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Abstract 

On-farm precision experimentation (OFPE) has expanded rapidly over the past years. While 
the importance of efficient trial designs in OFPE has been recognized, the design efficiency has 
not been assessed from the economic perspective. This study reports how to use Monte Carlo 
simulations of corn-to-nitrogen (N) response OFPEs to compare economic performances of 
thirteen different OFPE trial designs. The economic performance is measured by the profit 
from implementing the N “prescription” (i.e., estimated site-specific economically optimal N 
rates) provided by analysing the OFPE data generated by a trial design. Results showed that 
the choice of trial design affects the final economic performance of OFPE. Overall, the best 
design was the Latin square design with a special pattern of limited N rate “jump” (LJ), which 
had the highest average profit and lowest profit variation in almost all simulation scenarios. 
The economic performance of the high efficiency fixed-block strip design (SF1) was only 
slightly lower than that of LJ, and could be a good alternative when only strip designs are 
available. In contrast, designs with gradual trial rate changes over space were less profitable 
in most situations, and should be avoided. Those results were robust to various nitrogen-to-
corn price ratios, yield response estimation models, and field sizes used in the simulations. It 
was also found that the statistical efficiency measures of trial designs roughly explained the 
designs’ economic performances, though there are still much part remaining unexplained. 
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Introduction 

Over the past few years agricultural scientists have been increasingly designing and 
implementing a revolutionary kind of agronomic field trial, generally identified as on-farm 
precision experimentation (OFPE).  In OFPE, researchers and farmers collaborate to run 
agronomic experiments, using variable rate input technology with GPS to change input rates 
over multi-hectare farm fields, and using yield monitors to gather geo-spatial yield data at 
harvest.  Because OFPE implementation is largely automated—the machine operator basically 
“just drives”—trial costs are dramatically lower than in traditional “small-plot” agronomic field 
trials (Panten, et al. 2010; Piepho et al. 2011; Bullock et al. 2019; Alesso et al. 2020; Lacoste, 
et al. 2022).  Figure 1 presents three maps to illustrate an OFPE conducted in 2020 on a 58.8-
ha DeKalb County, Illinois cornfield by the Data-Intensive Farm Management Project (Bullock, 
et al. 2019).  The left-hand panel shows the OFPE’s design, which randomized nitrogen 
fertilizer application rates over space.  The trial design was comprised of 287 rectangular plots, 
each of which was 24.4 m wide (the width of the urea spreader) and between 56.9 and 73.2 
m long.  Each plot was assigned one of the seven experimental application rates: 83, 91, 99, 
111, 119, 127, and 139 kg ha 1.  The middle panel of Figure 1 shows that the “as-applied” N 
application rates accurately followed the design.  The right-hand panel of Figure 1 shows a 
map of the field’s measured yield values.  

 

Figure 1. Trial design, as-applied map, and yield map, from an N-rate-on-corn OFPE 
conducted on a 58.5-ha field in DeKalb County, Illinois, 2020. 

A principal aim of generating OFPE data is to empirically estimate site-specific yield-to-input-
rate response functions.  Knowledge of site-specific yield response functions can allow the 
generation of profit-increasing site-specific input application rate recommendations.  
Agricultural scientists have been working to understand yield response to inputs using small-
plot agronomic field trial data for more than a century, and have always been concerned about 
optimal field trial design (e.g., Smith 1907; Spillman 1923; Eden and Fisher 1929).  In fact, R.A. 
Fisher invented fundamental aspects of modern statistical analysis to analyse data from small-
plot field trials (Fisher 1926; Box 1976, 1978).  But OFPE data is different from small-plot field 
trial data in important ways and, much in the way that the generation of small-plot field trial 
data necessitated Fisher’s work on efficient small-plot field trial design and analysis of the 
data, incoming OFPE data necessitates increased research on efficient OFPE design and 
statistical analysis. 
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Increasing Prevalence of On-Farm Precision Experiments 

OFPE began near the close of the 20th Century with pioneering independent research by Cook 
and Bramley (1998) in Australia, by Donald Bullock and Ronald Milby in the USA (Bullock, et 
al., 2002; Rund, 2003; Bullock, 2021), by Doerge and Gardner (1999) in the USA, and by 
Lowenberg-DeBoer and Aghib (1999) in the USA.  A handful of OFPEs were reported conducted 
in the early 2000s (Pringle et al., 2004; Panten et al., 2010; Whelan et al., 2012), but OFPE has 
expanded rapidly over the past five years or so.  Recognizing this expansion, the International 
Society of Precision Agriculture organized an October 2021 conference in Montpelier, France 
with the theme of on-farm experimentation (International Society of Precision Agriculture, 
2021).  The USDA’s Natural Resource Conservation Service’s Conservation Innovation Grant 
program awarded $25 million to on-farm trials research, including a $4 million grant to the 
Data-Intensive Farm Management Project (Bullock, et al., 2019) which is funding researchers 
from fourteen US universities to run 360 OFPEs from 2021 through 2023 in thirteen US states, 
and to develop cyber-infrastructure to be used by commercial crop consultants and their 
farmer-clients to run future OFPEs and use the data for input application management (USDA-
NRCS 2020).  The USDA’s National Institute for Food and Agriculture’s National Information 
Management & Support System has begun funding a Multistate Research Project titled 
“Frontiers in On-farm Experimentation,” which brings a multidisciplinary group of US-based 
scholars to conduct OFPEs and research about OFPEs (National Information Management and 
Support System, 2021). 

