Responses to Soybean Price Changes 

Table C.1. Cumulative Price Response of Soybean Meal to Soybean Price Changes 

   
 

 
   

 𝝉𝑴 
   

 
 

  
    0.1     0.2 0.3 0.4  0.5 0.6 0.7 0.8    0.9  

0.1 + 1.28  1.29 1.09 1.05  1.26 1.19 1.35 1.50  1.21   
− 1.40  1.00 0.90 1.02  0.94 0.86 0.87 0.63  0.15   

 [0.67]  [0.25] [0.46] [0.91]  [0.19] [0.18] [0.15] [0.03] ** [0.02] ** 
0.2 + 1.22  1.23 1.03 0.99  1.20 1.14 1.30 1.46  1.16   

− 1.44  1.04 0.94 1.06  0.98 0.89 0.90 0.66  0.17   
 [0.43]  [0.40] [0.70] [0.75]  [0.31] [0.28] [0.22] [0.04] ** [0.02] ** 

0.3 + 1.28  1.30 1.10 1.06  1.27 1.20 1.36 1.51  1.22   
− 1.51  1.12 1.02 1.14  1.07 0.97 0.98 0.74  0.27   

 [0.42]  [0.46] [0.74] [0.71]  [0.32] [0.29] [0.22] [0.04] ** [0.02] ** 
0.4 + 1.36  1.37 1.18 1.14  1.35 1.28 1.43 1.58  1.30   

− 1.67  1.27 1.19 1.31  1.24 1.12 1.13 0.88  0.42   
 [0.27]  [0.69] [0.96] [0.44]  [0.56] [0.48] [0.32] [0.05] ** [0.03] ** 

𝜏 𝑂
 

0.5 + 1.30  1.31 1.12 1.09  1.29 1.22 1.37 1.52  1.24   
− 1.74  1.36 1.28 1.39  1.33 1.21 1.21 0.97  0.53  

  [0.12]  [0.85] [0.48] [0.16]  [0.83] [0.96] [0.60] [0.12]  [0.07] * 
0.6 + 1.20  1.21 1.02 0.98  1.18 1.12 1.27 1.42  1.14   

− 1.72  1.34 1.26 1.38  1.31 1.20 1.20 0.96  0.53  
  [0.07] * [0.58] [0.26] [0.08] * [0.48] [0.73] [0.81] [0.19]  [0.10] * 

0.7 + 1.25  1.26 1.07 1.04  1.23 1.18 1.33 1.47  1.20   
− 1.73  1.35 1.27 1.39  1.32 1.21 1.21 0.97  0.54  

  [0.11]  [0.73] [0.39] [0.13]  [0.67] [0.89] [0.70] [0.15]  [0.07] * 
0.8 + 1.33  1.34 1.14 1.11  1.31 1.25 1.40 1.55  1.27   

− 1.88  1.50 1.42 1.54  1.48 1.34 1.34 1.09  0.65   
 [0.08] * [0.57] [0.28] [0.08] * [0.48] [0.70] [0.86] [0.21]  [0.09] * 

0.9 + 1.43  1.44 1.26 1.22  1.42 1.34 1.49 1.63  1.36   
− 2.07  1.71 1.64 1.75  1.71 1.55 1.55 1.30  0.89  

  [0.07] * [0.39] [0.20] [0.08] * [0.32] [0.49] [0.87] [0.40]  [0.21]  

Notes: 𝜏𝑖 represents the quantile index of each commodity, where the subscript i=M, O represents soybean meal and soybean oil, respectively. For each quantile index, 

cumulative price responses to soybean price increases are presented in the first row and that to decreases are in the second row. Estimates that are statistically significant 

at the 10% level or lower are indicated with a bold font. Hypothesis testing of price asymmetry (equality of first and second rows) is based on bootstrapped standard 

errors and p-values are given in brackets. The asterisks *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively.  Shaded cells represent 

the cases where the equality of cumulative price responses to positive and negative soybean price changes are rejected at the 10% or lower level.  



