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Distribution-Free Methods to Estimate
Willingness-to-Pay Models Using
Discrete Response Valuation Data

Samuel D. Zapata and Carlos E. Carpio

This study introduces distribution-free methods to estimate interval-censored willingness-to-pay
(WTP) models. The approaches proposed encompass the recovery of WTP values using an iterated
conditional expectation procedure and subsequent estimation of the mean WTP using parametric
and nonparametric models. Methods allow us to estimate the effects of covariates on the mean
WTP and the underlying probability distribution. We employ Monte Carlo simulations to compare
the performance of the estimators proposed against standard parametric and nonparametric
estimators. We illustrate the estimation techniques by assessing producers’ WTP for services
provided by an e-marketing website that helps connect farmers with local consumers.

Key words: additive models, double-bounded elicitation, kernel functions, iterated conditional
expectation, nonparametric regression, Turnbull

Introduction

Contingent valuation (CV) is a survey-based method developed initially to elicit the value (i.e.,
willingness to pay, WTP) that people place on nonmarket resources such as environmental
preservation (e.g., Carson et al., 1992; Hanemann, 1994; Bishop, 2018; Oviedo, Campos, and
Caparrós, 2022). Although CV continues to be used to study issues related to agricultural and
resource economics (e.g., demand for novel foods, technologies, and sustainable energy), new
applications have also been found in other areas, such as health economics (Diener, O’Brien, and
Gafni, 1998; Hudson and Hite, 2003; Sarasty et al., 2020; Pleeging et al., 2021).

Different elicitation formats can be used in CV (Carson and Hanemann, 2005). The double-
bounded dichotomous choice (DBDC) approach is a popular elicitation option among CV
practitioners because of its potential to reduce strategic bias (Hanemann, 1994; Boyle, 2003) and
provide relatively more efficient estimates of central tendency (Hanemann, Loomis, and Kanninen,
1991). However, one drawback of the approach is that it generates interval-censored responses.
Therefore, estimating measures of central tendency (e.g., mean WTP) as well as the covariates’
marginal effects on mean WTP requires the use of specialized statistical techniques. Most empirical
studies that use interval-censored responses from CV studies have used parametric methods, in
which a distribution function for the WTP measure is specified, while other authors have advocated
using distribution-free methods (e.g., Carson et al., 1992; Carson, Wilks, and Imber, 1994).

The nonparametric maximum likelihood (ML) estimation approach that Turnbull (1974, 1976)
proposed is the standard method used to analyze interval-censored data, such as those collected using
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DBDC. However, the Turnbull method has important limitations in CV applications. Although the
Turnbull approach permits the recovery of the distribution of an interval-censored variable in the
form of a discrete staircase probability distribution, it does not provide specific point estimates of
central tendency, nor does it allow direct estimates of the effects that explanatory variables have on
WTP estimates.

This study develops alternative distribution-free estimation approaches that can be used to
analyze interval-censored WTP data. The models proposed involve iterated procedures to estimate
the distribution of WTP and its corresponding conditional mean function. Compared to the Turnbull
approach, the estimation approach proposed here provides a point estimate of the mean WTP and
allows covariates’ marginal effects on the mean WTP to be estimated. The approach also allows the
estimation of the underlying WTP probability distribution function at any point, which is of especial
interest in some CV applications using dichotomous choice elicitation methods (e.g., demand studies
such as Lusk and Hudson, 2004; Lee et al., 2015; Sarasty et al., 2020). Moreover, the proposed
methods can be used to evaluate the robustness of parametric procedures or as part of researchers’
model-building efforts (e.g., to detect nonlinearities in the effects of covariates and the conditional
distribution of the resulting errors).

We employ simulation techniques to compare the performance of the estimators proposed with
the Turnbull approach and the conventional parametric linear model under different data-generation
processes for the conditional mean and the error distribution. We also illustrate the use of the
estimation techniques by studying producers’ WTP for an e-commerce website. Although the paper
focuses on modeling data obtained from the DBDC elicitation format, the methods can be applied
to interval-censored WTP data obtained using other elicitation mechanisms, such as single-bounded
dichotomous choice and payment card (Cameron, 1988; Cameron and Huppert, 1989).

Methods

WTP Function

The theoretical foundations of WTP functions are based on the consumer utility and producer profit
maximization problems. For consumers, the WTP function is derived considering changes in the
quality of goods or services consumed (Hanemann, 1991). In the case of producers, WTP is a
function of the perceived economic benefits associated with alternative inputs used in the production
process (Zapata and Carpio, 2014). For consumers and producers, WTP is defined as a function of
several variables, including relevant prices and quality levels.

Throughout the paper, to simplify the mathematical notation, we use Yi to refer to the WTP
value of the ith individual (consumer or producer) and X i for a vector of d explanatory variables.
Moreover, for every i = 1, . . . , n, Yi is assumed to be related to X i via the following model:

(1) Yi = g (X i ) + ε i ,

in which the ε i are independent and identically distributed (i.i.d.) errors, with marginal density fε ,
0 mean, and finite variance σ2. It is also assumed that the ε i are independent of the d-dimensional
predictor vector X i . Further, g(X i ) is a function that represents the conditional mean function of Yi
given X i .

DBDC Elicitation and Estimation

Since Hanemann (1985) introduced the DBDC elicitation approach, it has been preferred over other
elicitation methodologies, such as the single-bounded dichotomous choice formats, as it provides
statistical efficiency gains (Hanemann and Kanninen, 1999).1 The DBDC elicitation format asks

1 However, DBDC could violate incentive compatibility (Johnston et al., 2017).
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respondents two rounds of questions to bound their true WTP. First, every respondent i is presented
with an initial bid (Bi) and asked whether she would be willing to pay that amount for the good or
service in question. Based upon her initial response, the second question presents a follow-up bid,
higher (Bu

i ) or lower (Bl
i ). Consequently, every Yi (i.e., actual WTP) is observed to fall into one of

four intervals: (−∞, Bl
i ), [Bl

i ,Bi ), [Bi ,Bu
i ) and [Bu

i ,+∞), i = 1, . . . , n.
DBDC discrete responses are commonly analyzed using parametric ML estimation methods

(e.g., Hanemann, Loomis, and Kanninen, 1991; Zapata et al., 2013). One of the primary advantages
of the parametric approach is that it allows covariates to be included in the modeling process.
Thus, the marginal effects of the explanatory variables, X i , on the conditional mean WTP function
can be estimated. On the other hand, parametric ML methods rely on a priori assumptions about
the underlying distribution function of respondents’ WTP. Hence, if the distribution function
is misspecified, parameter estimates and any subsequent estimated functions, including welfare
estimates and marginal effects, may be inconsistent.

An alternative to parametric ML estimation is the use of distribution-free methods that do not
place any parametric assumptions on the distribution of the error, ε i . Distribution-free estimation
procedures used in initial CV studies were adapted from the survival analysis models proposed
by Ayer et al. (1955), Kaplan and Meier (1958), and Turnbull (1974, 1976) (e.g., Kristrom, 1990;
Carson et al., 1992). In the case of DBDC responses, the preferred distribution-free estimation
method practitioners use has been the nonparametric ML estimator proposed by Turnbull (1976)
(e.g., Carson et al., 1992; Carson, Wilks, and Imber, 1994). Unlike the parametric ML, which
estimates an assumed distribution’s parameters given an observed WTP sample, the Turnbull method
directly estimates the underlying cumulative density function (CDF) of respondents’ WTP.