Field Trial Design Efficiency  

Research into the statistical efficiency of agronomic field trial designs has a long and 
prestigious history; indeed, R.E. Fisher developed much of the framework of modern statistical 
theory and applied experimental practices in his work in the 1920s and 1930s with agronomic 
small-plot field trial data from the Rothamsted Research Station (Box 1980).  But the 
bourgeoning of whole-field OFPE is bringing new questions about trial design efficiency to the 
fore.  While long-established concepts about how the geometric properties of field trial 
designs, such as “spatial balance” and “evenness” can also be used to understand OFPE design 
efficiency, differences between small-plot and OFPE trials in plot geometry and the spatial 
heterogeneity of field characteristics call for re-examination of some of the conclusions 
reached in the historical literature on the statistical efficiency of agronomic field trial design.   

Many previous studies of the efficiency of on-farm field trials (e.g. Alesso et al, 2019, 2000) 
have examined the effects of trial design on the statistical accuracy (in terms of RMSE, Type I 
error, etc.) of yield response parameter estimators. In the present report, we instead employ 
an economic measure of trial design efficiency.  The idea is that, a better design should 
generate higher quality trial data to support more accurate yield response estimations, and 
consequently result in economically superior input management recommendations.  Using 
economic measures of field trial design efficiency allows us to discuss our research results in 
dollars and cents, terms easily understood by statisticians and non-statisticians alike. 

Materials, Data and Methods 

Simulated Experimental Field 

Field Layout 

We conducted Monte Carlo simulations of OFPEs to examine trial design efficiency.  The 
simulations generated data on site-specific corn yield response to N fertilizer application rates 
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on a simulated field, illustrated in Figure 2.  The field was 864 meters long and 432 meters 
wide, covering an area of approximately 37.3 hectares, which is a typical size for row crop 
production in the U.S. Corn and Soy Belt.  The field was assumed to be farmed in the direction 
of its long side, and was partitioned into a 144 × 72 grid of 6m × 6m “cells”, where the field 
“characteristics” values were assumed spatially uniform within each cell but spatially 
stochastic among cells.  Every trial design featured six targeted N rates.  The width of the N 
applicator was assumed to be 18 m.  As is the case currently in OFPEs, it was assumed that 
yield monitor technology could not accurately record large changes in yield over short 
distances, but rather required time and space to adjust its measurements accurately.  It was 
assumed that when the harvester passed between plots assigned differing N rates, the yield 
monitor had to pass through a 12m “transition zone” before accurately measuring yield, but 
that thereafter could accurately record yields within 18m × 12m “subplots” made up of a 3 × 
2 grid of cells.  The N applicator was also assumed to require time and space to adjust the 
applied N rates.  N trial rates were assigned to 72 m (12-cell) long “plots.”  The N applicator 
was assumed to be able to accurately apply N subplot-specifically (but not cell-specifically).  
Data from transition zones were not used in the statistical analyses, but each of the field’s 288 
N plots provided data from five subplots, meaning that useful data was generated on 1,440 
subplots after excluding the transition areas.  Each subplot contained six cells.  Transition areas 
included 1728 cells, so the field contained 1,440×6 + 1728 = 10,368 cells in total. 

 

Figure 2.  Experimental field layout and definition of spatial units 
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True Yield Response Function 

We assumed that the true underlying corn yield response to nitrogen (N) fertilizer followed a 
quadratic-plateau functional form with an additive disturbance term: 

f(N; β0, β1, β2) = {
β0 + β1N + β2N2   + ε, N < K
plateau + ε, N ≥ K

  (2.1) 

where K = −β1/(2β2) is the critical N application rate above which the yield maintains a 
plateau = β0 + β1K + β2K2.  The quadratic-plateau form is widely used by agronomists to 
model corn yield response to nitrogen (e.g., Cerrato and Blackmer 1990; Bullock and Bullock 
1994; Holman, et al. 2019). 

Spatial Distributions of True Response Parameters (“Field Characteristics”) 

In each simulation, the model’s “true” triplet of response parameters (β_0, β_1, β_2) varied 
by cell.  Their spatial distributions were derived using a Gaussian random field with a 
variogram range of 600 m (i.e., there was no spatial correlation between parameters of cells 
more than 600 m apart). Figure 3 shows the maps from one simulation’s response parameters. 
The spatial distributions of response parameters may be thought of and treated as 
representing the underlying spatial variability of field characteristics variables (such as soil clay 
content or topographical slope) that may influence yield directly or through interaction with 
N. 

 

Figure 3. Spatial distribution of true yield response parameters (or “field characteristics”) in 
one simulation 

Trial Designs 

Each simulated OFPE included six targeted trial N rates (N1, N2, N3, N4, N5, N6), which were 
set at the 0%, 20%, 40%, 60%, 80%, and 100% percentiles of the experimental field’s true 
cell-level critical N rate, K, to ensure a range of trial rates adequate to cover most locations’ 
yield response plateau points.  Sets of targeted N rates differed only slightly across 
simulations, and averaged approximately 80, 128, 154, 190, 224, and 269 kg ha−1.  

Figure 4 displays the thirteen types of trial designs considered.  Selections of types were based 
on two considerations. First, we included OFPE designs currently in frequent use, which are 
randomized strip, grid, and Latin square designs. Second, beyond the randomized designs, we 
constructed high-efficiency and low-efficiency fixed pattern strip, grid, and Latin square 
designs using four of the statistical measures developed in the agronomic literature to 
measure the “efficiency” of the spatial pattern of a design’s trial rates distribution.    Those 
measures are: (1) evenness of spatial distribution (Piepho et al., 2018), (2) spatial balance (van 
Es et al., 2007), (3) Moran’s I, and (4) gradation (a measure created by the authors of this 
paper). We describe these measures in further detail in Appendix. 

