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The impact of water access on short-term
migration in rural India*
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Migration is an important risk-reduction strategy for households in developing
countries. In this paper, we examine the impact of rainfall variability and irrigation
availability on short-term migration decisions in India. Our results show that both
rainfall shocks and the availability of irrigation impact the decisions of households to
dispatch migrants. For irrigation, we find that migration responds to costs and that
deep fossil-water wells, which provide a constant source of water, eliminate any benefit
of short-term migration. This suggests that regions with access to more secure and
stable sources of water are less likely to rely on migration as an income-smoothing
mechanism, at least in the short run. Whether this holds in the long run will depend on
the continued stability and availability of irrigation water.
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1. Introduction

Scientists expect that increased climate variability will amplify future stresses
on the hydrological cycle (World Bank 2016). The Indian subcontinent and
its monsoon climate are particularly vulnerable to these changes. In recent
decades, the monsoon circulation has weakened and precipitation has
declined (Singh et al. 2014). In addition, studies have found evidence of
both historical and future increases in rainfall variability (Menon et al. 2013;
Singh et al. 2014). This increased variability represents one of the most
significant sources of risk facing Indian households as it directly impacts
agricultural output and household income. Indeed, evidence from as far back
as the 1800s has demonstrated a significant correlation between rainfall
shortages and harvest failures (Burgess and Donaldson 2010; Roy 2016).
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Thus, rural households have resorted to a variety of strategies to address the
risks associated with increased rainfall variability."

In this paper, we study the relationship between two important adaptation
mechanisms used by rural households in India: irrigation; and short-term
migration. Irrigation is one of the most important adaptation methods used
by farmers in response to risks associated with rainfall variability with
groundwater providing the most reliable source of water (Fishman 2012;
Taraz 2018). In India, approximately 90 million households utilise some form
of groundwater during critical periods of crop growth (Sekhri 2011).
However, as the water levels in many aquifers have dropped, it has become
increasingly difficult to access groundwater without improvements in
irrigation technology. Of the different types of groundwater infrastructure
used, deep tube wells (i.e. fossil-water wells) provide the most reliable source
of water. Thus, uncertain access to groundwater resources based on deep tube
wells has become an increasingly binding constraint on agricultural
livelihoods in many parts of India and in turn has contributed to water
shortages and uncertain incomes in rural areas.

In addition to irrigation, and partially because of it, many households have
resorted to additional coping mechanisms. One of the most important is
short-term migration. While short-term migration plays a role in reducing
income uncertainty on its own, our interest in this paper is in how short-term
migration interacts with the different sources and dimensions of groundwater
irrigation. As far as we are aware, this is the first paper to integrate irrigation
access with short-term migration decisions to demonstrate how multiple
adaptation strategies interact in the context of increasing rainfall variability, a
fundamental environmental change impacting the Indian subcontinent.

To facilitate our analysis, we combine multiple datasets related to
migration, irrigation and groundwater availability. Our main data source
for migration comes from the National Sample Survey Organization’s (NSS)
2007-2008 nationally representative survey, which is considered the most
comprehensive data source on short-term migration in India providing short-
term migration histories for 79,000 rural households. We use the NSS data
because other existing datasets only capture permanent migration, which, for
reasons other than marriage, is rare and very low in India (Munshi and
Rosenzweig 2016).% Short-term migration from Indian villages, on the other
hand, is very common and a large portion of this migration is for short
periods of time.’

! Lanjouw and Shariff (2004) show that rural households develop many methods to reduce
the variance of household income in response to risk, especially risks related to low agricultural
productivity.

2 Munshi and Rosenzweig (2016) develop a theory of caste networks to explain low levels of
permanent migration for males.

3 Short-term migration is well documented in the literature on developing countries (Breman
1996; Banerjee and Duflo 2007; Deshingkar and Farrington 2009; Badiani and Safir 2010;
Keshri and Bhagat 2012; Coffey et al. 2015; Bryan et al. 2014; Morten 2019).
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The results from our empirical model suggest that short-term migration
decisions respond to past rainfall variability and to the agricultural
opportunity costs associated with irrigation. Precisely, our results demon-
strate that access to secure water resources determines the relative benefits of
short-term migration with more reliable sources reducing the need for short-
term migration. Specifically, tube wells, which provide a consistent source of
water, allow individuals to specialise in agricultural-related activities and help
small landholders to profitably farm even in times of water scarcity, which in
turn reduces the benefit of short-term migration. We confirm these results
using plausibility exogenous variation in the geological characteristics of
groundwater aquifers, which have influenced the development of groundwa-
ter infrastructure and related technology.

This paper contributes to a growing body of literature that studies adaptive
development (Agrawal and Lemos 2015; Castells-Quintana et al. 2018; Lemos
et al. 2013) and environmental migration (Millock 2015). While economic
models have been developed to study migration, only recently have
economists started to estimate the interactions between environmental
change and migration. In developing countries, the effects of gradual changes
in the environment have been shown to impact migration through the wage
channel (Marchiori et al. 2012) and the agricultural productivity channel
(Feng et al. 2010; Chen and Mueller 2018). Global studies that focus on
international migration have also found that agricultural incomes play an
important role in influencing the climate-migration relationship in low- and
middle-income countries (Benonnier ez al. 2019; Cattaneo and Peri 2016; Cai
et al. 2016) and that access to irrigation has the potential to modulate this
relationship (Benonnier et al. 2019).

In India, studies that have examined the impacts of environmental change
on mobility have focused on permanent migration based on state-level
migration data from the census data (Dallmann and Millock 2017;
Viswanathan and Kumar 2015) or household data from smaller geographical
areas within a state (Fishman ez a/. 2015). Dallmann and Millock (2017) find
that interstate migration rises marginally in response to an increase in
drought frequency, and Viswanathan and Kumar (2015) find some evidence
for interstate migration in response to weather changes via the channel of
falling wheat and rice yields. In a recent study closest to ours, Fishman et al.
(2015) empirically study permanent male migration in response to ground-
water depletion. Their evidence is based on a targeted geographical area in
two districts in the north-western state of Gujarat that have already
experienced very large declines in groundwater levels.* They find that in
water scare villages, there are higher rates of permanent male migration to
urban areas from households that belong to a relatively richer landholding

4 The study uses deep-lying geological features that are hydrologically responsible for an
increase in the fall of water tables to distinguish between water scarce and water abundant
villages.
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class. This paper complements this literature and studies the influence of
groundwater irrigation on short-term migration, a form of migration that is
economically more important for small and marginal farmers. Moreover, our
analysis spans the entire country thus providing evidence for the relationship
between two key adaptation responses that are valid over a larger geographic
area.

Migration is a complex phenomenon, and having access to secure and
stable irrigation is one of the many factors contributing to short-term rural
migration, especially in a country that is facing rapid economic and social
change. While our work highlights important correlations in this area, we do
not attempt to suggest that agricultural opportunity costs are the only drivers
for short-term migration. However, given the risk posed by groundwater
depletion and rainfall variability to rural India, it is necessary that we
understand the impact of irrigation availability and access on decision-
making. Moreover, by examining whether groundwater irrigation has an
economically significant impact on short-term migration decisions, we can
highlight important interactions between two different adaptation responses.
Such evidence will be critical when designing and evaluating climate change
adaptation policies going forward.