However, the Turnbull approach is not without shortcomings. First, the estimated CDF is defined
only up to a discrete set of observed points given by the bid amounts used in the WTP questions
(i.e., the estimated CDF is a staircase function). Second, the method does not provide a point
estimate of the mean WTP value, only upper- and lower- bound estimates. Third, the assessment of
systematic differences in WTP based on covariates is very involved (Haab and McConnell, 2003).
Although conditional distribution functions could be estimated by limiting the Turnbull estimation to
observations with similar covariate levels, implementing this stratified approach may not be feasible
in practice, as the number of possible combinations of the covariate levels increases rapidly with
each additional variable considered.

Distribution-free methods should overcome the Turnbull approach and traditional parametric
methods’ intrinsic limitations. However, few alternative distribution-free estimation procedures to
analyze DBDC responses have been proposed (e.g., An, 2000; Burton, 2000; Watanabe, 2010).
Although existing distribution-free methods allow covariates to be included in the analysis, they
still rely on certain parametric assumptions to estimate either the WTP function’s distribution
or its conditional value. An (2000) and Burton (2000) opted to use semiparametric proportional
hazard specifications, commonly employed in duration models, in which a component of the
hazard function is defined as a functional parametric form. Watanabe (2010) assumed a parametric
specification for the conditional mean WTP function (i.e., g(X i ) in equation 1), without making
parametric assumptions about the error term’s distribution. In this paper, we propose an alternative
distribution-free estimation framework that does not impose parametric assumptions about the
distribution of the WTP and can address a broad class of parametric and nonparametric techniques
to estimate the conditional mean WTP function.

The methods proposed here rely on nonparametric kernel estimation techniques. None of the
distribution-free estimation methods available currently to estimate DBDC data use kernel-based
procedures. This may have been because traditional kernel estimation techniques require continuous
observations of the dependent variable for calculating weighting functions, in contrast to the interval-
censored observations obtained in DBDC CV studies. However, the iterative algorithms developed
by Kang, Braun, and Stafford (2011) and Braun, Duchesne, and Stafford (2005) make it possible to
adapt kernel estimation techniques to interval-censored data.
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Iterative Estimation Approach

This study extends the current CV literature by introducing a flexible, distribution-free approach
to analyze discrete WTP responses collected using the DBDC elicitation format. Two specific
models are presented within the proposed estimation framework: the Semiparametric Iterated Linear
Model (SPILM) and the Nonparametric Iterated Additive Model (NIAM). The SPILM assumes a
parametric specification for the mean WTP function (semiparametric procedure), and in the NIAM,
the mean WTP function is also estimated nonparametrically (nonparametric procedure). To the best
of our knowledge, this is the first attempt to use fully nonparametric methods that allow covariates to
be included in the analysis of DBDC data. On the other hand, the semiparametric method (SPILM)
can be considered an alternative to the distribution-free models proposed by An (2000), Burton
(2000), and Watanabe (2010).

The models proposed here do not impose arbitrary parametric assumption on the underlying
distribution function of the errors, ε is, as their marginal density function, fε , is estimated using
a nonparametric iterated conditional expectation procedure (Braun, Duchesne, and Stafford, 2005).
Further, the conditional mean WTP, g(X ), is estimated using linear regression techniques in the case
of SPILM and nonparametric additive regression methods in the case of the NIAM.

The mathematical relation underlying the proposed procedure is given by

(2) E [Yi | Yi ∈ Ii] = g (X i ) + E
[
ε i | Iεi

]
,

in which E[Yi | Yi ∈ Ii] is the conditional expectation of Yi given that Yi ∈ Ii , Ii is the observed interval
of Yi with boundary values Li and Ri (i.e., Ii = [Li ,Ri]), and Iεi = [Li − g(X i ),Ri − g(X i )] (Kang,
Braun, and Stafford, 2011). Note that equation (2) uses E[Yi | Yi ∈ Ii] rather than Yi because the Yi
are interval-censored and observed as I1, I2, . . . , In . Estimating equation (2) involves eight major
steps: Steps 1–3 provide starting values for the conditional mean function, g(X ) and distribution of
the errors fε (ε). Steps 4–8 estimate the conditional mean function and the distribution of the errors
iteratively until convergence:

Estimate Starting Values to Initiate Iterations (denoted with 0 indices):

1. For all Yi , compute the interval midpoints: Y o
i =

Li+Ri

2 .

2. Compute the initial conditional mean function estimates: ĝ0(X i )ξ , ξ = SPILM, NIAM, using
Yo = (Y o

1 ,. . . ,Y
o
n )T . That is, g(X i ) is estimated using parametric regression in SPILM or

nonparametric regression in the NIAM. See section below.

3. Set initial marginal density function, f̂ε;0(ε̂0
i ), of the errors, ε̂0

i = Y o
i − ĝ0(X i )ξ , as a uniform

density function in the range [min(Li − ĝ0(X i )ξ ), max(Ri − ĝ0(X i )ξ )].2

Conduct Iterative Steps (denoted with j ≥ 1 indices)

4. Estimate the errors’ marginal density, fε , using the iterated conditional expectation procedure
developed by Braun, Duchesne, and Stafford (2005):

a. Estimate the interval-censored errors as

Iεi =
[
Li − ĝj−1 (X i )ξ ,Ri − ĝj−1 (X i )ξ

]
.

2 Braun, Duchesne, and Stafford (2005) showed that the final estimate of fε does not depend upon the density function
used in the initial iteration step.
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b. Compute the error marginal density function using the fixed-point estimator:3

f̂ε; j (z) =
1
n

n∑
i=1

∫
Iεi

Wb (z − ω) f̂ε; j−1(ω)dω∫
Iεi

f̂ε; j−1(ω)dω
,

in which Wb (v) = b−1W (v/b), W (·) is a kernel density function with scale parameter b
and z is any real number. See the appendix for the method used to select b.

5. Compute the conditional expectation of the ε i :

Ê
[
ε i | Iεi

]
=

∫
Iεi

z f̂ε; j (z)dz∫
Iεi

f̂ε; j (z)dz

.

6. Estimate the conditional expectation of Yi ,Y imp. At the jth iteration step, the ith element of
Y imp is given by Ê[Yi | Yi ∈ Ii] = ĝj−1(X i )ξ + Ê[ε i | Iεi ].

7. Reestimate ĝj (X )ξ using the Y imp estimated in the previous step.

8. Set ĝj−1(X )ξ = ĝj (X )ξ and return to Step 4, or stop if the convergence criterion is satisfied.4

The sections below provide more details about the methods for estimating the conditional mean
function (Steps 2 and 7) and the kernel functions needed for Step 4b, Step 2, and Step 7.

Estimating the Conditional Mean and Kernel Functions

In practice, the conditional mean WTP function, g(X ), can be defined and estimated using a
broad range of functional forms and estimation approaches. In this study, we used two common
and juxtaposed options: A fully parametric form estimated using linear regression and a flexible
nonparametric specification estimated using additive regression.

Linear Regression

In the Semiparametric Iterated Linear Model (SPILM), the conditional mean function of Y is the
ordinary multiple linear regression function:

(3) g (X i ) = β0 +

d∑
k=1

βk xik,

and the estimates of the parameters β0, β1, . . . , βd are obtained by least squares using Y imp as the
dependent variable. The SPILM estimate of the mean Y , ĝ(X )SPILM, is calculated by averaging the
estimate of equation (3), ĝ(X i )SPILM, for all individuals:

(4) ĝ(X )SPILM = n−1
n∑
i=1

ĝ (X i )SPILM .