𝛽0 𝛽1 𝛽2 
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Figure 4. Trial design types 

Strip Designs 

Strip trials have been frequently run in on-farm research over recent decades and are 
commonly deployed in current research (e.g., Hicks, et al. 1997; Kyveryga, et al. 2018).  Typical 
strip trial designs allocated targeted application rates among but not within field-length, 
applicator-width strips of the field.   Advantages of strip trial design are that they are simple 
and can be implemented wihout variable-rate application equipment.  In our simulations the 
field contained 24 strips, each 18m (three cells) wide and 864m (144 cells) long. We examined 
four kinds of strip design.  

(1) In completely randomized strip designs (“SR”) each of the six N target rates was randomly 
assigned without replacement to four of the field’s 24 strips. 

(2) In randomized complete block strip designs (“SRB”) the field was partioned into four 
“blocks,” each containing six contiguous strips, to each of which was randomly assigned a 
targeted N rate without replacement.  Blocking is a classical design scheme in agricultural 
field trials, and our procedures allowed us to estimate its economic benefits. 
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(3) In the high efficiency fixed block strip design (“SF1”) the targeted N rates were spatially 
patternized to be (N3, N5, N1, N6, N2, N4) within each six-strip block, as illustrated in the 
upper panels of Figure 5.  That patternized block was replicated for the remaining of the 
field (which is why we named it as “fixed block”).  In total there are 720 possible blocked 
strip trial patterns, and the SF1 chosen here has the highest average of the field’s four 
statistical “efficiency” measures. 

(4) In the low efficiency fixed block strip design (“SF2”) the strips’ targeted N rates followed 
the patterns of (N1, N2, N3, N4, N5, N6) and (N6, N5, N4, N3, N2, N1) in alternating blocks, as 
illustrated in the bottom panels Figure 5.  Among the 720 possible blocked strip trial 
patterns, SF2 has the lowest average of the field’s four statistical “efficiency” measures. 

 

Figure 5. The SF1 and SF2 block patterns 

Gridded Designs 

In gridded trial simulations, targeted N rates were varied among the 72m-long, 18m-wide 
plots.  Gridded trials can gain statistical advantage over strip trials by increasing the spatial 
variance of application rates.  We examined two types of gridded designs, which we call non-
Latin-square designs and Latin square designs.   

Non-Latin-square Gridded Designs 

(5) In completely randomized gridded designs (“R”), each of the six N target rates was 
randomly assigned to 48 of the 288 plots.  Agronomists rarely employ completely randomized 
designs in agricultural field trials, but we used it as a benchmark against which to measure the 
economic benefit of blocking. 

(6) In randomized complete block gridded designs (“RB”) blocks comprised six plots organized 
in a 3-row and 2-column layout.  The six N trial rates were randomly assigned without 
replacement to the six plots within each block.  RBs are widely used small-plot agricultural 
field trials (e.g., van Es et al. 2007; Ahmad et al. 2018; Adhikari et al. 2021). 

SF1 

SF2 
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(7) In high efficiency fixed block gridded designs(“FB1”) blocks comprised six plots organized 
in a 3-row and 2-column layout, as in the RB design, but in each block the six N trial rates were 
assigned in a fixed pattern, with N3, N4 in the first row, N1, N6 in the second, and N2, N5 in the 
third, as illustrated in the left-hand panel of Figure 6. Out of the 720 possible patterns of the 
six N rates allocation within a block, FB1 generates the highest average of the four statistical 
“efficiency” measures for the whole field’s N rate spatial layout. 

 

Figure 6. The FB1 and FB2 block patterns 

(8) In low efficiency fixed block gridded designs(“FB2”) the within-block pattern was with N1, 
N2 in the first row, N4, N3 in the second, and N5, N6 in the third, as illustrated in the right-hand 
panel of Figure 6. This pattern generates the lowest average of the four statistical “efficiency” 
measures for the whole field’s N rate spatial layout out of the 720 possible patterns of the six 
N rates allocation within a block. 

Latin Square Designs 

A Latin square design with n targeted rates is defined as an array of n×n plots in which each 
rate is assigned exactly once in each row and each column.  In our simulations, blocks were 
6×6 arrays of 36 plots, the field was partioned into a 4×2 array of blocks, and the spatially 
arrangements of the six N rates were identical (“fixed”) among the eight blocks. In the trial 
design statistics literature Latin square designs have long been believed to be efficient, but 
are still not widely used in agronomic experiments (Fisher 1926; Box 1980; Preece 1990). We 
considered three specific Latin square designs. 

(9) The high-efficiency Latin square design (“L1”) had the highest average efficiency ranking 
among all Latin square designs of order 6.  Figure 7 (“L1”) displays the N rate pattern in one 
block of an L1 trial.  

(10) The low-efficiency Latin square design (“L2”) had the lowest average efficiency ranking 
among all Latin square designs of order 6.  Figure 7 (“L2”) displays the N rate pattern in one 
block of an L2 trial.   

(11) The rate jump constrained Latin square design (“LJ”) restricted the size of changes in 
targeted N rates between adjacent plots within swaths.  LJ was included in the analysis to 
examine the costs caused by the common limitation of variable rate input applicators being 
unable to make large changes in application rates over relatively short distances.  We 
conducted the similar average “efficiency” measure ranking on all Latin squares that satisfy 
this “rate-jump” restriction, and used the one with the highest average efficiency ranking,.  
Figure 7 (“LJ”) shows the block pattern of LJ. 