The rest of the paper is organised as follows. Section 2 describes the
structure of the data used in the empirical model; Section 3 presents our
empirical strategy; and Section 4 presents our main results and a series of
robustness checks. Section 5 concludes the paper.

2. Data

2.1 Migration

Our empirical analysis integrates individual-level migration data with district-
level data on weather and irrigation.” In general, there is a paucity of reliable
migration data in India, and this is particularly true of short-term migration
which occupies an important share of migration in the country but lacks
proper documentation in official statistics. To remedy this deficiency, we use
household-level data from the National Sample Survey Organization’s
national survey of migration conducted from July 2007 through June 2008
(the NSS 64" round). The NSSO uses a recall-based interview method,
respondents are asked questions about things that happened to them over the
previous year, and the survey is conducted in four rounds: (1) July 2007—
September 2007; (2) October 2007-December 2007; (3) January 2008—March
2008; and (4) April 2008—June 2008, which we exploit when attaching our
weather variables to the migration data in different years. The 64 round of

5 Districts are administrative units within states and the administrative level at which
detailed weather and irrigation data are available. The average district is about 5000 sq. km
and contains about 2 million people.
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Figure 1 Aquifer Coverage.

Notes: The map on the left shows the share of district area overlaying an unconsolidated
aquifer for each district using 2001 census boundaries. The map on the right classifies the
unconsolidated aquifer into 3 categories of thickness: thickest (>150 m), fairly thick (100-
150 m) and thick (<100 m). State boundaries are in black. Data are from the 1969
Geohydrology Map of India and the 1982 Water Resources Plates in the National Atlas of
India. [Colour figure can be viewed at wileyonlinelibrary.com]

the NSS is one of the richest sources of household migration history, and it is
the first dataset to capture short-term migration for the entire country. Since
we are interested in the impacts of rural water infrastructure on short-term
migration, this paper primarily focuses on rural India where its occurrence is
widespread.

According to the survey, around 12.58 million rural residents are short-
term migrants compared to one million urban residents.® This translates into
short-term migrants making up approximately 1.69 per cent of the rural
population, 1.96 per cent of prime-age adults, and 80 per cent of all rural out-
migrants in India. (Figure 1 in the Appendix S1 shows the spatial distribution
of short-term migrants in India.) The survey also identifies if the movement is
within the same district, to another district in the same state, or to another
state. Most movements are to a different district within the same state or to
other states rather than within the same district. Given that our weather and
irrigation variables are defined at the district level, we define migration as

® Despite the large numbers, it is likely that these N'SS estimates underestimate the flows.
Independent surveys have found higher short-term migration rates than those reported in the
NSS in certain regions (Coffey er al. 2015). The reasons for this discrepancy are the way
households are defined and the time frame used to define a short-term migrant. As per the NSS
survey, a household comprises a group of people who live together and share a common
kitchen, excluding guests, visitors and all those who stay away from the household for more
than 6 months. However, some who stay away for more than 6 months and reside at home for
the rest of the months are still technically part of the household and could potentially be
termed short-term migrants (Chandrasekhar et al. 2014).

© 2020 Australasian Agricultural and Resource Economics Society Inc.
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district-to-district movements to capture the impact of movements away from
source regions.

2.2 Weather data

We use observed temperature and precipitation data which we acquired from
a relatively new gauge-based observationally gridded daily dataset — Asian
Precipitation Highly Resolved Observational Data Integration Towards
Evaluation of Water Resources (APHRODITE) (Yasutomi et al. 2011;
Yatagai et al. 2012) — which was compiled by the Research Institute for
Humanity and Nature (RIHN) and the Meteorological Research Institute of
Japan, Meteorological Agency (MRI/JMA). The precipitation and temper-
ature data in the APHRODITE database are available at a spatial resolution
of 0.25° x 0.25°. We re-scale these gridded weather data to the district level by
taking an area-weighted average of grid values in each district using GIS
maps corresponding to 2001 district boundaries.

2.3 Irrigation data

The NSS 2007-08 survey provides detailed information on migrants but lacks
irrigation and agricultural information for households. The most compre-
hensive data available for irrigation in India are the Minor Irrigation Census
(MIC) conducted by the Ministry of Water Resources on a quinquennial
basis. We make use of these data from the 2006-07 round, which most closely
aligns with the timing of the NSSO migration survey.” The MIC accounts for
the entire population of groundwater structures and surface water schemes in
India. The data include information about area irrigated by different sources
(surface water vs. wells) as well as sown area, cultivated area, average water
table depth and other important features. We match district-level variables
from the MIC to the districts included in the NSSO survey to get irrigated
area by resource type for each district.

2.4 Aquifer coverage

Finally, we digitised multiple historical maps drawn from the Geological
Survey and National Atlas of India. The 1969 Geohydrology Map from the
Geological Survey is used to measure district area shares covering the
unconsolidated aquifer as illustrated in Figure 1. Further, we combine this
with the 1982 Water Resources plates from the National Atlas of India,
which contains hydrological maps of the presence of three categories of
aquifer within these unconsolidated formations: thickest (aquifer greater than
150 metres); fairly thick (aquifer thickness between 100 and 150 metres); and
thick (aquifer thickness up to 100 metres). We code each of these categories as

7 The other three rounds in this series are as follows: 1986-87; 1993-94; and 2000-01.
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a binary variable (Figure 1). The thickness of the aquifer reflects groundwater
abundance and is determined prehistorically. The earliest Indian aquifer
formations date back to 3,500 million years ago, with the youngest aquifers
dating back to the Pleistocene age (Jain et al. 2007). Therefore, it does not
measure the water table or annual water depth within the aquifer but captures
a long-term geological potential (Jain et al. 2007). The purpose of the process
was to create a map of the location of prehistoric water aquifers in India to
use as a source of plausibly exogenous variation in groundwater in a
robustness check model.

3. Empirical model

Migration has long been thought to play a key role in the efficient allocation
of labour. In the seminal Harris and Todaro (1970) model, the benefits of
farming prevent rural migration in the hopes of better urban wages. Although
the Harris and Todaro (1970) model was focused on long-term and
permanent migration, the short-term migrants we study also appear to trade
off an agricultural opportunity cost with the expected benefits of migration.
In our case, seasonal migration offers a diversified stream of income as
explained by the Stark (1978) model of risk sharing. Here, migration splits
households and diversifies income streams across household members so that
livelihoods are divided across seasons within a given year.

In an area where irrigation is important, the opportunity cost of staying
when there is no access to irrigation is presumably high. In other words,
on-farm labour and irrigation can act as complements for mean consump-
tion. With more capital assets in irrigation and a lower percentage of assets
in other forms of capital, such as tractors that are good substitutes for
labour, more labour is required on the farm to help with production
activities and so less labour migrates out. On the other hand, since on-farm
labour and irrigation are both substitutes in reducing income variance, the
propensity to migrate can rise with more irrigation. The following model
tests these hypotheses empirically and finds that the complementarity effect
dominates.