3 Computation of all integrals was carried out using the trapezoidal rule.
4 An absolute difference of less than 10−5 in successive objective function estimates (e.g., |ĝ j (X )ξ − ĝ j−1 (X )ξ |, using

the average conditional means across all observations as described in equations 4 and 9) was used to declare convergence
on every iterative procedure employed in this study. Alternatively, instead of the average conditional mean, ĝ(X )ξ at each
iteration can be evaluated at a given point of interest, X = χ.
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Nonparametric Additive Regression

Although there are several options to estimate the g(X ) function nonparametrically, we used
a nonparametric additive model rather than a multivariate kernel regression for the following
reasons. First, additive models are affected less by the curse of dimensionality and multicollinearity.
Second, their marginal effects are easier to interpret. Third, additive model estimates have a faster
convergence rate than multivariate kernel estimates (Buja, Hastie, and Tibshirani, 1989; Cameron
and Trivedi, 2005). Finally, the majority of WTP studies use an additive mean parametric function.
The nonparametric additive model assumes that

(5) g (X i ) = µ0 +

d∑
k=1

µk (xik ) ,

in which the µk (·) are standardized smooth functions so that E[µk (·)] = 0 for every k (Hastie and
Tibshirani, 1986; Kauermann and Opsomer, 2004). As shown in Kauermann and Opsomer (2004),
the µk (·)s can be estimated jointly. Consider the kth additive function estimator in particular:

(6) µ̂k = S∗k
{(
Y imp − µ̂0

)
− µ̂−k

}
,

in which µ̂k = { µ̂k (x1k ),. . . , µ̂k (xnk)}T , µ̂−k =
∑

r,k µ̂r is an estimator of the sum of the remaining
d − 1 additive functions, µ̂0 = n−1 ∑n

i=1 Yi and S∗k = (In − 11T /n)Sk is a centered smooth matrix to
ensure that the estimators are identifiable, In denotes an identity matrix, 1 is an n-vector of ones,
and Sk is a n × n smoothing matrix, the i j element of which is given by

(7) Sk, ij = Kk

(
xik,xjk,hk

)
/

n∑
j=1

Kk

(
xik,xjk,hk

)
,

in which Kk (·) is a kernel density function with scale parameter hk (i.e., a bandwidth). Joint
estimation of the additive functions µ̂1, . . . , µ̂d entails finding the solution to the normal equations:

(8) M µ̂ = S∗
(
Y imp − µ̂0

)
,

in which µ̂ = (µ̂T
1 ,. . . , µ̂

T
d )T , S∗ = (S∗T1 ,. . . ,S∗Td )T , and M =

*.......
,

In S∗1 · · · S∗1
S∗2 In · · · S∗2
...

. . .
...

S∗d S∗d · · · In

+///////
-

.

The Nonparametric Iterated Additive Model (NIAM) estimate of the mean Y , ĝ(X )NIAM, also
averages the individual ĝ(X i )NIAM in equation (5):

(9) ĝ(X )NIAM = n−1
n∑
i=1

ĝ (X i )NIAM .

However, compared to the SPILM, in which the marginal effects are given by the coefficients
β̂1, . . . , β̂d , in the NIAM, the relations between covariates and the mean WTP are given by the
smooth functions, µk (·) (Buja, Hastie, and Tibshirani, 1989). Therefore, a covariate’s marginal effect
on the mean WTP is not constant. Consequently, the relations between explanatory variables and
smooth functions in additive models are presented in the form of plots (e.g., Opsomer and Ruppert,
1998; Kauermann and Opsomer, 2004).
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Kernel Functions

The computation of both the NIAM mean estimator, ĝ(X i )NIAM, and the error density function
estimator, f̂ε (z), involves kernel functions (i.e., Kk (·) in equation 7 and Wb (·) in step 4b) of the
iterative estimation approach. The kernel functions were selected based on asymptotic properties
and their ability to model both continuous and categorical data. Three different kernel functions
were used to estimate ĝ(X i )NIAM. For continuous explanatory variables, we considered a second-
order Epanechnikov kernel,5 and for discrete variables with or without natural order we considered
the kernel functions suggested by Racine and Li (2004). In the case of estimating the error density
function, f̂ε (z), the kernel function, Wb (·), was set to be equal to the second-order Epanechnikov
kernel. The specific kernel functions used in this study are presented in the appendix.

Kernel functions depend upon the bandwidth or smoothing parameters, which are more
important for the quality of the estimates than the kernel choice itself (Cameron and Trivedi,
2005). The bandwidth parameters for the kernels used to estimate ĝ(X i )NIAM were selected by
the generalized cross-validation procedure described in Kauermann and Opsomer (2004) (see the
appendix). The bandwidth parameter, b, of the kernel density, Wb (v), in the error density function
was estimated using a modified version of the likelihood cross-validation method presented by
Braun, Duchesne, and Stafford (2005) (see the appendix).

Estimating the Probability Distribution

The traditional focus of CV studies is the estimation of the mean WTP values; however, some
applications also require the estimation of the probability distribution of the WTP values (e.g., Lusk
and Hudson, 2004; Sarasty et al., 2020). The iterative processes of the SPILM and the NIAM can
also be used to recover the conditional CDF of WTP at any point. The probability distribution of Y
can be estimated as

(10)
Pr(Y ≤ y | X = χ) = Pr{g(χ) + ε ≤ y}

= Pr{ε ≤ y − g(χ)};

therefore, the following estimators for the CDF of Y are proposed:

(11) F̂Y (y)ξ =

∫ y
a0

f̂ε
(
y − ĝ(χ)ξ

)
dy ,

in which fε (·) and g(χ) are replaced by their estimates and ξ = SPILM, NIAM.

Parametric and Nonparametric Maximum Likelihood Estimators

In this section, we describe sequentially the parametric and nonparametric maximum likelihood
methods (i.e., Turnbull’s nonparametric ML) traditionally used in CV studies to analyze DBDC
interval-censored data. These models served as a benchmark for the proposed SPILM and NIAM.
Since both Turnbull and parametric estimators are based on maximum likelihood, their derivation
has many common elements.

Denoting the lower bound of the ith observed interval (Ii ) as Li and the upper bound as Ri , the
probability that Yi is in the Ii interval is given by

(12) P (Li ≤ Yi < Ri ) = F (Ri ) − F (Li ) i = 1, . . . , n,

5 The second-order Epanechnikov kernel function is referred to as the “optimal kernel” because it possesses the minimum
mean integrated squared error (MISE) among available kernel functions (Cameron and Trivedi, 2005, p. 303).
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in which F (·) is the CDF of Y . Because the number of different bids used in the DBDC questions is
usually less than the number of observations in the sample, some of the intervals observed are the
same across individuals, which results in M ≤ n unique observed intervals, Jm , m = 1, . . . , M , with
boundary values of Lm and Rm . Therefore, the log-likelihood function for the interval-censored Yis
can be written as

(13)

ln L =

n∑
i=1

ln [F (Ri ) − F (Li )]

=

M∑
m=1

nm ln [F (Rm ) − F (Lm )] ,

in which nm , m = 1 . . . M , is the number of observations in which both Li =Lm and Ri = Rm .
Parametric models (PM) assume that Yi follows a certain distribution (see, e.g., Zapata et al., 2013).
For example, in the simulation exercises and empirical illustration that follow, it was assumed that
Yi was distributed normally, skewed, and log-logistically.