 

FB1 FB2 
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Figure 7. Block pattern of the Latin square designs 

Other designs 

We also considered two designs uncommonly used in reported research. The designs feature 
very gradual changes in trial rates over space.  We included them for purposes of comparison 
with the other eleven designs. 

(12) In the cascade plot design (“C”), the N rates changed smoothly from N1 to N6, and then 
back from N6 to N1, in both the row and column directions. 

(13) In the wave design (“W”). It is even more extreme than the Cascade design, such that the 
N rates changed gradually row, column, and diagonal directions, This design was mentioned 
in Bramley et al (1999). 

Yield Data Simulation Process 

While N target rates were assigned by plot, as-applied N rates differed among cells within a 
plot because the N rate in each cell equalled the target rate plus a disturbance term.  The 
distribution from which these disturbance terms were drawn was estimated from DIFM data.  
Each cell’s yield value was generated in each simulation round by using the value of the cell’s 

 parameters, the cell’s assigned N application rate and a value of the spatially autocorrelated 

yield disturbance term  in the yield response function defined in (2.1).  𝜀 was simulated using 
the Gaussian random process. The sizes of the yield errors were also calibrated to match the 
DIFM empirical yield disturbances.  Each subplot’s simulated cell-level yields were then 
averaged to obtain the observational unit of yield used in the analysis. 

Data Analysis and Economic Evaluation 

In each Monte Carlo round the subplot-level averaged simulated yield and trial N rates data 
were used to estimate the site-specific yield response functions.  Three estimation models 
were used to examine the robustness of the results with respect to estimation methods:  (1) 
the geographically weighted regression model (“GWR”), (2) the boosted regression forest 
model (“BRF”), and (3) the multi arm causal forest model (“MACF”)..  The functional form of 
yield response in the local regressions in the GWR models was assumed to be quadratic. GWR 
with nonlinear regressions is currently under development (e.g., Lambert and Cho (2022) has 
developed a linear-plateau GWR model), but the quadratic-plateau GWR is not yet available. 

L1 

L2 LJ 
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The coefficient estimation of the quadratic term in the GWR model was highly sensitive to 
sample errors.  To alleviate this problem, the quadratic coefficient was held constant in the 
GWR simulations following Trevisan et al. (2021).  However, GWR model only utilizes the 
minimum information (yield, N rates, and location coordinates) to estimate site-specific 
response functions, and is not guaranteed to be the most accurate modelling technique.  
While the better site-specific yield response models are still under development, in this study 
two machine learning models (BRF and MACF) with perfect field characteristics information 
(represented by the true response parameters (𝛽0, 𝛽1, 𝛽2)7) were used to mimic the more 
ideal modelling techniques that can possibly be achieved in the future.     

Estimated Subplot-specific Yield Response Functions 

For cell i ∈ {1, 2, …, 10368}, let (𝛽0
𝑖 , 𝛽1

𝑖 , 𝛽2
𝑖 ) denote the true value of the field characteristics 

vector and let 𝑓𝑖(𝑁) ≡ 𝑓(𝑁; 𝛽0
𝑖 , 𝛽1

𝑖 , 𝛽2
𝑖 ) of equation (2.1) denote the cell-specific yield 

response function.  In the OFPE practice the N trial rate and yield data are only available at 
subplot level.  Therefore, the estimated yield response functions are subplot-specific, denoted 

𝑓𝑗(𝑁) for a generic subplot j, j ∈ {1, 2, …, 1440}.  The GWR model generated an estimated 

quadratic response function for each subplot j as 𝑓𝑗(𝑁) = �̂�0
𝑗

+ �̂�1
𝑗
𝑁 + �̂�2

𝑗
𝑁2 where 

(�̂�0
𝑗
, �̂�1

𝑗
, �̂�2

𝑗
) denoting the estimated parameter values at subplot j.   On the other hand, the 

machine learning models, BRF and MACF, do not require the assumption that the researcher 
knew the true form of the yield response function.  The predicted yield and N rate relationship 

for each subplot j,  𝑓𝑗(𝑁), is in a numerical manner by decision trees. 

Estimated Subplot-specific Economically Optimal N Rates 

In each subplot j, the estimated subplot-specific economically optimal nitrogen rate (EONR) 
was defined as, 

EONR̂j = argmax
N

 [pf̂ j(N) − wN],  (2.2) 

where p was the corn price and w was the nitrogen fertilizer price, and the derivation of 𝑓𝑗(𝑁) 
depended on the estimation methods described above. Let Rx denote 

{𝐸𝑂𝑁�̂�1, … , 𝐸𝑂𝑁�̂�1440}, the set of estimated subplot-specific economically optimal N 

application rates (the “prescription”) provided by the estimation methodology used to analyse 
the data from the on-farm experiment.   