To explore the relationship between short-term migration, rainfall
variability and irrigation, we estimate the following binary choice model:

STMipg = BiRa+ Y BoyWaj+ 61 Za + 62Hpa + 03Ina + 0, + 1y + €na - (1)
J=1

In equation (1), STMj,, is a latent binary variable that takes a value of one if
an individual, 7, living in household / and district d is a short-term migrant.
Recall that the NSSO uses a recall survey approach, so during the time of the
interview individuals are asked if they spent 1 to 6 months away from their
village for work over the previous year. Based on this question, and our own
interpretation of what constitutes migration, we define a person as a short-

© 2020 Australasian Agricultural and Resource Economics Society Inc.
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term migrate if they answered “yes” to the survey question and their
migration destination was outside of their home district.

While the 64" NSS is the best data available data on short-term migration,
it is still limited in its temporal specificity. While we know whether an
individual was a short-term migrant during the year preceding the interview,
we do not know the specific time of departure during that year and we do not
know when the person was interviewed. The best we can say, based on the
survey design, is whether a person was interviewed in one of the four 3-month
subrounds (July—September 2007, October—December 2007, January—March
2008 or April-June 2008) and whether they migrated over the year prior to
being interviewed. We exploit this fact below to associate different weather
and irrigation variables with each person based on which year, 2007 or 2008,
they were interviewed. While imperfect, this allows for identification based on
both spatial and temporal variation.

The variable R, is a district-level measure of annual rainfall variability. To
produce this variable, we compute the absolute deviation of rainfall, in each
year, from the 30-year average, in metres, within each district. In the model,
we use a one-year lag of this variable given the recall nature of the survey
question — respondents are asked to recall what happened over the previous
year which suggests that this recollection, in turn, would have been based on
what happened over the year preceding the decision. We also exploit the
subround nature of the data and use 2006 weather shocks for the 2007
subrounds and the 2007 weather shocks for the 2008 subrounds. Ideally, we
would be able to attach monthly survey responses to monthly weather data,
but given data limitations, this is not possible.

The variable W, is our measure of irrigation coverage where the d
subscript is for the district and the j subscript is for the type of irrigation. We
define irrigated area in one of the three ways. First, we specify the share of
cultivated area in each district that is irrigated regardless of what type of
irrigation is used. Second, we break out the percentage of cultivated area in
each district into the portion irrigated using groundwater and the portion
irrigated using surface water. And finally, we further break out groundwater
irrigated area into the percentage of cultivated area that is irrigated by
different types of well technology: deep tube wells; shallow tube wells; and
dug wells. We chose to focus on the share of cultivated area, as opposed to
the number of wells, to assure that we capture actual utilisation along with
access. A limitation of using our key irrigation variables at the district level is
that they do not capture household heterogeneity within a district, an issue
we address in the robustness checks. At the same time, since our key variables
are measured at the district level, concerns about endogeneity bias are
reduced.

In addition to our variables of interest, we control for a number of
district, household and individual effects. At the district level, Z,; we include
average annual growing degree days (GDD), average monsoon rainfall over

© 2020 Australasian Agricultural and Resource Economics Society Inc.
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the preceding 30-year period, population and GDP growth.® At the
household level, H,, we include an indicator landownership (households
with land at or below 0.4 hectares, which is the median level of land
ownership in the data), the natural log of monthly per capita expenditure
(MPCE) and household size. MPCE is calculated using the total average
value of goods and services a household consumes per month and is often
used as a proxy for household income (National Sample Survey Organi-
zation 2010).° The amount of land owned represents household assets or
wealth which may reduce a housechold’s risk aversion (Kurosaki and
Fafchamps 2002). It also raises the productivity of own farming. Therefore,
individuals that are small landholders are more likely to engage in off-farm
work through temporary migration. At the individual level, 7;,, we include
the level of education of the household members (illiterate, primary school,
middle secondary, or higher secondary and above), their employment status
(if their primary activity at the time of the survey was casual agricultural or
nonagricultural labourer, cultivator, business owner or salaried worker),
whether they considered themselves not in the labour force, social group'
(scheduled caste (SC), scheduled tribe (ST), other backward classes (OBC),
and others), religion (Hindu, Muslim, Christian, and others), sex, age and
marital status.

Recognising that seasonality is critical to short-term migration decisions,
we include quarter fixed effects (17,) to account for the different interview
periods spanning July—September, October—December, January—March and
April-June, which are in turn associated with different timings of departure
from the source district. Since most Indian states have existed for more than
fifty years, we also include state fixed effects, p,, to account for state-level
characteristics and policies that could affect the economic conditions that
govern the patterns of migration.

Given the village-level sampling design of the NSS, standard errors are
clustered at the village level. We also present, as a robustness check, results
with standard errors clustered at the district level. Additionally, survey
weights are incorporated in all models. Summary statistics for all weather,
irrigation and aquifer variables are shown in Table 1; statistics for district,
household and individual control variables are shown in Table S1.

8 To calculate population growth by district between 1991 and 2001 censuses, we use Kumar
and Somanathan (2009) who provide population weights that allow for the construction of
population totals using boundaries of the 1991 or 2001 census as the base as well as “Districts
of India” (www.statoids.com/yin.html) that documents changes in district boundaries since
1982. Annual compounded GDP growth rate between 1999 and 2004 is also constructed.

° As it is difficult to collect reliable income data, the National Sample Survey Organization
collects data on consumption expenditure in its surveys.

10 Traditionally, caste hierarchy was linked to individuals’ occupations: upper castes were
landowners; middle-ranked castes the farmers and artisans; and the lowest-ranked (scheduled)
castes the labourers who performed menial tasks (Anderson, 2011). While this type of
employment rigidity has decreased, the salience of belonging to a caste remains.
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Table 1 Summary statistics

Variables Mean SD  Min. Max. Level of Data source
variable

Migration

Short-term migrants 196 1385 0 1 Individual NSS 2007-08

Weather

Monsoon precip (30-year 644 0.66 0.22 7.72  District APHRODITE
mean in metres)

GDD (30-year mean in 1.04 054 0.14 5.09 District APHRODITE
1000s of degree days)

Rainfall shock (deviation —0.01 0.22 —1.01 1.23  District APHRODITE
from 30-year mean)

Rainfall shock (z-score) —-0.11 1.14 -3.17 3.16  District APHRODITE

Irrigation
Irrigated area/Cultivated 3577 28.12 0 100 District ~ Minor Irrigation
area (%) Census 200607
Surface irrigated area/ 6.25 10.75 0 100 District ~ Minor Irrigation
Cultivated area (%) Census 200607
Well irrigated area/ 29.95 2936 0 100 District ~ Minor Irrigation
Cultivated area (%) Census 200607
Deep tube well irrigated 495 10.04 0 100 District ~ Minor Irrigation
area/Cultivated area (%) Census 200607
Shallow tube wellirrigated  19.66 28.31 0 100 District ~ Minor Irrigation
area/Cultivated area (%) Census 2006-07
Dug well irrigated area/ 623 11.84 0 100 District ~ Minor Irrigation
Cultivated area (%) Census 2006-07
Aquifer
Unconsolitdated 46.39 4324 0 100 District  Geological Survey
aquifer (%)
Thickest aquifer 36.05 48.02 0 100 District  National Atlas of
(> 150 metres) India
Fairly thick aquifer 12.84 3346 0 100 District ~ National Atlas of
(100-150 metres) India
Thick aquifer 2424 4285 0 100 District  National Atlas of
(<100 metres) India

Note: This table presents summary statistics for our outcome variable (migration) and our weather,
irrigation and aquifer variables. Summary statistics for the individual and household variables included in
all models are shown in Table S1 in the Appendix S1. All statistics are generated using NSS sample
weights.