To specify the log-likelihood function of Turnbull’s nonparametric ML procedure, each unique
interval observed, Jm , m = 1, . . . , M , needs to be expressed as a union of Q disjoint closed intervals
of the form Aq = [aq−1,aq ), q = 1, . . . , Q, referred to as innermost intervals.6 For instance, the Jm
interval can be represented as ∪Q

q=1dmq Aq , in which dmq is a dummy variable that indicates whether
the qth innermost interval, Aq , is used to express the mth unique interval, Jm . Specifically,

(14) dmq =



1 if Lm ≤ aq−1 and Rm ≥ aq ,
0 otherwise

m = 1, . . . , M; q = 1, . . . , Q.

Then, the log-likelihood function in equation (13) can be expressed with respect to the innermost
intervals:

(15) ln L =

M∑
m=1

nm ln
Q∑
q=1

dmq
[
F

(
aq

)
− F

(
aq−1

)]
.

The Turnbull procedure considers that each F = F (aq ) in equation (15) is a parameter to estimate
and imposes the restriction that 0 = F0 ≤ F1 . . . ≤ FQ = 1. Estimation is then carried out using
Turnbull’s self-consistent algorithm (Turnbull, 1976; Gómez, Calle, and Oller, 2004; Day, 2007).
As mentioned, a limitation of the traditional Turnbull approach is that it does not provide a point
estimate of the mean WTP but only for upper and lower bounds of its value. Hence, the lower-bound
estimate of WTP that Haab and McConnell (1997) proposed was adapted to obtain a nonparametric
measure of central tendency and facilitate comparison across models. In this case, the Turnbull
midpoint approximation of the expected value of Y is equal to Ê(Y ) =

∑Q
q=1

aq−1+aq

2 (F̂q − F̂q−1), in

which the F̂qs are the solution to the log-likelihood function in equation (15).7
Below, we compare the performance of the SPILM and the NIAM as estimators of the mean and

marginal effects against the performance of the traditional parametric and nonparametric maximum
likelihood estimators.

6 Assuming that Y is nonnegative, the complete set of Q innermost intervals is [a0, a1), [a1, a2) . . . [aQ−1, aQ ), in
which 0 = a0 < a1 < · · · < aQ . In the case of DBDC data, the bid amounts used in the WTP questions give the boundaries
of the innermost intervals (aq s).

7 Although this approximation is not used in practice, it allows us to include Turnbull in the performance evaluation
process. Moreover, this approximation was found to work better than misspecified parametric models.
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Data and Study Design

The relative performance of the Semiparametric Iterated Linear Model (SPILM), the Nonparametric
Iterated Additive Model (NIAM), and the Turnbull model was evaluated using two procedures.
First, their performance was assessed using Monte Carlo simulation procedures under different
conditional mean and error distribution specifications. Second, the performance of the new methods
was assessed using a dataset from an empirical study evaluating producers’ WTP for the services
provided by an electronic trade platform. All of the econometric models and methods described in
the study were estimated using MATLAB’s built-in matrix manipulation functions and optimization
packages (MATLAB, 2022).

Monte Carlo Simulation

The proposed models were evaluated and compared with the Turnbull approach and the conventional
parametric linear model under four different scenarios. The data-generation process in the simulated
scenarios consisted of all the possible combinations of linear and quadratic conditional means
with symmetric and asymmetric errors. Scenario 1 represented the commonly considered case
in empirical work, in which valuation data were simulated using a linear conditional mean and
symmetrically distributed (normal) errors. The remaining scenarios illustrated conditions that are
less common (from the perspective of data analysts). A linear conditional mean with right-skewed
errors was used in Scenario 2. In Scenarios 3 and 4, the conditional mean was specified as a quadratic
function with symmetric and skewed errors, respectively.

In Scenario 1, we considered three sample sizes frequently observed in CV applications.
This scenario also serves as the basis for describing the data-generation process used in all
simulation cases: A total of 100 datasets (iterations) that contained n observations each, {Yi ,X i }

n
i=1,

n ∈ {100,200,500}, were generated. The response variable, Yi , was related to a set of both continuous
and categorical predictor variables through the following multiple linear regression model:

(16) Yi = 40 + 3X1i + 3X2i + 3Xd1
3i − 2Xd2

3i + 2ε i ,

in which the X1i are i.i.d. observations from a uniform distribution in the range [−10,10], X2i ∈ {0,1}
with Pr(X2i = 0) = Pr(X2i = 1) = 0.5,Xd j

3i ∈ {0,1}, j = 1,2, indicate the occurrence of the jth category
of X3i ,X3i ∈ {1, 2, 3} with Pr(X3i = ι) = 1/3 for ι = 1, 2, 3, and ε i is an i.i.d. observation from a
normal distribution with a mean of 0 and variance of 1.

The resulting Yi from equation (16) can be seen as individuals’ true, but unobserved, WTP value
given a set of observable characteristics, X i . Continuous Yi were censored using a set of predefined
bids similar to those employed in CV applications using the DBDC elicitation format. Specifically,
one of four potential initial bid amounts (i.e., 24, 36, 48, and 60) was assigned randomly to each
Yi . The initial bids are the 20th, 40th, 60th, and 80th percentiles, respectively, obtained from the
resulting empirical distribution of a sample of 50 observations generated using the regression model
in equation (16) with no error term.8 The corresponding follow-up bid amounts were 18 (10th
percentile), 24, 36, and 48 if the initial bid assigned to the ith observation was higher than the
true Yi . However, if the initial bid assigned to the ith observation was lower than Yi , corresponding
higher follow-up bids of 36, 48, 60, and 66 (90th percentile) were assigned. Based upon the sample
distribution used to generate the bids, the lower bound was set to 0 for those Yi less than the initial
and lower follow-up bid and to 80 for all Yi greater than the initial and higher follow-up bid.9

8 The initial bids were chosen following the methods employed in Calia and Strazzera (1999).
9 All models in Scenario 1 were reestimated using lower and higher distribution limits to evaluate the effect of the selection

of outermost bounds on the mean WTP estimate. It was found that SPILM and NIAM mean estimates were less sensitive
to the choice of the outermost bounds compared to the Turnbull estimator. Also, when the model was correctly specified,
SPILM and PM responded similarly to the selection of the distribution limits. In practice, optimal bid structure is based on
a priori knowledge of the distribution of the WTP values obtained through a pretest stage or sequential setting (Kanninen,
1993; Alberini, 1995; Boyle et al., 1998; Scarpa and Bateman, 2000; Haab and McConnell, 2003).



48 January 2024 Journal of Agricultural and Resource Economics

Scenario 2 considered the same conditional mean as Scenario 1, but its error term, ε i , followed
a skew-normal distribution with 0 mean,10 unit variance, and skewness equal to 1. In Scenarios 3
and 4, the linear conditional mean used in the previous two scenarios was modified by replacing
the term 3X1 in equation (16) by a quadratic form given by −0.6X2

1 + 30. Under this specification,
the total additive effect of X1 on Y reaches its maximum at X1 = 0 and its lowest observed values at
the limits of X1 (i.e., −10 and 10). The quadratic form was chosen to evaluate the performance of
the estimators when nonlinearities are present in the relation between the mean WTP values and the
explanatory variables. The function was parameterized to peak within the defined range of X1 and
to have marginal effects of similar magnitude across specifications. Regarding the distribution of the
errors, ε i was set to be normally distributed in Scenario 3 (equal to Scenario 1) and skew-normally
distributed in Scenario 4 (equal to Scenario 2). Scenarios 2– 4 used a sample size of 500 in each of
the 100 iterations.