Profits from Following the Prescription Provided by an On-farm Precision Experiment 

For a generic cell i in subplot j, the true yield generated from following the Rx was calculated 

by substituting each subplot estimated EONR̂j into its “true” cell-specific yield response 

function, f i(N) of equation (2.1).  Since EONRs were estimated subplot-specifically, each cell 

i in subplot j has the same estimated value of EONR̂j.  For notational purpose we denote the 

true response function f i(N) of cell i in subplot j as f j,i(N).  The resulting actual per-hectare 
profit from applying the Rx was therefore: 

                                                      

7 That is like to mimic a situation that we know the field characteristics variables that can perfectly predict the yield 
response parameters, and can also collect those variables data in perfect accuracy. 
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𝛱𝑅𝑥 =
1

8640
∑ ∑[𝑝𝑓𝑗,𝑖(𝐸𝑂𝑁�̂�𝑗) − 𝑤𝐸𝑂𝑁�̂�𝑗]

6

𝑖=1

1440

𝑗=1

,  (2.3) 

where 1440 × 6 = 8640 was the total number of cells in the subplots (which did not include 
cells in the transition zones) of the experimental field. 

𝛱𝑅𝑥 defined above is the actual profit from implementing the on-farm trial’s Rx. It comes from 
applying the estimated subplot-specific EONRs to the field, not from applying the true subplot-
specific EONRs, defined as  

𝐸𝑂𝑁𝑅𝑗 = argmax
𝑁

 ∑[𝑝𝑓𝑗,𝑖(𝑁) − 𝑤𝑁]

6

𝑖=1

, 𝑗 = 1, 2, … , 1440.  (2.4) 

Let 𝛱𝑡𝑟𝑢𝑒 denote the profits that could be earned from the field if the producer knew every 
cell-specific yield response function and had the technological capability to apply N subplot-
specifically:   

𝛱𝑡𝑟𝑢𝑒 =
1

8640
∑ ∑[𝑝𝑓𝑗,𝑖(𝐸𝑂𝑁𝑅𝑗) − 𝑤𝐸𝑂𝑁𝑅𝑗]

6

𝑖=1

1440

𝑗=1

.  (2.5) 

Let ∆𝛱 denote the difference in between 𝛱𝑅𝑥 and the true maximum profit: 

∆𝛱 = 𝛱𝑅𝑥 − 𝛱𝑡𝑟𝑢𝑒.  (2.6) 

Note that ∆𝛱 is always negative, but when 𝛱𝑅𝑥 is closer to 𝛱𝑡𝑟𝑢𝑒 profits from the information 
garnered from the OFPE data are higher.  

Three price ratios (nitrogen fertilizer price divided by corn price, both in $/kg) were used in 
the simulations: 4.16 (low), 6.56 (medium), and 10.35 (high). They were obtained by taking 
the values at the fifth, fiftieth, and ninety-fifth percentiles of historical monthly price ratios 
from 1990 to 2022 (National Agricultural Statistics Service; DTN Retail Fertilizer Trends). The 
April 2022 corn price of $0.28/kg was used in the simulation results, and nitrogen was assigned 
prices of approximately 4.16×0.28 = $1.16/kg, 6.56×0.28 = $1.84/kg, and 10.35×0.28 = 
$2.90/kg.  The discussion below is based on the simulation results when assuming the 
$1.84/kg price of nitrogen fertilizer.  That the N price has never actually been as high as 
$2.90/kg price did not affect the EONR estimations since they were determined by the relative 
nitrogen-corn price ratio rather than absolute the prices. The absolute profit values 𝛱𝑅𝑥 and 
𝛱𝑡𝑟𝑢𝑒could be over- or under-estimated by extreme N prices, but those over- or under-
estimations were linear scale-ups or scale-downs of the normal profit values and did not affect 
the economic performance rankings of trial designs. 

Results and Discussion 

Comparisons of Designs and Key Questions Addressed 

Figure 8 shows boxplots of the simulated ∆Π of the thirteen experimental designs from one 
thousand rounds of simulation. The diagram was based on a medium price ratio (N price 
divided by corn price, both in $/kg) of 6.56. Profits were calculated based on three site-specific 
yield response models (GWR, BRF, and MACF).  The values above each boxplot denote 
simulations’ mean ∆Π.   
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Figure 8. Boxplots of simulated profits from one thousand rounds of simulation for the 
thirteen experimental designs 

Simulation results provide quantitative insight into several key questions related to the 
economic performances of trial designs.  Answers are based on comparisons of profits 
generated from one thousand rounds of simulations of a 31.3 ha field and a price ratio of 6.56.  
Simulations were also run under other field size and price scenarios, and instances in which 
any scenario significantly affected the conclusions stated below are noted. 

Is blocking economically beneficial?  Yes.  

Blocking designs have been commonly regarded as statistically superior (“more efficient”) to 
completely randomized designs. Our simulation results demonstrated that blocking designs 
also have higher economic returns.  

For strip designs, profits from blocking (that is, from using SRB instead of SR) were 
approximately $3.5 to $4/ha under all models.  For the gridded designs, profits from blocking 
(that is, from using RB instead of R) were approximately $1.7 to $2.7/ha under different 
models. Blocking also lowered the standard deviations of the ∆𝛱 estimations under all 
models. 

(2) Is patternizing within-block targeted application rates economically beneficial?  
Sometimes, but it depends on the pattern and estimation model used. 

For strip designs, the high efficiency fixed-block strip design (SF1) was $0.3/ha to $2.2/ha more 
profitable than the randomized block strip design (SRB), depending on the estimation model 
used. The standard deviations of profits of SF1 were also smaller than SRB.  But low efficiency 
fixed-block strip design (SF2) was less profitable than SRB under GWR (-$7.5/ha) and BRF (-
$4/ha) models, while slightly more profitable under the MACF ($0.5/ha) model. 