For our primary analysis, we employ a linear probability model. Linear
models are preferable since nonlinear approaches require unrealistically
strong model assumptions, especially on the behaviour of the error term in
the stipulated underlying structural model (Angrist 2001; Wooldridge
2002)."" Several papers have demonstrated the advantages of a linear
probability model over nonlinear models (Mullahy 1990; Klaassen and
Magnus 2001; Horrace and Oaxaca 2006), especially if the main purpose is to
estimate the marginal response, in terms of a percentage point change in

' {inear probably models are also advantageous as they allow for easy inclusion of fine-
scaled fixed effects and the identification of marginal effects, which is ultimately the parameter
of interest in most economic settings.
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average probability, for small change in some independent variable. We
present estimates from the linear probably model in the main paper and those
from a nonlinear probit as a robustness check.

4. Results

4.1 Main Results

We begin with the main results in Table 2 on the impact of rainfall variability
and irrigation availability on short-term migration. The column headings
denote the three methods used to specify irrigation coverage. All results are
produced using NSS sample weights with the standard errors clustered at the
village level. Robustness results with standard errors clustered at the district
level are shown in Table S2 of the Appendix S1.

Table 2 Short-term migration response to rainfall and irrigation

(1 2 3)
GDD (30-year mean in 1000s of degree days) 0.0038%* 0.0034* 0.0039%*
(0.002) (0.002) (0.002)
Monsoon precip (30-year mean in metres) —0.0008 —0.0015 —0.0013
(0.001) (0.001) (0.001)
Rainfall shock (Deviation from 30-year mean) —0.0162***  —0.0164*** —0.0168***
(0.005) (0.005) (0.005)
Irrigated area/Cultivated area (%) —0.0001%*
(0.000)
Well irrigated area/Cultivated area (%) —0.0002°%**
(0.000)
Surface irrigated area/Cultivated area (%) 0.0002* 0.0002*
(0.000) (0.000)
Deep tube well irrigated area/Cultivated area (%) —0.0003%x**
(0.000)
Shallow tube well irrigated area/Cultivated area (%) —0.0001%**
(0.000)
Dug well irrigated area/Cultivated area (%) —0.0000
(0.000)
Observations 213379 213379 213197
R-sq 0.0301 0.0306 0.0307

Note: *Significant at the 10% level; ** significant at the 5% level; *** significant at 1% level.

This table presents our main results. The short-term migration sample is composed of all individuals aged
15 to 65 interviewed from July 2007 through June 2008. The dependent variable is a binary indicator equal
to 1 if an individual has spent one to six months away from home during the last year. All regressions
include subround and state fixed effects and district, household and individual controls. The rainfall shock
used in these models is measured at the district level and represents the deviation in average annual rainfall
from the 30-year within district mean in the year before the sample was collected. For rounds 1 and 2 of the
NSS, this is the deviation in rainfall for the year 2006, and for rounds 3 and 4 of the NSS, this is the
deviation in the year 2007. The columns represent our three methods for defining district-level irrigation.
Standard errors are clustered at the village level. All models use weighted observations-based NSS
sampling weights.
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Beginning with precipitation, we see that positive rainfall shocks are
associated with reduced short-term migration. From column (3), we observe
that a 1-cm increase in rainfall is associated with a —0.000168 (—0.0168 per
cent) percentage point drop in the probability of migration. Given the
baseline migration probably of 1.96 per cent in Table 1, this represents a 0.82
per cent change in the probability of short-term migration.'? For a 1-metre
rainfall shock, we get a 0.0168 (1.68 per cent) percentage point reduction in
the probability of migration, which represents an 82 per cent drop over
baseline migration. While it is unlikely that the change in probabilities would
be linear between a 1-cm and 1-metre shock, these values at least give an idea
of the range of changes that may occur because of average shocks and
extreme shocks.

Turning to irrigation, in column (1) we see that irrigated area has a
negative impact on the likelihood that a household dispatches a migrant.
While this may be true, it is more likely that this outcome is driven by our
aggregation of the different irrigation technologies. Recall that for the model
in column (1), we defined irrigation as the percentage of cultivated area that is
irrigated, irrespective of the source. Thus, we are not able to differentiate the
effects of different irrigation types — surface vs. groundwater and deep vs.
shallow tube wells.

In column (2), we divide irrigated area into the share from well water and
the share from surface water. From these results, we see that well-water
irrigation produces a negative and significant effect and surface water a
positive and significant effect. Specifically, we find that one percentage point
increase in the area irrigated with wells reduces the probability of migration
by 0.02 per cent, and one percentage point increase in the area irrigated with
surface water increases the probability of migration by 0.02 per cent. This
reduction in short-term migration, for a percentage point increase in well
area, represents around a 1 per cent change, relative to baseline, for short-
term migration, which is like the reduction produced for 1-cm increase in
rainfall.

These results, for the short-term migration response to a change in well-
irrigated area, are intuitive given that well water, especially water from deep
tube wells, reduces the uncertainty associated with water availability in
farming and thus reduces the need to send out short-term migrants to smooth
income. Groundwater irrigation is often colloquially called “irrigation on
demand” as it enhances average farm productivity and stabilises output
during periods of low rainfall removing the need to engage in income
diversification strategies through temporary migration. Several studies have

12 To get our estimate for a 1-cm shock to rainfall, we multiplied the parameter estimate of
—0.0168 from column (3) by 0.01 to convert the rainfall shock variable from metres to
centimetres. The choice of one centimetre was based on the average shock size of —0.01 in
Table 1.
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Table 3 Short-term migration response to interaction between rainfall and irrigation

GDD (30-year mean in 1000s of degree days) 0.0033*
(0.002)
Monsoon precip (30-year mean in metres) —0.0019
(0.001)
Rainfall shock (deviation from 30-year mean) —0.0144%*
(0.007)
Well irrigated area/Cultivated area (%) —0.0002%**
(0.000)
Well irrigated area-x-Rainfall shock 0.0001
(0.000)
Surface irrigated area/Cultivated area (%) 0.0002%**
(0.000)
Surface irrigated area-x-Rainfall shock —0.0008*
(0.001)
Constant 0.0725%**
(0.026)
Observations 213379
R-sq 0.0355

Note: *Significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level.

This table presents results with an interaction between irrigation technology and rainfall. The results are
based on column (2) in Table 2 with well and surface water irrigation interacted with the rainfall shock.
NSS sample weights are used, and the standard errors are clustered at the household level.

found that it accrues larger benefits to rural economies than surface irrigation
(Sekhri 2013; Sekhri 2014).