Next, simulated censored data were employed to estimate the conditional mean of Y using
SPILM, NIAM, and PM procedures, while the Turnbull approach was used to estimate the
corresponding unconditional mean. Marginal effects were also estimated for the PM and the SPILM.
In the case of the NIAM, the marginal effects are not unique and are given by the µk (·) functions.
Hence, the NIAM marginal effects were illustrated using a random iteration (n = 500) from each of
the conditions considered in Scenarios 1–4.

Given their generality, the NIAM and Turnbull are appropriate for all four scenarios considered.
However, the SPILM and the PM are not always appropriate, except in Scenario 1. In Scenario 2, the
PM is incorrect because it assumes a normal distribution. In Scenario 3, the PM incorrectly assumed
a linear conditional mean. The PM is also incorrect in Scenario 4 because of the normality and linear
conditional mean assumptions. SPILM is incorrect in Scenarios 3 and 4 because it assumes a linear
conditional mean. The less “ideal” modeling scenarios for the SPILM and the PM aim to evaluate
their robustness to invalid assumptions.

The performance of all four mean estimators and marginal effect estimators for the PM and the
SPILM were analyzed using the root-mean-square error (RMSE),

(17) RMSE(θ̂) =

√√√
1

100

100∑
s=1

[
θ̂ (s) − θ (s)

]2
;

bias,

(18) bias(θ̂) =
1

100

100∑
s=1

[
θ̂ (s) − θ (s)

]
;

and standard error (SE),

(19) SE(θ̂) =

√√√
1

100

100∑
s=1

[
θ̂ (s) − θ̂

]2
,

in which θ̂ (s) and θ (s) are the estimated and true parameter functions of interest (i.e., mean or
marginal effects) of the sth iteration and θ̂ = 1

100
∑100

s=1 θ̂
(s) .

Empirical Application: Producers’ WTP Study

We also evaluated the SPILM, NIAM, Turnbull, and PM estimators using an actual DBDC dataset
obtained in an empirical study that used CV methods to assess the monetary value registered

10 The density function of a skew-normal distribution with shape parameter λ is given by φ(x;λ) = 2φ(x)Φ(λx), −∞ <
λ <∞, where φ( ·) and Φ( ·) are the standard normal density and distribution function, respectively (Azzalini, 1986).
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producers placed on the services provided by MarketMaker, a free electronic trade platform that
helps connect local consumers with farmers in their areas. By the time of the study, MarketMaker
was available in 18 states. The data consisted of 227 interval-censored observations collected using
a combination of electronic and mail surveys. The original study is described in Zapata et al. (2013).
The data were analyzed using parametric techniques in which the log-logistic distribution was the
probability distribution considered to fit the data best. The purpose of using this second dataset was
to contrast the performance of the proposed distribution-free estimation framework versus well-
accepted parametric methods in an actual application. Compared to the original study, a reduced set
of the available explanatory variables was used to illustrate the estimation techniques proposed here.
The covariates employed to estimate the WTP models were the type of user based on the intensity of
use (USER_TYPE, passive = 0, active = 1), marketing contacts acquired because of participation in
MarketMaker (CONTACTS), and the firm total annual sales ($thousands) (SALES). Proper kernel
functions described in the appendix were used in the NIAM to model SALES as a continuous
variable, and USER_TYPE and CONTACTS as ordered categorical variables. The outermost lower
and upper bounds for the censored WTP variable were set at $0 and $300, respectively.

The mean WTP for the services received from MarketMaker was estimated using the SPILM,
NIAM, Turnbull, and log-logistic PM methods. Further, marginal effects were estimated for SPILM
and the log-logistic PM and covariate-mean functions were estimated for the NIAM. The standard
errors of the estimated means and marginal effects were calculated using a bootstrapping procedure
(Cameron and Trivedi, 2005, p. 362) with 100 replications. The point-wise standard error bands
that Buja, Hastie, and Tibshirani (1989) recommended were used to measure dispersion of the
estimated smooth functions in the NIAM. The standard error bands represent the fitted curve
±2 times the estimated standard error. Each smooth function’s standard error was estimated as
the sample mean standard error of the 100 replications for each unique covariate value. The
different bandwidths’ parameters of the SPILM and NIAM estimators were calculated using the 227
observations in the original data and then fixed at these values in each replication of the bootstrapping
procedure.11 Finally, the underlying CDF of producers’ WTP for MarketMaker was calculated using
expression (11).

Results

Monte Carlo Simulation

Tables 1–4 present the RMSE, bias, and SE of the different mean and marginal effects estimators
under the four scenarios considered. These results are discussed sequentially, starting with the
results related to the mean estimators. Concerning the effect of sample size on the mean estimators’
performance (Table 1), the RMSE and SE associated with the proposed SPILM and NIAM mean
estimators decreased as the sample size increased, which is similar to the conventional parametric
and nonparametric estimators. For all mean estimators, no clear pattern of changes in the bias is
found related to sample sizes.

The simulation also showed that the conditional mean estimators of the SPILM and the NIAM
outperformed the unconditional Turnbull mean estimator with respect to RMSE, bias, and SE in
all four scenarios (Tables 1 and 2). Further, the SPILM mean estimator performed similarly to the
benchmark linear normal PM when conditions for this latter estimator are ideal (correct conditional
mean and distribution functions) in Scenario 1. Hence, when the conditional mean is properly
specified, the SPILM mean estimator appears to be a more robust alternative to the PM that also
does not sacrifice efficiency.

Scenarios 2–4 represent cases that are not ideal for the linear normal PM or SPILM because
either the mean or the distribution is misspecified. The NIAM outperformed the SPILM and

11 The bandwidth parameters, b, in the SPILM and NIAM were estimated to be equal to 5.30 and 7.01, respectively. Fixing
the bandwidth at predetermined values reduces the time needed to estimate the standard errors.
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Table 1. Mean Estimators Comparison under Scenario 1 (linear conditional mean and
symmetric error distribution)

N Estimator RMSE Bias SE
100 SPILM 0.456 0.003 1.752

NIAM 0.686 0.022 1.774
Turnbull 1.205 −0.096 2.145

PM 0.456 0.008 1.775

200 SPILM 0.327 −0.004 1.323
NIAM 0.406 0.010 1.310

Turnbull 0.772 −0.213 1.548
PM 0.323 0.002 1.328

500 SPILM 0.206 0.018 0.830
NIAM 0.273 0.026 0.840

Turnbull 0.518 −0.135 0.963
PM 0.198 0.013 0.830

Notes: Estimators are the semiparametric iterated linear model (SPILM), the nonparametric iterated additive model
(NIAM), Turnbull’s (1974; 1976) nonparametric maximum likelihood estimation approach, and the parametric model (PM).