For the gridded designs, the low efficiency fixed-block design (FB2) was slightly more 
profitable ($0.2 to $1.6/ha) than the randomized block design (RB) under BRF and MACF 
models, but the high efficiency fixed-block design (FB1) was slightly less profitable than RB 
under all models. 
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(3) Does increasing the statistical “efficiency” of a design’s spatial properties raise profits? 
Sometimes, but it depends on the design type and estimation model.   

The highly efficiency fixed-block strip design (SF1) was significantly more profitable than the 
low efficiency strip design (SF2) by as much as $9/ha under GWR model and $6/ha under BRF 
model, but not under the MACF model.  For the gridded designs, the high efficiency fixed-
block design (FB1) was slightly more profitable than the low efficiency design (FB2) under the 
GWR ($0.9/ha) model, but less profitable under the BRF (-$3.5/ha) and MACF (-$0.5/ha) 
models.  For Latin square designs, the high efficiency Latin square design (L1) was more 
profitable than the low efficiency Latin square design (L2) under the GWR ($0.2/ha) and BRF 
($3/ha) models, but less profitable under the MACF (-$0.7/ha) model.  

Roughly speaking, the high efficiency designs were more profitable than their respective 
counterparts under the GWR and BRF models (except for FB1 vs. FB2 under BRF), while less 
profitable under the MACF model though the magnitudes of the profit difference were small.  
The statistical “efficiency” measures could have been effectively used as general guidelines 
for trial design, though caution should be exercised on cases of exceptions. 

(4) Are gridded designs better than strip designs? Not necessarily. 

Perhaps surprisingly, the high efficiency fixed-block strip design SF1 provided similar or even 
slightly higher profits than the six-rate-block gridded designs (RB, FB1, or FB2).  SF1 profit was 
$0.90/ha greater than RB profit under GWR, $0.06/ha greater under GWR2GWR2, and 
$0.40/ha greater than FB2 under BRF. Under MACF, SF2 provided the highest profit, which 
was about $0.70/ha higher than from FB2. The standard deviation of profits from SF1 were 
also smaller than or very close to those from RB, FB1, and FB2. 

For strip vs Latin square gridded designs, however, the Latin square designs can be slightly 
more profitable.  The high efficiency Latin square design (L1) was more profitable than the 
high efficiency strip design (SF1) for all estimation models. But the profit difference was not 
sizable. 

(5) Are the 6-by-6 Latin square designs better than the 6-rate blocking designs?  Yes.  

The high efficiency Latin square design (L1) was more profitable than the six-rate-block design 
(RB, FB1, or FB2) under all models. But the profit difference was not sizable only about $7/ha 
under GWR, and was below $0.80/ha under the other models. 

(6) Does the inability of the machinery to change rates abruptly significantly lower the value 
of information from the experiments?  No.  

Simulation results showed there was essentially no profit penalty from restricting the N rate 
“jumps” between adjacent plots in the Latin square designs. In fact, the Latin square design 
with constrained “jump” (LJ) was even slightly more profitable, and also more stable, than the 
best Latin square design (L1). The profit difference was quite small, though, at $0.04/ha from 
GWR, $0.35/ha from BRF, and $0.10/ha from MACF.    

(7) How did Cascade and Wave designs perform?  Poorly.  

Profits from the Cascade and Wave designs were almost always the lowest among all designs. 
Based on GWR, Cascade design (C) profit was about $10/ha lower than the best-performing 
LJ design. Based on BRF and MACF, Wave design (W) profit was $26/ha and $17/ha lower than 
LJ design.   
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Overall ranking of designs and sensitivity analysis 

Sensitivity to price ratios 

Results above were generally robust with respect to the price ratio. Boxplot figures for profits 
under low and high price ratios are shown in Figures A.1 and A.2 of the Appendix. Of course, 
the absolute size of profit levels varied substantially with the price ratios, but the relative 
performances of the designs changed little. 

 

Figure 9. Average simulated profits from 1,000 rounds of simulation for the thirteen 
experimental designs, based on price ratios and estimation models. 

 

Figure 10. Standard deviation of simulated profits from 1,000 rounds of simulation for the 
thirteen experimental designs, based on price ratios and estimation models. 

Design rankings 

Figure 9 plots average ∆𝛱 of each design for all estimation models and price ratios (the 
average profit values were extracted from Figures 8, A.1, and A.2), and uses the profit of LJ 
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design as the benchmark.  The values in Figure 9 shows the relative economic performance of 
each design compared to design LJ.  The horizontal ranking of designs was based on the pooled 
average ∆𝛱 over all estimation models and price ratios, which is {LJ, L1, SF1, L2, RB, FB2, SRB, 
FB1, R, SR, SF2, C, W}.  Similarly, Figure 10 plots the standard deviations of ∆𝛱 following the 
same horizontal ranking of designs.   

LJ was the best design (highest average profit, and lowest standard deviation of profit) for all 
price ratio and model scenarios.  L1 or L2 was in some cases a close second to LJ.  But when 
taking into account the benefit from LJ of avoiding machinery problems by restricting abrupt 
N rate changes between plots, LJ is almost always a desirable design. 

SF1 was also worth of considering given its close economic performances to LJ (less than $1/ha 
lower) but essentially no N rate changes between plots along the application direction, and 
therefore much lower requirements for experimental equipment.   

 The overall rankings of the designs were highly consistent across price ratios.  The robustness 
of design ranking to price scenarios is especially useful as it avoids the selecting of optimal 
design conditional on harvesting time price that is usually difficult to predict at the time of 
implementing trials. 