In column (3) of Table 2, we test this hypothesis — that different well
technologies produce different behavioural responses — by breaking out well
irrigation into the share performed with deep tube wells, shallow tube wells and
dug wells. In this model, we find that all well coefficients are negative or
insignificant and that the surface water coeflicient is positive and significant. In
addition, we see that the coefficient on deep tube-well irrigation is largest in
absolute value and larger than the coefficient for the shallow tube wells. As
stated above, this result reflects fundamental differences between the three
technologies. Dug wells, which remain a common source of irrigation in India,
are the shallowest wells and rely on use of suction pumps that run on diesel or
electricity (Dubash 2002; Jain et al. 2007). As water levels fall, however, it
becomes increasingly difficult to use dug wells as suction limits the height from
which water can be drawn — typically 8—10 metres (Dubash 2002; Sekhri 2011).
Conversely, tube wells and submersible force pumps can lift water from greater
depths providing 3—15 times as much water as dug wells (Jain et al. 2007). Thus,
tube wells allow groundwater to be pumped from even greater depths compared
to dug wells and can provide longer-term access to groundwater. For instance,
shallow tube wells provide approximately 2-3 times the water available in
comparison to dug wells, while deep tube wells can provide 15 times the water
and the highest level of certainty (Jain ez al. 2007).

Overall, the results in Table 2 suggest that short-term migration decisions
respond to agricultural opportunity costs, especially those associated with
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rainfall variability and different types of irrigation technology. To provide
some additional support for this conclusion, in Table 3 we re-estimate the
model in column (2) of Table 2 with interaction terms added between the
rainfall shock and the ground and surface water variables. The hypothesis,
based on the discussion above, is that increased rainfall (positive rainfall
shocks) dampens the positive migration effect associated with increased
surface water irrigation. Specifically, rainfall increases make surface water
irrigation more reliable and thus reduce the need to migrate to smooth
income. The impact for groundwater is ambiguous but given that ground-
water relies less on rainfall it is likely that it will not my have an interactive
effect.

The results in Table 3 support this hypothesis. As before, the direct effect of
a positive rainfall shock is to reduce the propensity to migrate, and the direct
effect of ground and surface water is to reduce and increase short-term
migration, respectively. However, the interactive effect between surface water
irrigation and rainfall is negative. This negative coeflicient suggests that while
surface irrigation increases the overall need to migrate to smooth income, a
positive rainfall shock, which increases surface water availability, dampens
this need as it reduces the risk associated with not having enough water. The
interaction effect between groundwater and rainfall is positive, but statisti-
cally insignificant.

4.2 Robustness checks

In this section, we present results from a series of models designed to assess
the robustness of the findings in the previous section. While our main results
make sense and align closely with the behavioural response that we would
expect given a change in rainfall variability and/or irrigation availability, the
outcomes cannot be taken as causal given our lack of a clear identification
strategy. To address this deficiency, we provide additional support by testing
some of the key assumptions of the model. All models are presented with
standard errors clustered at the village level and using the NSS sampling
weights unless stated otherwise.

We begin by assessing whether the choice of the linear probability model,
and its linear form, is impacting our results. In Table 4, we present results
(marginal effects) from a nonlinear probit model using the same data and
variables as Table 2. The results are average marginal effects with standard
errors calculated using the Delta method. While the results in Table 4 change
some, compared to Table 2, they are qualitatively similar suggesting that the
linearity assumption in the LPM is not impacting our findings, at least not in
terms of the marginal effects.

In our second model, we apply an alternative method in specifying our
rainfall shock. In Table 2, we used an absolute difference approach. Here, we
calculate the z-score for each rainfall observation. Specifically, we use the
same 30 years of rainfall data, at the district level, as we did in Table 2, but
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Table 4 Short-term migration response to rainfall and irrigation (binary probit model)

(1 2 3)
GDD (30-year mean in 1000s of degree days) 0.0068** 0.0061%* 0.0071**
(0.003) (0.003) (0.003)
Monsoon precip (30-year mean in metres) —0.0024 —0.0035%* —0.0033*
(0.002) (0.002) (0.002)
Rainfall shock (Deviation from 30-year mean) —0.0178***  —0.0177*** —0.0188***
(0.004) (0.004) (0.004)
Irrigated area/Cultivated area (%) —0.0001
(0.000)
Well irrigated area/Cultivated area (%) —0.0002°%**
(0.000)
Surface irrigated area/Cultivated area (%) 0.0002%** 0.0002**
(0.000) (0.000)
Deep tube well irrigated area/Cultivated area (%) —0.0004%**
(0.000)
Shallow tube well irrigated area/Cultivated area (%) —0.0001%**
(0.000)
Observations 213246 213246 213064
Pseudo R-sq 0.1884 0.1904 0.1913

Note: *Significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level.

This table presents results for the same models as Table 2 estimated using a binary probit model. The
results are average marginal effects with the standard errors clustered at the village level. Standard errors
for the marginal effects are generated using the Delta method. All models use weighted observations-based
NSS sampling weights.

calculate the z-score for each observation in 2006 and 2007 based on these
data. The results from this process are shown in Table 5; results clustered at
the district level are given in Table S3 of the Appendix SI.

The results in Table 5 are very similar to those in Table 2. The rainfall
coefficients, while different as a result of using a different variable, have the
same sign and significance as those in Table 2. In addition, the results for
irrigation are identical to Table 2. Specifically, we find, in column (3), that a
one standard deviation increase in rainfall leads to a 0.003 (0.3 per cent)
percentage point drop in the probably of migration. To compare this result to
the result in column (3) of Table 2, we note that a one standard deviation
increase in the rainfall is equal to 0.22 metres of rain. If we multiple the value
from Table 2 (0.0161) by 0.22, we get 0.0035 (0.35 per cent), which is very
similar to the results in column (3) of Table 5. Thus, based on these results it
does not appear that the way we are specifying our rainfall shock in Table 2 is
significantly impacting our findings.

For our third robustness check, we assess the extent to which using district-
level weather and irrigation data with individual migration information may
impact our conclusions. Since our variables of interest, irrigation and rainfall,
are measured at the district level, it is possible that the actual weather shocks
and irrigation coverage faced by individuals, within district, may differ from
the district-level proxies we include in the model; that is, heterogeneity may
exist in how individuals experience irrigation and weather outcomes within

© 2020 Australasian Agricultural and Resource Economics Society Inc.



520 E.D. Zaveri et al.

Table 5 Short-term migration response to rainfall and irrigation (z-score for rainfall shocks)

€] (2 (3)
GDD (30-year mean in 1000s of degree days) 0.0034* 0.0030 0.0035*
(0.002) (0.002) (0.002)
Monsoon precip (30-year mean in metres) —0.0011 —0.0018 —0.0016
(0.001) (0.001) (0.001)
Rainfall shock (z-score) —0.0027***  —0.0028***  —0.0030***
(0.001) (0.001) (0.001)
Irrigated area/Cultivated area (%) —0.0001
(0.000)
Well irrigated area/Cultivated area (%) —0.0002%**
(0.000)
Surface irrigated area/Cultivated area (%) 0.0002* 0.0002*
(0.000) (0.000)
Deep tube well irrigated area/Cultivated area (%) —0.0003%**
(0.000)
Shallow tube well irrigated area/Cultivated area (%) —0.0001%*%*
(0.000)
Dug well irrigated area/Cultivated area (%) 0.0000
(0.000)
Constant 0.0726*%**  0.0761***  (0.0700%**
(0.026) (0.026) (0.026)
Observations 213379 213379 213197
R-sq 0.0300 0.0304 0.0306

Note: *Significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level.