Table 2. Mean Estimators Comparison under Scenarios 2–4 (S2–S4)
Scenario
(conditional mean/

error distribution) Estimator RMSE Bias SE
S2. Linear/asymmetric SPILM 0.210 −0.033 0.763

NIAM 0.289 −0.039 0.788
Turnbull 0.540 −0.250 0.930

PM 0.208 0.035 0.766

S3. Nonlinear/symmetric SPILM 0.511 −0.092 0.982
NIAM 0.263 0.095 0.876

Turnbull 0.528 0.282 0.957
PM 5.932 3.878 4.532

S4. Nonlinear/asymmetric SPILM 0.483 −0.139 0.971
NIAM 0.275 0.067 0.881

Turnbull 0.562 0.257 1.017
PM 9.537 5.138 8.145

Notes: Estimators are the semiparametric iterated linear model (SPILM), the nonparametric iterated additive model
(NIAM), Turnbull’s (1974; 1976) nonparametric maximum likelihood estimation approach, and the parametric model (PM).

the linear PM under conditional mean misspecifications (Scenarios 3 and 4) but not when the
misspecification is only related to the distribution (PM in Scenario 2). The PM appears to be more
sensitive to conditional mean misspecifications: It performed poorly compared to all estimators in
Scenarios 3 and 4.

Overall, if the conditional mean is known a priori, a semiparametric approach like the SPILM
is a robust and efficient alternative to estimate the mean WTP. Otherwise, the NIAM represents
a very robust option, followed by the Turnbull procedure; however, there are some trade-offs
associated with the use of the NIAM, which is less efficient and more computationally intensive.
Results also show that the PM procedures seem more sensitive to conditional mean than distribution
misspecification.
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Table 3. Comparison of Marginal Effect Estimators under Scenario 1 (linear conditional
mean and symmetric error distribution)

N Estimator Marginal Effect RMSE Bias SE
100 SPILM X1 0.124 0.038 0.119

X2 1.096 0.098 1.097
Xd1

3 1.186 −0.162 1.181
Xd2

3 1.111 −0.096 1.112

PM X1 0.132 0.025 0.130
X2 1.122 0.105 1.123
Xd1

3 1.199 −0.140 1.197
Xd2

3 1.111 −0.108 1.111

200 SPILM X1 0.075 0.017 0.073
X2 0.807 0.077 0.807
Xd1

3 0.858 0.042 0.862
Xd2

3 0.852 −0.080 0.853

PM X1 0.077 0.007 0.077
X2 0.815 0.068 0.816
Xd1

3 0.870 0.034 0.874
Xd2

3 0.822 −0.068 0.823

500 SPILM X1 0.039 0.003 0.039
X2 0.482 0.031 0.483
Xd1

3 0.552 0.076 0.550
Xd2

3 0.499 −0.020 0.501

PM X1 0.038 −0.002 0.039
X2 0.478 0.053 0.477
Xd1

3 0.534 0.093 0.529
Xd2

3 0.494 −0.029 0.496

Notes: Estimators are the semiparametric iterated linear model (SPILM) and the parametric model (PM).

With respect to the marginal effect estimators, the magnitude of their errors decreased with
the sample size (Table 3). However, neither the SPILM nor the PM was superior for any of the
sample sizes considered. Specifically, the marginal effects’ RMSE and SE values obtained using the
SPILM estimator were generally lower than those obtained using the PM. However, the biases in
the SPILM’s marginal effects were generally higher than their counterparts estimated using the PM,
although the differences were minimal in both cases. Therefore, consistent with the mean estimators,
the simulation results indicated that, relative to the PM, the increases in robustness when using the
SPILM to estimate marginal effects do not result in significant efficiency losses, even when the PM
is the correctly specified model (Scenario 1).

When the conditional mean for the PM was properly defined but the distribution of model
errors was not (Scenario 2), the marginal effects obtained using the linear normal PM had slightly
smaller RMSE, bias, and SE compared to those estimated with the SPILM (Table 4). The opposite
results were found when the conditional mean was not properly specified, even in the scenario
with symmetric errors (Scenario 3). When both the conditional mean and the error distribution are
misspecified for the PM (Scenario 4), the SPILM clearly performs better, although its conditional
mean is also misspecified. Hence, like its mean estimator, it seems that the marginal effects estimated
using the SPILM are less affected by misspecifications.

The high RMSE and SE values in Scenarios 3 and 4 relative to those in Scenarios 1 and 2 reflect
the fact that both the SPILM and the PM are unable to adequately capture the existing quadratic
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Table 4. Comparison of Marginal Effect Estimators under Scenarios 2–4 (S2–S4)
Scenario (conditional Marginal
mean/error distribution) Estimator Effect RMSE Bias SE
S2. Linear/asymmetric SPILM X1 0.046 0.008 0.045

X2 0.438 −0.027 0.437
Xd1

3 0.558 −0.077 0.553
Xd2

3 0.521 0.033 0.520

PM X1 0.046 0.000 0.046
X2 0.431 −0.020 0.430
Xd1

3 0.515 −0.029 0.514
Xd2

3 0.474 0.013 0.473

S3. Nonlinear/symmetric SPILM X1 6.928 −0.068 0.218
X2 2.589 −0.152 2.584
Xd1

3 3.047 −0.053 3.047
Xd2

3 2.802 0.163 2.797

PM X1 6.978 0.018 0.850
X2 2.820 0.419 2.789
Xd1

3 3.348 0.358 3.329
Xd2

3 2.967 −0.250 2.956

S.4. Nonlinear/asymmetric SPILM X1 6.928 −0.066 0.223
X2 2.389 −0.055 2.388
Xd1

3 3.240 0.139 3.237
Xd2

3 2.842 0.212 2.834

PM X1 7.122 0.303 1.643
X2 2.589 0.442 2.551
Xd1

3 3.289 0.232 3.280
Xd2

3 2.930 −0.177 2.924

Notes: Estimators are the semiparametric iterated linear model (SPILM) and the parametric model (PM). The root mean
square error (RMSE) and bias of the marginal effect of variable X1 in the SPILM and PM under the nonlinear conditional

mean scenarios were estimated as
√

1
100

∑100
s=1

1
500

∑500
i=1[θ̂ (si) − θ (si)]2 and 1

100
∑100

s=1
1

500
∑500

i=1[θ̂ (si) − θ (si)], respectively,

where θ̂ (si) is the estimated coefficient associated with X1 in the sth iteration and θ (si) is its corresponding true marginal
effect evaluated at X1i .

Table 5. Summary of the Efficiency and Bias of the SPILM, NIAM, and Turnbull Relative to
PM in the Simulation Exercise

Scenario
Estimator PM Is Well Specified PM Is Misspecified

Mean SPILM Similar bias and efficiency Lower bias, more efficient
NIAM Similar bias, less efficient Lower bias (least biased), more

efficient (most efficient)
Turnbull Biased, less efficient Lower bias (most biased), more

efficient (least efficient)
Marginal effects SPILM Similar bias and efficiency Lower bias, more efficient

NIAM Not available Not available
Turnbull Not available Not available

Notes: Estimators are the parametric model (PM), the semiparametric iterated linear model (SPILM), the nonparametric
iterated additive model (NIAM), and Turnbull’s (1974; 1976) nonparametric maximum likelihood estimation approach. The
terms “least” and “most” biased or efficient are used only to compare the proposed estimators used in the simulations.
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Figure 1. Estimated Nonparametric Iterated Additive Model (NIAM) Fitted Smooth
Functions of a Random Sample of Each Scenario

relationship between X1 and Y . It should be noted that the smaller magnitude of the bias associated
with the marginal effect of the variable X1 in Scenarios 3 and 4 was mainly caused by the fact that
its true mean marginal effect (i.e., E(−1.2X1) = 0) was designed to be equal to the linear marginal
effects (i.e., ∂Y

∂X1
= 0) estimated using the SPILM and the PM specifications. Table 5 summarizes the

efficiency and bias of the proposed estimators (SPILM and NIAM) and Turnbull approach relative
to the conventional PM.