Sensitivity to estimation models 

It should be noticed that the rankings of the designs varied with the estimation model used.  
For example, SF2 was among the poorest performing designs under GWR, but was among the 
top performing designs under MACF.  RB was more profitable than FB2 under GWR, but less 
profitable under BRF, and almost identical under MACF.  Other designs, such as RB, FB1, FB2, 
and RSB, also slightly differed in rankings across estimation models.  In addition, the 
magnitudes of profit differences between designs were much smaller under MACF compared 
with other models, meaning the selection of trial design may matter less when using MACF 
model to derive Rx.  Nonetheless, the general trends in design performance rankings were 
roughly similar across estimation models.  Especially, the rankings of LJ (the top-ranked 
design) and SF1 (very close to the top) were very robust to estimation models. 

Sensitivity to field sizes 

The design performance rankings were also highly robust to different field sizes. Figures A.3 
and A.4 showed the simulation results for a 18.7 ha field, half the size of the baseline field. 

The overall rankings of the design performances were similar to the baseline field results, with 
some slight changes. LJ design was still the best choice, and SF1’s overall ranking was even 
slightly better than L1 (though the differences were quite marginal).  The shapes of the trend 
lines of average and standard deviation of profits along the designs were still similar to the 
baseline field results, and therefore most of the previous conclusions hold.  

Profit differences between designs were slightly larger on the smaller field for the bottom-
ranked designs. For example, under the medium price ratio (6.56) the profit difference 
between LJ and C designs was $9.50/ha under GWR for the baseline field, and $15/ha for the 
smaller field. But the effects of field size on profit differences were less significant for the top-
ranked designs. The standard deviations of profit were significantly larger on the smaller field 
than on the baseline field.  Those findings may suggest the economic penalty of selecting 
“bad” designs increases for smaller sized fields. 



Proceedings of the 5th Symposium on Agri-Tech Economics for Sustainable Futures 133 

Relationship between statistical efficiency measures and economic performances 

We calculated the four statistical “efficiency” measures mentioned earlier (evenness of 
distribution, spatial balance, Moran’s I, and gradation) for all thirteen designs. In addition, we 
tried two extra efficiency measures of design based on as-applied N rates (instead of the target 
N rates), which we named as “local N rate variation” and “local accidental correlation between 
N rate and yield error”. Details of the two extra measures are described in Appendix Text A.1 
“Statistical Measures of Designs”. 

 

Figure 11. Scatter plots of experimental designs’ statistical “efficiency” measures and 
average simulated profits, from 1,000 rounds of simulation, based on a 31.3 ha field, 6.56 
price ratio, and GWR estimation model.  
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Figure 11 presents for all thirteen designs’ scatter plots showing the relationships between a 
trial design’s profits and measures of its statistical “efficiency” measures.  The relationships 
between the statistical efficiency measures and economic performances of trial designs were 
roughly consistent with expectations from the literature.  In general, designs with more even 
distributions, better spatial balance, less spatial autocorrelation (Moran’s I), less regular 
gradation, larger local N variation, and smaller local accidental correlation tended to have 
higher average profits (as well as smaller standard deviations of profits, which are not shown 
in Figure 11).  Figure 11 was based on GWR estimation model.  The relationships between 
statistical measures and designs’ economic performances were similar for BRF and MACF 
models as well.  Details are illustrated in Appendix Figures A.5 and A.6. 

But the statistical efficiency measures were only loosely related to the economic 
performances of trial designs, and much about these relationships remains unexplained.  LJ 
was top-ranked in most measures, but ranked only in the middle for gradation. Cascade (C) 
had very good spatial balance but low profits.  SF1 had a very uneven spatial distribution but 
high profits.  No one measure of statistical efficiency measures by itself fully explained the 
economic performances of the trial designs.  Different measures were also conflicting with 
each other.  The statistical efficiency measures provide some helpful insights to guide the trial 
design selections, but they are not sufficient enough to fully explain the designs’ economic 
performances. 

Conclusions 

The first take-away from the reported research is that the choice of trial design affects the 
final economic performance of OFPE.  Overall, the best design was the Latin square design 
with a special pattern to limit N rate “jump” (LJ). It had the highest average profit and lowest 
profit variation in almost all simulation scenarios. The sizes of the economic advantages of LJ 
varied.  In addition, LJ may limit the damage to variable application equipment that can come 
from abrupt, large changes in application rates.   

The economic costs of using strip designs instead of gridded designs may be low in some cases.  
The economic performance of the high efficiency fixed-block strip design (SF1) was 
comparable to that of LJ in various scenarios, and could be a good alternative if only strip 
designs are available.   

Blocking raises profits.  Furthermore, the fixed block designs, by properly patternizing the 
spatial distribution of application rates within blocks and avoiding “clumping”, may work 
better than randomization within blocks, particularly for strip designs.   

Designs with gradual trial rate changes in every direction (L2, SF2, C, and W) were less 
profitable in most situations. Especially, the Cascade (C) and Wave (W) designs should be 
avoided.   

Relative design performance depended little on prices.  While design profitability varied 
considerably across estimation models, the profitability of the LJ and SF1 was consistently high 
across all estimation models.  