The models in this table are the same as in Table 2, but with the rainfall shock variable replaced with a z-
score variable representing the within district standard deviation of rainfall from the 30-year within district
mean. The within district z-scores used are based on the year before the sample was collected. For rounds 1
and 2 of the NSS, this is the deviation in rainfall for year 2006, and for the rounds 3 and 4 of the NSS, this
is the deviation in year 2007. Standard errors are clustered at the village level. All models use weighted
observations-based NSS sampling weights.

district. To the extent that this is occurring, our estimates will be biased and
inconsistent. To address this, we estimate two different models. First, we
estimate a district-level model where the outcome and the regressors are on
the same spatial scale. Then, we estimate an individual-level model where we
parametrically control for district-level heterogeneity. Each model represents
a different way of accounting for heterogeneity bias.

For the first approach, we compress all individual data to the district level
using NSS sample weights and estimate a fractional probit model. For this
model, the outcome variable is measured as the share of individuals aged 15
to 65 within in each district level that are listed as short-term migrants.'> As
in Table 2, we include rainfall shocks and estimate three separate models for
each of our irrigation measures. Given the nonlinear nature of the fractional
probit model, we present marginal effects for each of the variables.

'3 We also estimated a negative binomial model where the outcome was the count of
migrants in each district, and the right-hand side of the model included an exposure term to
control for the number of possible migrants in each district. The marginal effects from that
model are very similar to those in the fractional probit model.
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Table 6 District-level migration response to rainfall and irrigation (fractional probit model)

(1 2 3)
GDD (30-year mean in 1000s of degree days) 0.0037%* 0.0031* 0.0035*
(0.002) (0.002) (0.002)
Monsoon precip (30-year mean in metres) 0.0015 0.0012 0.0012
(0.002) (0.002) (0.002)
Rainfall shock (Deviation from 30-year mean) —0.0110***  —0.0105%** —0.0109%**
(0.004) (0.004) (0.004)
Irrigated area/Cultivated area (%) —0.0001%**
(0.000)
Well irrigated area/Cultivated area (%) —0.0002°%**
(0.000)
Surface irrigated area/Cultivated area (%) 0.0002*** (0.0002**
(0.000) (0.000)
Deep tube well irrigated area/Cultivated area (%) —0.0003%**
(0.000)
Shallow tube well irrigated area/Cultivated area (%) —0.0001%**
(0.000)
Dug well irrigated area/Cultivated area (%) —0.0000
(0.000)
Observations 2047 2047 2043
Pseudo R-sq 0.0723 0.0743 0.0746

Note: *Significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level.

The results in this table are marginal effects from a fractional probit model estimated on short-term
migration data aggregated to district level. The outcome in each model is the share of individuals in each
district during each of the four subrounds of the NSS that were listed as short-term migrants. All
individual and household variables are aggregated up to the district level using sampling weights from the
NSS. All weather and irrigation variables are measured at the district level. Each model includes state fixed
effects and the natural log of population in each district. Standard errors are robust.

The results from the fractional probit models are shown in Table 6. From
these models, we see that the results, compared to Table 2, are almost
identical for the irrigation variables and are very similar for the weather
shocks. For example, from column (3) we find that a 1-cm increase in rainfall
leads to a 0.000109 (0.0109 per cent) percentage point drop in the share of
people migrating. This drop represents a 0.56 per cent change away from the
baseline for the outcome in the fractional probit model and is very similar to
the 0.86 per cent drop from column (3) in Table 2.

For the second heterogeneity model, we estimate a random-effects panel
data model with random terms specified at the district level. This model
allows us to explicitly test if intradistrict heterogeneity is impacting our
results.'* The results are shown in Table 7. Comparing these results with
those in Tables 2, we find qualitatively similar outcomes. The coefficients for
irrigation are almost identical, and the coefficients for the weather shocks,
while smaller, are statistically significant and generally agree with the columns

14 We also estimated a random-effects model with random effects specified at the household
level (Table 4 of the Appendix). This model controls for intrahousehold heterogeneity in how
individuals experience weather shocks and irrigation technology. The results are similar to the
intradistrict model.
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Table 7 Short-term migration response to rainfall and irrigation (random-effect model)

) (©)) (3)
GDD (30-year mean in 1000s of degree days) 0.0035 0.0031 0.0035
(0.002) (0.002) (0.002)
Monsoon precip (30-year mean in metres) —0.0013 —0.0020 —0.0018
(0.002) (0.002) (0.002)
Rainfall shock (Deviation from 30-year mean) —0.0061***  —0.0061*** —0.0062%**
(0.002) (0.002) (0.002)
Irrigated area/Cultivated area (%) —0.0001%**
(0.000)
Well irrigated area/Cultivated area (%) —0.0002%**
(0.000)
Surface irrigated area/Cultivated area (%) 0.00027%* 0.0002%**
(0.000) (0.000)
Deep tube well irrigated area/Cultivated area (%) —0.0003%**
(0.000)
Shallow tube well irrigated area/Cultivated area (%) —0.0001***
(0.000)
Dug well irrigated area/Cultivated area (%) —0.0000
(0.000)
Observations 213379 213379 213379
R-sq-within 0.0231 0.0231 0.0232
R-sq-between 0.146 0.151 0.151
R-sq-overall 0.0297 0.0302 0.0303

Note: *Significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level.

This table presents results from a random-effects panel data model with random effects specified at the
district level. All regressions include subround and state fixed effects and district, household and individual
controls. The rainfall shock used in these models is measured at the district level and represents the
deviation in average annual rainfall from the 30-year within district mean in the year before the sample was
collected. For rounds 1 and 2 of the NSS, this is the deviation in rainfall for year 2006, and for rounds 3
and 4 of the NSS, this is the deviation in year 2007. Standard errors are clustered at the village level. All
models use weighted observations-based NSS sampling weights.

in Table 2. Based on the results in Tables 6 and 7, it does not appear that the
aggregation of our whether and irrigation data is meaningfully impacting our
findings.

For our final robustness check, we address the concern that our irrigation
variables may be biased by the endogeneity of historical irrigation
infrastructure investment — that is, we attempt to test to what extent the
variation in the irrigation infrastructure that we exploit in our model may be
endogenous to migration decisions or determined by factors that jointly affect
irrigation investment and short-term migration our results will be biased. To
alleviate this concern, we exploit prehistoric spatial variation in the thickness
of underground aquifers using georeferenced hydrological maps.

Prior work has highlighted that regions with access to greater groundwater
endowments, as proxied for by the thickness of aquifers, saw large increases
in cultivated area under high-yield varieties during the Green Revolution
(Rud 2012; Sekhri 2014). In our context, we are interested in whether the
properties of the aquifers in each district have led to increased usage tube and
dug-well technology. To confirm this, we collect district-level data on
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irrigation shares from the national agricultural censuses for the years 1970-
2005 and relate the change in the usage of different technologies of the
properties of the aquifers in each district using the following model:

Y = oo + oy Thickesty + oy Fairly — Thicky + 2,
+ Z oy(Thickesty x T,) + Z o (Fairly — Thicky* T;) + €4 (2)
! !