Figure 1 illustrates the estimated fitted smooth functions, µ̂k (·), obtained using the NIAM
estimator in each scenario for a simulated random sample of 500 observations. As a reference, in
Scenarios 1 and 2, the true effect of variable X1 on Y implied by equation (17) is given by a straight
line with a slope of 3. In Scenarios 3 and 4, the underlying relationship between X1 on Y is given
by a quadratic regression with a variable slope equal to −1.2X1. In the case of the discrete variables,
the true outcome differences between discrete levels are 3 for X2 (X2 = 0 serves as baseline) and 3
and −2 for Xd1

3 and Xd2
3 (X3 = 3 serves as baseline), respectively. Figure 1 shows that the NIAM

captured the true linear (Scenario 1 and 2) and quadratic (Scenario 3 and 4) relationships between
X1 and Y . Further, the estimated difference in Y between an observation in which X2 = 1 and one in
which X2 = 0 was 3.45 units in Scenario 1, 2.62 units in Scenario 2, 2.80 units in Scenario 3, and
2.58 units in scenario 4. Similarly, compared to an observation in which X3 = 3, the corresponding
differences in Y when X3 = 1 and X3 = 2 were estimated to be 3.07 and −2.33 units, respectively,
in Scenario 1, 2.17 and −2.19 units in Scenario 2, 2.50 and −3.27 units in Scenario 3, and 2.91
and −2.58 units in Scenario 4. Overall, the marginal effect plots presented in Figure 1 suggest that
the NIAM adequately captured the underlying relations between the response variable Y and the
predictors X1, X2, and X3 in all the scenarios considered.

The same random samples employed to estimate the NIAM’s smooth functions were also used
to estimate the probability distribution of the error term in each scenario (Figure 2). Overall, and as
discussed above, the PM provided the best fit to the sample datasets when the conditional mean was
properly defined. However, the PM performed poorly under the model misspecification conditions
presented in Scenarios 3 and 4. It was also observed that the SPILM and the NIAM were reasonable
approximations of the true distribution function of the errors in Scenario 1. In Scenario 2, in which
the conditional mean was specified correctly but the errors had an asymmetric distribution, some
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Figure 2. Estimated Distribution of the Error Term of a Random Sample of Each Scenario
Notes: Estimators are the semiparametric iterated linear model (SPILM), the nonparametric iterated additive model (NIAM),
and the parametric model (PM).

Table 6. Mean Producers’ WTP by Estimator, MarketMaker Valuation Data

Estimator
Mean

Estimate
Standard

Error
SPILM 36.815 3.675
NIAM 36.584 3.849
Turnbull 28.435a 3.166
Log-logistic PM 41.197 6.772

Notes: Estimators are the semiparametric iterated linear model (SPILM), the
nonparametric iterated additive model (NIAM), Turnbull’s (1974; 1976)
nonparametric maximum likelihood estimation approach, and the parametric
model (PM).
aTurnbull’s lower and upper bounds’ mean estimates were 18.40 and 38.47,
respectively. Turnbull’s mean estimate shown in the table is the midpoint
between the lower and upper bounds.

divergences were noted between the skewed sample errors and the more symmetric distributions
estimated using the SPILM and the NIAM. Further, and like the PM, the SPILM was unable to
capture the underlying distribution of the errors in Scenarios 3 and 4. On the other hand, the NIAM
appeared to be a more robust estimator that closely followed the true distribution of the errors in the
four scenarios considered. In short, these results suggest that the NIAM is a very robust estimator of
the probability distribution of the errors.

Since researchers are unlike to know a priori the true conditional mean functions and the
probability density function of error distributions (i.e., models will always be misspecified to a
certain extent), the simulation results discussed above suggest that researchers should focus initial
efforts on appropriately modeling the WTP mean function (e.g., exploring nonlinearities in the data)
as this is more likely to affect mean and marginal effect estimates. In this sense, the NIAM estimator
can be useful as part of researchers’ modeling efforts. Efficiency gains can subsequently be obtained
by using SPILM or PM methods.
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Figure 3. Nonparametric Iterated Additive Model (NIAM) Fitted Smooth Functions and
Standard Error Bands, MarketMaker Valuation Data

Table 7. SPILM and Log-Logistic PM Marginal Effect Estimates Using the MarketMaker
Valuation Data

SPLIM Log-Logistic PM

Variable
Marginal

Effect
Standard

Error
Marginal

Effect
Standard

Error
USER_TYPE (active user =1,
passive user = 0)

17.078∗∗ 9.493 31.363∗∗∗ 12.290

CONTACTS 1.584∗ 1.061 1.371∗ 0.889
SALES ($thousands) 0.026∗∗ 0.013 0.032∗∗∗ 0.014

Notes: Estimators are the semiparametric iterated linear model (SPILM) and the parametric model (PM). Single, double,
and triple asterisks (*, **, ***) indicate significance at the 10%, 5%, and 1% level, respectively.

Empirical Application

The SPILM, NIAM, Turnbull, and log-logistic PM were also used to estimate producers’ WTP for
the services that MarketMaker provided. Table 6 reports the mean WTPs by estimator. The SPILM
and the NIAM estimated that, on average, registered producers were willing to pay $36.82 and
$36.58, respectively, annually for the services the e-marketing website provided. The SPILM and the
NIAM mean estimates were higher than the Turnbull estimate (i.e., $28.44) and lower than the PM
mean estimate (i.e., $41.20). Moreover, the Turnbull’s mean interval estimate (i.e., [18.40, 38.47])
enclosed both the SPILM and the NIAM estimates. On the other hand, the log-logistic PM mean
estimate fell outside Turnbull’s mean interval estimate. However, all mean estimates had overlapping
95% confidence intervals.

In contrast to the Turnbull procedure, the SPILM and the NIAM allowed the effect of users’
characteristics on their valuation of MarketMaker to be estimated. Table 7 presents the marginal
effects of the different covariates employed in the SPILM, as well as those estimated using the log-
logistic PM. The SPILM estimation results indicated that active users of MarketMaker are willing
to pay $17.08 more per year than their passive counterparts. The SPILM also predicted that each
additional marketing contact received because of MarketMaker would increase annual WTP by
$1.58. Last, the SPILM results indicated that a $1,000 increase in total annual sales is expected
to increase the annual WTP by $0.03. On the other hand, the log-logistic PM’s estimated marginal
effects suggested that active users are willing to pay $31.36 more per year, additional marketing
contacts increased the annual WTP by $1.37, and additional sales also had the same moderate effect
on WTP (i.e., $0.03/year). Although some differences were found between the SPILM and the log-
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Figure 4. Distribution Function Estimates, MarketMaker Valuation Data
Notes: Estimators are the semiparametric iterated linear model (SPILM), the nonparametric iterated additive model (NIAM),
Turnbull’s (1974; 1976) nonparametric maximum likelihood estimation approach, and the parametric model (PM).

logistic PM (particularly with respect to user type), their marginal effects also had overlapping 95%
confidence intervals.