22 Preprint Journal of Agricultural and Resource Economics 

T able C.2. Cumulative Price Response of Soybean Oil to Soybean Price Changes 

   
    

𝜏𝑂 
    

 
    0.1    0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 + 0.69 0.79 0.67 0.53 0.64 0.83 0.73 0.59 0.40  
− 0.61 0.52 0.40 0.10 -0.03 0.01 -0.01 -0.30 -0.66  

 [0.83] [0.40] [0.35] [0.12] [0.02] ** [0.00] *** [0.02] ** [0.02] ** [0.02] ** 

0.2 + 0.68 0.78 0.66 0.52 0.64 0.83 0.72 0.58 0.40  
− 0.89 0.82 0.67 0.37 0.22 0.24 0.22 -0.04 -0.44  

 [0.53] [0.89] [0.98] [0.58] [0.11] [0.03] ** [0.09] * [0.08] * [0.06] * 

0.3 + 0.82 0.93 0.80 0.66 0.76 0.95 0.85 0.71 0.51  
− 0.96 0.89 0.74 0.43 0.27 0.29 0.28 0.01 -0.40  

 [0.70] [0.89] [0.80] [0.37] [0.05] ** [0.01] *** [0.04] ** [0.04] ** [0.04] ** 

0.4 + 0.85 0.96 0.83 0.68 0.78 0.97 0.87 0.74 0.53  
− 0.87 0.80 0.65 0.35 0.19 0.22 0.20 -0.07 -0.46  

 [0.94] [0.59] [0.49] [0.18] [0.02] ** [0.00] *** [0.02] ** [0.02] ** [0.03] ** 

𝜏 𝑀
 

0.5 + 0.70 0.80 0.68 0.53 0.65 0.85 0.74 0.60 0.41  
− 0.93 0.86 0.71 0.40 0.24 0.26 0.24 -0.03 -0.43 

  [0.51] [0.85] [0.93] [0.58] [0.09] [0.01] [0.06] [0.06] [0.06]* 

0.6 + 0.74 0.85 0.73 0.59 0.69 0.88 0.78 0.65 0.45  
− 0.99 0.92 0.77 0.48 0.31 0.34 0.32 0.06 -0.34 

  [0.50] [0.80] [0.87] [0.66] [0.13] [0.03] ** [0.08] * [0.08] [0.07] * 

0.7 + 0.63 0.73 0.62 0.48 0.60 0.78 0.68 0.54 0.36  
− 0.98 0.92 0.77 0.48 0.31 0.33 0.32 0.06 -0.34 

  [0.36] [0.57] [0.61] [0.99] [0.31] [0.10] * [0.20] [0.17] [0.12] 

0.8 + 0.52 0.62 0.51 0.37 0.50 0.69 0.59 0.44 0.28  
− 1.15 1.10 0.93 0.65 0.47 0.49 0.47 0.23 -0.18  

 [0.12] [0.19] [0.19] [0.38] [0.93] [0.49] [0.69] [0.56] [0.30] 

0.9 + 0.73 0.83 0.71 0.57 0.68 0.87 0.77 0.63 0.44  
− 1.49 1.45 1.26 0.97 0.76 0.76 0.75 0.53 0.07 

  [0.09]* [0.13] [0.12] [0.25] [0.82] [0.74] [0.96] [0.79] [0.41] 

Notes: 𝜏𝑖 represents the quantile index of each commodity, where the subscript i=M, O represents soybean meal and soybean oil, respectively. For each quantile index, 

cumulative price responses to soybean price increases are presented in the first row and that to decreases are in the second row. Estimates that are statistically significant 

at the 10% level or lower are indicated with a bold font. Hypothesis testing of price asymmetry (equality of first and second rows) is based on bootstrapped standard 

errors and p-values are given in brackets. The asterisks *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively.  Shaded cells represent 

the cases where the equality of cumulative price responses to positive and negative soybean price changes are rejected at the 10% or lower level. 
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