In this model, the outcome variable, Y, represents either tube-well or dug-
well irrigated area in each district, in each year, Thickest is an indicator that
equals one if a district has access to the thickest aquifers, and Fairly Thick is
an indicator that equals one if a district has access to fairly thick aquifers with
the excluded group the thick aquifer category. 4, are year fixed effects and T,
are year dummies interacted with aquifer thickness. The standard errors are
clustered at the district level. The coefficients of interest are o, and oy, where
positive and significant values indicate that districts with greater access to an
aquifer category irrigate more via tube wells or dug wells. Increasing values of
o1, and on, imply that over time the factors responsible for successful high-
yield crop adoption also triggered a divergence in the type of irrigation used.

To demonstrate that aquifer properties do indeed impact irrigation
outcomes, we estimate the model in Equation (2) for both tube and dug
wells and plot the yearly coefficients for the districts with the thickest
aquifers. The results from this process are shown in Figures 2 and 3. From
these figures, we see districts with the greatest groundwater endowments saw
the highest levels of tube-well irrigation (Figure 2), but a fall in dug-well
irrigation (Figure 3). These results demonstrate that the variation in
groundwater resources clearly influenced the subsequent development of
irrigation technologies in India and thus serve as a source of exogenous
variation for tube-well and dug-well irrigation investment.

Having validated the use of aquifer properties as a proxy for the
development of irrigation infrastructure, we re-estimate the model in
Equation (1) replacing our irrigation variables (columns 1-3 in Table 2) with
one of two methods for accounting for the type of aquifer underlying each
district. For the first method, we use a simple measure of the share of land
area in each district covered by an unconsolidated aquifer. For the second
method, we break out the unconsolidated shares into the percentages covered
by different types (thicknesses) of aquifers.

The results from our aquifers models are shown in Table 8. Column (1)
uses just the unconsolidated vs. consolidated designation, and column (2)
breaks aquifers into different thicknesses. All models use NSS sample weights
with standard errors clustered at the household level. The results in Table 8
look very similar to those in Table 2. For the rain-shock variables, the
coefficients are almost identical. For the aquifer variables, while their
coefficients are different from the coefficients on the irrigation variables in
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Figure 2 Differential trends in tube-well irrigated area by aquifer capacity.

Notes: Figure plots coefficients from equation (2) that capture year-varying effects of
groundwater coverage related to the thickest aquifer on tube-well irrigated area. Area is
measured in 1000 hectares. Regressions are weighted by district area. The dashed lines
represent 95% confidence intervals. Data are from Directorate of Economics and Statistics,
Ministry of Agriculture, Geological Survey and National Atlas of India.
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Figure 3 Differential trends in dug-well irrigated area by aquifer capacity.

Notes: Figure plots coefficients from equation (2) that capture year-varying effects of
groundwater coverage related to the thickest aquifer on dug-well irrigated area. Area is
measured in 1000 hectares. Regressions are weighted by district area. The dashed lines
represent 95% confidence intervals. Data are from Directorate of Economics and Statistics,
Ministry of Agriculture, Geological Survey and National Atlas of India.

Table 2, the pattern is the same. The thickest aquifers have the highest
coeflicient values, in absolute terms, which is what we would expect given that
these aquifers most likely proxy for where deep tube wells are drilled. Thus, as
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Table 8 Short-term migration in response to aquifer properties

(M 2
GDD (30-year mean in 1000s of degree days) 0.00627%** 0.0058***
(0.002) (0.002)
Monsoon precip (30-year mean in metres) 0.0005 —0.0000
(0.001) (0.001)
Rainfall Shock (deviation from 30-year mean) —0.0164%** —0.0146%**
(0.005) (0.005)
Unconsolitdated aquifer (%) —0.0002%**
(0.000)
Thickest aquifer (>150 metres) —0.024 3%
(0.007)
Fairly thick aquifer (100-150 metres) —0.0154**
(0.008)
Thick aquifer (<100 metres) —0.0093
(0.006)
Constant 0.0541** 0.0576**
(0.026) (0.026)
Observations 234057 234057
R-sq 0.0307 0.0309

Note: *Significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level.

The results in this table are the same as Table 2, but with the irrigation variables replaced with variables
describing the share of different types of aquifers underlying each district. Model (1) uses a variable for the
share of each district covered by an unconsolidated aquifer. Model (2) uses three variables describing the
share of different types of aquifers, by depth, covering each district where the left-out share is for the
shallowest aquifer. The depths are described in the table. Standard errors are clustered at the village level.
All models use weighted observations-based NSS sampling weights.

we saw in Table 2, access to reliable sources of water reduces the likelihood of
a short-term migration falls in districts that overlay the thickest aquifer, and
where area covering the unconsolidated aquifer is the greatest, mirroring the
results for tube-well irrigation.

4.3 Heterogeneity Analysis

The previous two sections presented our main findings and the robustness of
those results for the full sample. In this section, we expand on our main
results (Table 2) and demonstrate how they vary across individuals based on
the land ownership and occupation. Using the same sample and model as in
column (3) of Table 2, we divide the sample into two groups based on the
landownership status of the household. Specifically, we use a cut-off of 0.4
hectares, which represents the median level of landownership in the full
sample, and define those households at or below this value as small
landowners (SLH) and those above it as large landowners (LLH).'> Then,
using those two subsamples, we create an indicator for whether a person is

!5 The data do not actually show specific values for land ownership but have ten different
categories. We use the categories to roughly approximate the median ownership rate in the
sample.
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classified as one of five types of workers: casual nonagricultural labourer
(nonagcausal); salaried worker; business worker; casual agricultural worker
(agcausal); or cultivator — and interact it with our weather shock variable.
The purchase of this exercise is to (1) look at how rainfall shocks impact
households based on landownership and (2) determine whether individuals
involved in agriculture are differentially impacted by rainfall shocks relative
those that are not.

The results from our heterogeneity models are shown in Table 9. Column (1)
shows SLH results and column (2) shows LLH results. From these results, we
first observe that SLHs are more impacted by rainfall shocks. Specifically, a 1-
cm shock to rainfall leads to a 0.017 per cent decrease in short-term migration
for SLHs vs. a 0.014 per cent drop for LLHs. This result likely stems from the
fact the land ownership signifies greater wealth and thus results in a greater
ability to hedge income risks. Turning to the interactive effect of rainfall shocks
with different occupations, we see that agcausal with and without land and
land-owning business owners have an additional effect, in terms of short-term
migration, relative to the base group nonagcasual. For agcasual in SLHs, the
additional effect on short-term migration, of a I-cm increase in rainfall, is 0.015
per cent, and for agcasual in LLH, the additional effect is 0.064 per cent. Both
results suggest, as expected, that for those households engaged casual
agriculture, the impact of a positive rainfall shock is more negative in terms
of short-term migration — that is, under conditions of greater rainfall it is less
necessary to immigrate short term to smooth income. The fact that the effect is
larger for LLHs also seems plausible given their direct access to land to farm
that becomes relatively more valuable in times of excess rainfall. The
explanation for the additional effect for land-owning businesspeople is less
clear, but it is possible that there is an inactive effect between increased rainfall,
better agriculture outcomes and business success.