In the case of the NIAM, Figure 3 presents the relations between each covariate and annual
producers’ WTP for MarketMaker’s services. The NIAM results indicate that active users are willing
to pay $16.13 more per year than passive users, which is closer to the marginal effect estimated using
the SPILM than to the effect estimated using the log-logistic PM. The estimated smooth functions
also suggested that producers’ WTP is related positively to CONTACTS and SALES. Figure 3
highlights the NIAM’s flexibility in identifying some nonlinearities in the relations between the
dependent and explanatory variables.

Last, both the SPILM and the NIAM were used to recover the conditional underlying probability
function of producers’ WTP for the marketing services they receive, and their estimated distribution
functions were compared with the counterpart distributions suggested by the log-logistic PM and
Turnbull approach. For illustration purposes, the level of the explanatory variables was set to active
USER_TYPE, 5 CONTACTS, and 75 SALES for the conditional models. Figure 4 displays the
resulting probability density function (PDF) and CDF of the different models. Like the log-logistic
PM, the PDFs of the SPILM and the NIAM suggest that the distribution of WTP values is skewed
to the right, with most of the values concentrated in the lower end of the distribution; however, the
PDF estimated using the log-logistic PM has a higher mass on the left side of the distribution and a
lower level of peakedness. Further, the SPILM and the NIAM’s estimated CDFs were very similar
to each other and to the parametric log-logistic distribution but lower than that of the unconditional
Turnbull. Compared to the Turnbull distribution, using the SPILM and the NIAM approach makes
it possible to estimate a continuous CDF, which may be more appropriate for identifying specific
valuation thresholds.

In summary, although the log-logistic PM estimator performs similarly to the NIAM and the
SPILM estimators in this empirical application, there are some features of the WTP distribution
that might not captured appropriately by this model (i.e., nonlinearities in the mean function and
peakedness in the error distribution).

Summary and Conclusions

This paper introduced alternative distribution-free estimation methods that can be used to analyze
interval-censored WTP data obtained using a variety of elicitation methods, including DBDC, the
focus of this study. The estimators proposed involve iterated procedures that combine nonparametric
kernel density estimation of the WTP function’s errors with parametric or nonparametric estimation
of its conditional mean function. Although estimating the mean WTP can be extended in principle
to other functional forms and modeling techniques, this study focused on parametric linear and
nonparametric additive models.
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Monte Carlo simulation techniques were employed to compare the performance of the proposed
estimators with commonly used parametric and nonparametric methods under different modeling
scenarios. Overall, the simulation results showed that the proposed semiparametric (SPILM) and
nonparametric (NIAM) estimators are valid alternatives to the parametric model and the Turnbull
approach. Relative to the parametric model, the increased robustness when the SPILM is used to
estimate the mean and marginal effects does not appear to result in significant efficiency losses.
Moreover, when the linearity assumption is not valid, NIAM resulted in mean estimators with
significantly less bias and more efficiency. Further, both the SPILM and the NIAM were shown to
be significantly more efficient for the mean estimation than the Turnbull method in all the scenarios
considered.

The estimation techniques proposed here were also shown to have three additional advantages
over the nonparametric Turnbull approach: They (i) provide point estimates of the mean WTP, (ii)
allow covariates’ marginal effects on the mean WTP, and (iii) allow the estimation of the continuous
underlying WTP probability distribution functions.

Further, an actual dataset was used to illustrate the proposed estimation techniques’ properties
in practice. Specifically, the models were employed to analyze producers’ WTP for the services
MarketMaker provided. The mean and marginal effects estimates obtained with the log-logistic PM,
SPILM, and NIAM were not different from an economic and statistical point of view. However,
the SPILM and the NIAM detected some features of the WTP mean function and the probability
distribution of the errors that were not detected using the log-logistic PM. This added flexibility of
the NIAM and the SPILM might prove helpful in other applications.

Although the proposed methods are presented as alternatives to procedures currently used for
modeling CV data, some researchers might find them helpful to evaluate the robustness of their
models or as part of their model-building efforts. For example, nonlinearities in the effects of
covariates detected using NIAM can be used as a guide for specifying the conditional mean in
the SPILM or PM procedures. Similarly, WTP distributional features observed using the NIAM or
the SPILM can help with parametric distribution selection for PM procedures.

[First submitted March 2022; accepted for publication April 2023.]
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Appendix A. Kernel Functions and Bandwidth Selection

It is assumed that the d explanatory variable in X can be classified into dc continuous variables, dod

ordered discrete variables, and duod unordered discrete variables, such that d = dc + dod+ duod. In
the NIAM, three different kernel functions were employed to model the relation between Y and each
xk independent variable. Specifically, the second-order Epanechnikov kernel function was used for
continuous variables:
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k
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in which 1K (·) is an indicator function and hc
k
> 0. For discrete variables, the kernel functions Racine

and Li (2004) proposed:
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were considered to model explanatory variables with and without a natural order, respectively, where
0 ≤ hod

k
≤ 1 and 0 ≤ huod

k
≤ 1.

The bandwidth parameters hc
k
, hod

k
, and huod

k
were selected by the generalized cross-validation

(GCV) procedure described in Kauermann and Opsomer (2004). The objective of the GCV
selection approach is to find the vector h = (hc

1 ,. . . ,h
c
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1 ,. . . ,h
od
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uod
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duod ) that minimizes
the adjusted mean squared error:
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Y imp − ĝ(X )NIAM

)T (
Y imp − ĝ(X )NIAM
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in which ĝ(X )NIAM = (ĝ(X i )NIAM,. . . ,ĝ(Xn )NIAM)T . Note that ĝ(X )NIAM and the S∗k s depend upon
the bandwidth vector, h, although this is suppressed in the notation.

The kernel function, Wb (·), used to estimate the error density function, f̂ε (z), was also set to be
equal to the second-order Epanechnikov kernel:
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in which 1W (·) is an indicator function.
The bandwidth parameter, b, was selected by adapting the likelihood cross-validation (LCV)

method developed by Braun, Duchesne, and Stafford (2005). In the original selection method,
the overlapping intervals observed are redefined as a series of disjoint intervals and then specific
intervals from the original data are omitted when estimating the CDF of each disjoint interval.
Observed intervals are dropped based on their contribution to the presence of the selected disjoint
interval. Rather than creating a series of disjoint intervals as in Braun , we proposed to evaluate the
estimator of the error density, f̂ε , n times using the observed error intervals and leaving out of the
estimation one error interval at a time. The original selection approach was modified because the
error intervals in DBDC data show a high level of overlap, resulting in very small disjoint intervals,
which makes it difficult or even impossible to observe error intervals in the original data that are not
composed of the disjoint interval of interest.
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The cross-validation method proposed is designed to prevent possible overfitting problems by
maximizing the (leave-one-out) log-likelihood function:

(A6) ln L(b) =

n∑
i=1

ln


∫
Iεi

f̂ (−i)
ε (t)dt


,

with respect to b, in which
∫
Iεi

f̂ (−i)
ε (t)dt is obtained by omitting the interval-censored error, Iεi ,

when estimating f̂ε . Dropping one error interval is achieved by removing the error interval of
interest and all estimated error intervals that it encloses completely (in iterated step 4a). Note that
the bandwidth, b, is suppressed in the notation as well, although f̂ (−i)

ε (t) depends on it.
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