Statistical efficiency measures of trial designs roughly explained the designs’ economic 
performances.  In general, more profitable designs exhibited spatially even and balanced 
distributions of N rates, and “fluctuated” N rate changes were more profitable than gradual N 
rate changes.  
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The conclusions above are subject to limitations that should be addressed in future research.  
The thirteen trial designs examined do not exhaust the list of trial designs.  Only three of the 
many available estimation methods were examined.  No attempt was made to analyse trial 
design performance over multiple years involving changes in weather.  Only one functional 
form of yield response was taken into account.  Finally, the field used in the simulations 
typified a “flat and black” central Illinois field.  It is well known that spatial heterogeneity of 
field characteristics increases the potential profitability of site-specific input management.  
Future research should examine trial design profitability on fields with more spatially 
heterogeneous characteristic values.   
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Appendix: Statistical “Efficiency” Measures of Designs 

The agronomic trial design literature stresses a number of design types with properties that 
tend to lend to the efficiency of estimates of yield response functions and economically 
optimal input application rates.  We discuss three of these efficiency measures below, and 
also three additional measures we developed as part of the presented research. 

1) Evenness of Distribution 

A common opinion in the trial design literature is that a good design should have evenly 
distributed treatment rates over space. The left-hand panel of figure A.7 illustrates a spatially 
even trial design, and the right-hand panel illustrates a design in which trial rates are 
maximally “clumped,” which is what it means for a trial design to be spatially uneven.   

 

Figure A.7.  Illustrations of extreme cases of spatially even and uneven trial designs. 

We followed Piepho, et al. (2018) by measuring the evenness of spatial distribution by the 
minimum spanning tree of the Euclidean distances among plots of the same treatment. 

2) Spatial Balance 

Another balance measure examines the spatial distances between plots of a treatment pair. 
Following the definition of van Es et al. (2007), a spatially balanced design should have the 
distances associated with all treatment pairs as similar as possible. The distance associated 
with treatment pair (1, 2), for example, was calculated as the mean of distances of all possible 
lines connecting plots of rate 1 and plots of rate 2. The spatial balance was measured as the 
standard deviation of the mean distances associated with the fifteen treatment pairs of six 
trial rates. 

3) Moran’s I 

Moran’s I is the widely used statistic to measure data spatial autocorrelation (Moran, 1950).  
A high Moran’s I value implies that similar treatment rates are distributed close to each other 
over space, which probably suggests poor evenness of distribution. 

4) Gradation of N Rate Changes 

Then gradation to N rate measure is original to this study. The idea is to measure whether the 
N rates change gradually or with wide fluctuations over space. We define a gradation index 
for N plot i as: 

𝐺𝑅𝑖 = (𝑁𝑖 − 𝑁𝑖−1) × (𝑁𝑖+1 − 𝑁𝑖), 
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where 𝑁𝑖−1 and 𝑁𝑖+1 are the N rates before and after plot i.  A positive gradation index reflects 
gradual changes in N rates, and a negative gradation index reflects more fluctuation in N rate 
changes. 

5) Local Variation in N Rates 

We speculated that having sufficient local spatial variation of N rates in would improve site-
specific yield response estimation.  Data with little local variation in N rates could reduce the 
accuracy or local regression estimations. In our simulated experimental fields, we define “local 
area” as a moving window of 6 rows and 2 columns of plots. The standard deviation of N rates 
within each moving window was computed, and the average standard deviation among all 
windows was used as the measure of local N rate variation for the field. 

6) Accidental Correlation 

Basic econometric theory shows that correlations between independent variable observations 
(N rates in this study) and the error term (yield noise in this study) biases the estimated 
regression coefficient.  We assumed yield errors to be spatially dependent. In spatially 
patternized designs targeted N rates can be correlated with yield errors. The higher is the 
incidence of this kind of “accidental correlation”, the larger will be estimation errors in the 
local regressions. We constructed moving windows of 6 rows and 2 columns of plots to 
compute the local correlation between N rates and yield errors. The average of the absolute 
value of the correlations across all windows was used as the measure of accidental correlation.  

Figures 11 and A.5 – A.6 show correlations between the trial design statistical efficiency 
measures described above and the simulated profits from running the trials, analysing the 
data and implementing the resultant Rxs based on GWR, BRF and MACF models, respectively. 

 

Figure A.1. Boxplots of the difference between a trial designs’ profits and true maximum 
profits, from 1,000 rounds of simulation for each the thirteen experimental designs, based 
on a 4.16 price ratio.  

 



Proceedings of the 5th Symposium on Agri-Tech Economics for Sustainable Futures 138 

 

Figure A.2.  Boxplots of the difference between a trial designs’ profits and true maximum 
profits, from 1,000 rounds of simulation for each the twelve experimental designs, based on 
a price ratio of 10.35. 

 

Figure A.3. Average simulated profits on the smaller experimental field, from 1,000 rounds 
of simulation for the twelve experimental designs, assuming price ratios of 4.16, 6.56, and 
10.35. Profit values show the difference between the trail design’s profits and the LJ design’s 
profits. 
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Figure A.4. Standard deviation of simulated on the smaller experimental field, from 1,000 
rounds of simulation for the twelve experimental designs, assuming price ratios of 4.16, 
6.56, and 10.35. Profit values show the difference between the trail design’s profits and the 
LJ design’s profits. 
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Figure A.5. Scatter plots of experimental designs’ statistical “efficiency” measures and 
average simulated profits, from 1,000 rounds of simulation, based on a 31.3 ha field, 6.56 
price ratio, and BRF estimation model.  

  



Proceedings of the 5th Symposium on Agri-Tech Economics for Sustainable Futures 141 

Figure A.6. Scatter plots of experimental designs’ statistical “efficiency” measures and 
average simulated profits, from 1,000 rounds of simulation, based on a 31.3 ha field, 6.56 
price ratio, and MACF estimation model.  
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