The results in Table 9, while still not causal, do provide a more nuanced
picture of how rainfall shocks impact short-term migration and indicate that
is agricultural households that are most impacted by these shocks. Specif-
ically, they show that while rainfall shocks impact the tendency for all rural
households to migrate to some extent, the impact is greater for households
that depend on casual agriculture as a source of income and greater still for
households with more land farm.

5. Discussion and conclusions

In this paper, we highlight the relationship between two distinct adaptation
responses: groundwater irrigation; and short-term migration; and show that
groundwater availability and access do have an economically significant
impact on rural, short-term labour mobility.

We find that access to tube-well irrigation allows individuals to specialise in
agricultural-related activities thereby reducing the likelihood of short-term
migration. Irrigation can, therefore, serve as an alternative to short-term
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Table 9 Heterogeneity analysis

) 2
GDD 0.0053%** 0.0023
(0.002) (0.003)
Monsoon precip —0.0022 0.0006
(0.001) (0.002)
Rainfall shock —0.0173%** —0.0135%*
(0.006) (0.006)
Rainfall shock-x-salary 0.0013 —0.0197
(0.007) (0.015)
Rainfall shock-x-business 0.0048 —0.0286*
(0.008) (0.017)
Rainfall shock-x-Ag casual —0.0152* —0.0643*
(0.009) (0.035)
Rainfall shock-x-Ag cultivator 0.0109 0.0031
(0.008) (0.006)
Salary 0.0025 0.0239%#*
(0.005) (0.005)
Business —0.0027 0.0063**
(0.003) (0.003)
Ag casual 0.0147%%%* 0.0405%**
(0.003) (0.009)
Ag cultivator 0.0112%%%* 0.0059%**
(0.003) (0.001)
Surface irrigated area (%) 0.0001 0.0004*
(0.000) (0.000)
Deep tube well irrigated area (%) —0.0002%** —0.0004%**
(0.000) (0.000)
Shallow tube well irrigated area (%) —0.0001%** —0.0001%*%*
(0.000) (0.000)
Dug well irrigated area (%) 0.0000 —0.0000
(0.000) (0.000)
Constant 0.0420 0.0877***
(0.031) (0.032)
Observations 124242 88955
R-sq 0.0297 0.0268

Note: *Significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level.

This table presents results from a heterogeneity analysis of the impact of rainfall shocks on different types of
people based on employment and land ownership. The results are based on the same model used in column (3)
of Table 2. We first divide the sample into two groups based on land the landownership status of the household
where the cut-off is the median amount of land owned by each household (0.4 hectares). Second, we create an
indicator for whether a person is classified as one of five types of workers — nonagcasual, salary, business,
agcasual or cultivator. We interact this variable with our weather shock variable. Column (1) shows results
non landowners, and column (2) shows results for landowners. All regressions include subround and state
fixed effects and district, household and individual controls. Standard errors are clustered at the village level.
All models use weighted observations-based NSS sampling weights.

migration as a risk mitigation strategy so long as it is available and utilised. A
simple quantification exercise suggests that at least 10 per cent (or
approximately 1.2 million people) of the baseline number of short-term
migrants in rural areas would not move temporarily if groundwater irrigation
coverage increased by 10 percentage points.

From a policy perceptive, shutting down access to groundwater in response
to growing depletion will have significant effects on temporary labour
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mobility and likely household welfare, especially if the reduction in
availability happens very quickly. On the flip side, however, if water is not
managed properly it may be that in the long run its availability will also
disappear quickly. In the short run, low productivity or negative rural sector
shocks driven by less groundwater irrigation or rainfall shocks can spill over
to the rest of the economy. In the long run (for any given technology
frontier), productivity growth in agriculture will be limited by fixed factors of
production (e.g., through the depletion of groundwater). In such cases where
the fixed factor of production such as water limits production, preference
should be given to speeding the transition out of agriculture to the
nonagricultural sector. Thus, any policy must balance these trade-offs. This
would suggest that the optimal strategy ought to be one of: (i) improving
farm productivity and value added in the short run since it is often the case
that farms provide livelihoods where there is no social security; (ii) while
promoting resilience and sustainability in the long run where fixed factor
supplies of a resource (water) could limit growth; and (iii) technology change
to ease the binding constraint.

In India, although the census and national surveys have focused primarily
on long-term migration, short-term migration is widely practiced and
comprises more than five times the proportion of households that migrate
for longer durations (Colmer 2015). This paper shows that irrigation plays a
critical role as a measure of the household’s opportunity cost of sending a
short-term migrant. Since these types of migrants are negatively selected on
education and measures of economic status, the types of jobs available to
them in receiving areas are limited. Multiple studies have shown that many of
the seasonal migrants get absorbed in the construction industry (Chan-
drasekhar et al., 2014). The conditions of workers in this industry are meant
to be regulating by a variety of acts'® (Chandrasekhar er al., 2014), but these
are not streamlined across states and the workers often do not accrue the
benefits promised by these regulations. India, as of now, does not have in
place a comprehensive policy framework to tackle to the flow of short-term
migrants (Chandrasekhar et al., 2017).

There is an important caveat to the interpretation of our results. Due to data
limitations and the cross-sectional nature of our analysis, we only observe
short-term migration over one survey round. It is possible that over time new
forms of migration might emerge. For instance, if irrigation enables farm
households to improve their agricultural productivity and household income
and break the income constraint, then it could encourage male members to
switch from temporary migration to more permanent remittance-based
migration over time. Irrigation access, therefore, might reduce certain types
of migration, but over time, also encourage other types of migration. Despite
this caveat, we believe the paper makes an important contribution towards

16 Building and Other Construction Workers (Regulation of Employment and Conditions of
Services) Act, 1996 and Building and Other Construction Workers Welfare Cess Act, 1996.
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understanding the interaction between different adaptation responses, a critical
exercise when evaluating climate change adaptation policies going forward.

The data used in the paper offer only a snapshot of the seasonal migration
phenomenon in the country. More data are needed to understand the
consequences of such type of migration on income and if it can offset the
income effects of losing irrigation access. More work is also needed to
understand the types of adjustment costs and spatial frictions involved in the
migration process, and the resulting reallocation of labour across space and
economic sectors that may arise. For instance, the economic consequences of
a local negative productivity shock such as a lack of access to irrigation water
can be even greater if people are unable to move away. This has important
implications for broader issues of economic development and structural
transformation. Researchers have argued that urban economic growth has
brought significant gains to the rural as well as urban poor (Datt and
Ravallion 2009). Short-term migration could be one channel by which some
of the benefits of urban growth could be brought to rural villages before
villages completely transition out of agriculture (Coffey et al. 2015). Without
knowing the exact destination of short-term migration flows, it is difficult to
analyse the contribution of migration flows to the urbanisation process. At
the same time, patterns of vulnerability can persist in destination regions
continuing exposure to environmental risks (Singh and Basu 2019). Future
research could shed light on these long-term dynamics and the consequent
spill-overs on human capital, and welfare.

Data availability statement

The data for this paper come from various sources some of which were
acquired via agreements with governmental and nongovernmental agencies.
We will provide the final and code used to produce the models in the paper
and the Appendix. Details about the original data are given in the article.
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